

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

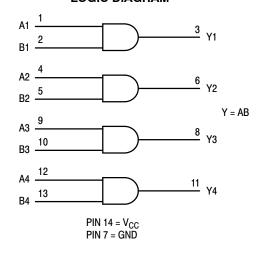
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



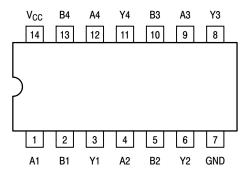




# **Quad 2-Input AND Gate**


## **High-Performance Silicon-Gate CMOS**

The MC74HC08A is identical in pinout to the LS08. The device inputs are compatible with Standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.


### **Features**

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance With the JEDEC Standard No. 7A Requirements
- Chip Complexity: 24 FETs or 6 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

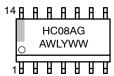
## LOGIC DIAGRAM



## Pinout: 14-Lead Packages (Top View)






## ON Semiconductor®

http://onsemi.com

## MARKING DIAGRAMS



SOIC-14 D SUFFIX CASE 751A





TSSOP-14 DT SUFFIX CASE 948G



A = Assembly Location

L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

## **FUNCTION TABLE**

| Inp | uts | Output |
|-----|-----|--------|
| Α   | В   | Υ      |
| L   | L   | L      |
| L   | Н   | L      |
| Н   | L   | L      |
| Н   | Н   | н      |

### ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

#### **MAXIMUM RATINGS**

| Symbol           | Parameter                                                                | Value                    | Unit |
|------------------|--------------------------------------------------------------------------|--------------------------|------|
| V <sub>CC</sub>  | DC Supply Voltage (Referenced to GND)                                    | - 0.5 to + 7.0           | V    |
| V <sub>in</sub>  | DC Input Voltage (Referenced to GND)                                     | $-0.5$ to $V_{CC}$ + 0.5 | V    |
| V <sub>out</sub> | DC Output Voltage (Referenced to GND)                                    | $-0.5$ to $V_{CC}$ + 0.5 | V    |
| l <sub>in</sub>  | DC Input Current, per Pin                                                | ± 20                     | mA   |
| l <sub>out</sub> | DC Output Current, per Pin                                               | ± 25                     | mA   |
| Icc              | DC Supply Current, V <sub>CC</sub> and GND Pins                          | ± 50                     | mA   |
| P <sub>D</sub>   | Power Dissipation in Still Air, SOIC Package† TSSOP Package†             | 500<br>450               | mW   |
| T <sub>stg</sub> | Storage Temperature                                                      | - 65 to + 150            | °C   |
| TL               | Lead Temperature, 1 mm from Case for 10 Seconds<br>SOIC or TSSOP Package | 260                      | °C   |

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation,  $V_{in}$  and  $V_{out}$  should be constrained to the range GND  $\leq$  ( $V_{in}$  or  $V_{out}$ )  $\leq$   $V_{CC}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or  $V_{\rm CC}$ ). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

†Derating — SOIC Package: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C

## **RECOMMENDED OPERATING CONDITIONS**

| Symbol                             | Parameter                                               |                               | Min         | Max                | Unit |
|------------------------------------|---------------------------------------------------------|-------------------------------|-------------|--------------------|------|
| V <sub>CC</sub>                    | DC Supply Voltage (Referenced to GND)                   |                               | 2.0         | 6.0                | V    |
| V <sub>in</sub> , V <sub>out</sub> | DC Input Voltage, Output Voltage<br>(Referenced to GND) |                               | 0           | V <sub>CC</sub>    | ٧    |
| T <sub>A</sub>                     | Operating Temperature, All Package Types                |                               | <b>– 55</b> | + 125              | °C   |
| t <sub>r</sub> , t <sub>f</sub>    | (Figure 1) V <sub>CC</sub>                              | = 2.0 V<br>= 4.5 V<br>= 6.0 V | 0<br>0      | 1000<br>500<br>400 | ns   |

## **ORDERING INFORMATION**

| Device           | Package               | Shipping <sup>†</sup> |
|------------------|-----------------------|-----------------------|
| MC74HC08ADG      | SOIC-14<br>(Pb-Free)  | 55 Units / Rail       |
| MC74HC08ADR2G    | SOIC-14<br>(Pb-Free)  | 2500 / Tape & Reel    |
| MC74HC08ADTR2G   | TSSOP-14<br>(Pb-Free) | 2500 / Tape & Reel    |
| NLV74HC08ADG*    | SOIC-14<br>(Pb-Free)  | 55 Units / Rail       |
| NLV74HC08ADR2G*  | SOIC-14<br>(Pb-Free)  | 2500 / Tape & Reel    |
| NLV74HC08ADTR2G* | TSSOP-14<br>(Pb-Free) | 2500 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

<sup>\*</sup>NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

## DC CHARACTERISTICS (Voltages Referenced to GND)

|                 |                                                   | V <sub>CC</sub> Guaranteed Limit                                                                                                                                                                            |                          | nit                          |                              |                              |      |
|-----------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|------------------------------|------------------------------|------|
| Symbol          | Parameter                                         | Condition                                                                                                                                                                                                   | v                        | -55 to 25°C                  | ≤ <b>85</b> °C               | ≤125°C                       | Unit |
| V <sub>IH</sub> | Minimum High-Level Input Voltage                  | $V_{out} = 0.1V \text{ or } V_{CC} - 0.1V$<br>$ I_{out}  \le 20 \mu A$                                                                                                                                      | 2.0<br>3.0<br>4.5<br>6.0 | 1.50<br>2.10<br>3.15<br>4.20 | 1.50<br>2.10<br>3.15<br>4.20 | 1.50<br>2.10<br>3.15<br>4.20 | ٧    |
| V <sub>IL</sub> | Maximum Low-Level Input Voltage                   | $V_{out} = 0.1 V \text{ or } V_{CC} - 0.1 V$ $ I_{out}  \le 20 \mu A$                                                                                                                                       | 2.0<br>3.0<br>4.5<br>6.0 | 0.50<br>0.90<br>1.35<br>1.80 | 0.50<br>0.90<br>1.35<br>1.80 | 0.50<br>0.90<br>1.35<br>1.80 | V    |
| V <sub>OH</sub> | Minimum High-Level Output Voltage                 | $V_{in} = V_{IH} \text{ or } V_{IL}$<br>$ I_{out}  \le 20 \mu A$                                                                                                                                            | 2.0<br>4.5<br>6.0        | 1.9<br>4.4<br>5.9            | 1.9<br>4.4<br>5.9            | 1.9<br>4.4<br>5.9            | V    |
|                 |                                                   | $\begin{split} V_{in} = & V_{IH} \text{ or } V_{IL} &  I_{out}  \leq 2.4 \text{m.} \\ &  I_{out}  \leq 4.0 \text{m.} \\ &  I_{out}  \leq 5.2 \text{m.} \end{split}$                                         | 4.5                      | 2.48<br>3.98<br>5.48         | 2.34<br>3.84<br>5.34         | 2.20<br>3.70<br>5.20         |      |
| V <sub>OL</sub> | Maximum Low-Level Output Voltage                  | $V_{in} = V_{IH} \text{ or } V_{IL}$<br>$ I_{out}  \le 20 \mu A$                                                                                                                                            | 2.0<br>4.5<br>6.0        | 0.1<br>0.1<br>0.1            | 0.1<br>0.1<br>0.1            | 0.1<br>0.1<br>0.1            | ٧    |
|                 |                                                   | $\begin{split} V_{in} &= V_{IH} \text{ or } V_{IL} & & \left  I_{out} \right  \leq 2.4 \text{m.} \\ & \left  I_{out} \right  \leq 4.0 \text{m.} \\ & \left  I_{out} \right  \leq 5.2 \text{m.} \end{split}$ | 4.5                      | 0.26<br>0.26<br>0.26         | 0.33<br>0.33<br>0.33         | 0.40<br>0.40<br>0.40         |      |
| l <sub>in</sub> | Maximum Input Leakage Current                     | V <sub>in</sub> = V <sub>CC</sub> or GND                                                                                                                                                                    | 6.0                      | ±0.1                         | ±1.0                         | ±1.0                         | μΑ   |
| Icc             | Maximum Quiescent Supply<br>Current (per Package) | $V_{in} = V_{CC}$ or GND $I_{out} = 0\mu A$                                                                                                                                                                 | 6.0                      | 1.0                          | 10                           | 40                           | μΑ   |

## $\textbf{AC CHARACTERISTICS} \ (C_L = 50 pF, \ Input \ t_r = t_f = 6 ns)$

|                    |                                                     | V <sub>CC</sub> | Guaranteed Limit |       |        |      |
|--------------------|-----------------------------------------------------|-----------------|------------------|-------|--------|------|
| Symbol             | Parameter                                           | V               | –55 to 25°C      | ≤85°C | ≤125°C | Unit |
| t <sub>PLH</sub> , | Maximum Propagation Delay, Input A or B to Output Y | 2.0             | 75               | 95    | 110    | ns   |
| t <sub>PHL</sub>   | (Figures 1 and 2)                                   | 3.0             | 30               | 40    | 55     |      |
|                    | ,                                                   | 4.5             | 15               | 19    | 22     |      |
|                    |                                                     | 6.0             | 13               | 16    | 19     |      |
| t <sub>TLH</sub> , | Maximum Output Transition Time, Any Output          | 2.0             | 75               | 95    | 110    | ns   |
| t <sub>THL</sub>   | (Figures 1 and 2)                                   | 3.0             | 27               | 32    | 36     |      |
|                    |                                                     | 4.5             | 15               | 19    | 22     |      |
|                    |                                                     | 6.0             | 13               | 16    | 19     |      |
| C <sub>in</sub>    | Maximum Input Capacitance                           |                 | 10               | 10    | 10     | pF   |

|          |                                             | Typical @ 25°C, V <sub>CC</sub> = 5.0 V, V <sub>EE</sub> = 0 V |    |
|----------|---------------------------------------------|----------------------------------------------------------------|----|
| $C_{PD}$ | Power Dissipation Capacitance (Per Buffer)* | 20                                                             | рF |

<sup>\*</sup>Used to determine the no–load dynamic power consumption:  $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$ .

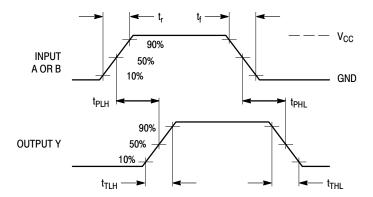
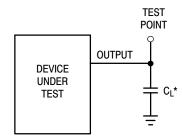




Figure 1. Switching Waveforms



\*Includes all probe and jig capacitance

Figure 2. Test Circuit

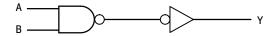
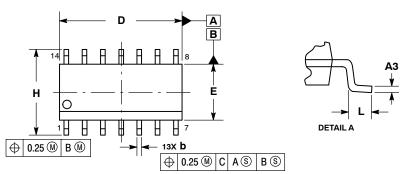
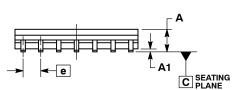
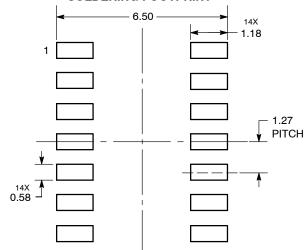





Figure 3. Expanded Logic Diagram (1/4 of the Device)

## **PACKAGE DIMENSIONS**

## SOIC-14 NB CASE 751A-03 ISSUE K



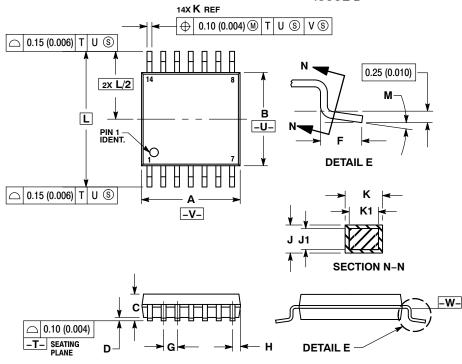





- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
  2. CONTROLLING DIMENSION: MILLIMETERS.
  3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
  4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
  5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

|     | MILLIN | IETERS | INCHES |       |
|-----|--------|--------|--------|-------|
| DIM | MIN    | MAX    | MIN    | MAX   |
| Α   | 1.35   | 1.75   | 0.054  | 0.068 |
| A1  | 0.10   | 0.25   | 0.004  | 0.010 |
| АЗ  | 0.19   | 0.25   | 0.008  | 0.010 |
| b   | 0.35   | 0.49   | 0.014  | 0.019 |
| D   | 8.55   | 8.75   | 0.337  | 0.344 |
| Е   | 3.80   | 4.00   | 0.150  | 0.157 |
| е   | 1.27   | BSC    | 0.050  | BSC   |
| н   | 5.80   | 6.20   | 0.228  | 0.244 |
| h   | 0.25   | 0.50   | 0.010  | 0.019 |
| L   | 0.40   | 1.25   | 0.016  | 0.049 |
| М   | 0 °    | 7 °    | 0 °    | 7°    |

## **SOLDERING FOOTPRINT\***



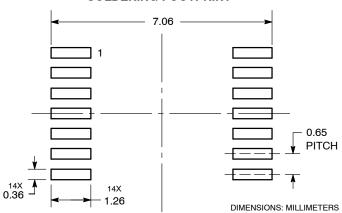

DIMENSIONS: MILLIMETERS

<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

## PACKAGE DIMENSIONS

## TSSOP-14 **DT SUFFIX** CASE 948G-01 ISSUE B




- NOTES:

  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: MILLIMETER.
  3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
  MOLD FLASH OR GATE BURRS SHALL NOT
  - EXCEED 0.15 (0.006) PER SIDE.
    4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
    INTERLEAD FLASH OR PROTRUSION SHALL
  - NOT EXCEED 0.25 (0.010) PER SIDE.

    5. DIMENSION K DOES NOT INCLUDE
    DAMBAR PROTRUSION. ALLOWABLE
    DAMBAR PROTRUSION SHALL BE 0.08
    (0.003) TOTAL IN EXCESS OF THE K
    DIMENSION AT MAXIMUM MATERIAL
    CONDITION.
  - DIMENSION AT MAXIMUM MALEHIAL
    CONDITION.
    6. TERMINAL NUMBERS ARE SHOWN FOR
    REFERENCE ONLY.
    7. DIMENSION A AND B ARE TO BE
    DETERMINED AT DATUM PLANE –W–.

|     | MILLIN | IETERS | INC       | HES   |
|-----|--------|--------|-----------|-------|
| DIM | MIN    | MAX    | MIN       | MAX   |
| Α   | 4.90   | 5.10   | 0.193     | 0.200 |
| В   | 4.30   | 4.50   | 0.169     | 0.177 |
| С   |        | 1.20   |           | 0.047 |
| D   | 0.05   | 0.15   | 0.002     | 0.006 |
| F   | 0.50   | 0.75   | 0.020     | 0.030 |
| G   | 0.65   | BSC    | 0.026     | BSC   |
| Н   | 0.50   | 0.60   | 0.020     | 0.024 |
| J   | 0.09   | 0.20   | 0.004     | 0.008 |
| J1  | 0.09   | 0.16   | 0.004     | 0.006 |
| Κ   | 0.19   | 0.30   | 0.007     | 0.012 |
| K1  | 0.19   | 0.25   | 0.007     | 0.010 |
| L   | 6.40   | BSC    | 0.252 BSC |       |
| М   | 0 °    | 8 °    | 0 °       | 8 °   |

## **SOLDERING FOOTPRINT\***



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and war registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any licenses under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportuni

## **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative