imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

8-Input Data Selector/Multiplexer

High-Performance Silicon-Gate CMOS

The MC74HC151 is identical in pinout to the LS151. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device selects one of the eight binary Data Inputs, as determined by the Address Inputs. The Strobe pin must be at a low level for the selected data to appear at the outputs. If Strobe is high, the Y output is forced to a low level and the \overline{Y} output is forced to a high level.

The HC151 is similar in function to the HC251 which has 3-state outputs.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: 1 µA
- High Noise Immunity Characteristic of CMOS Devices
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These are Pb–Free Devices

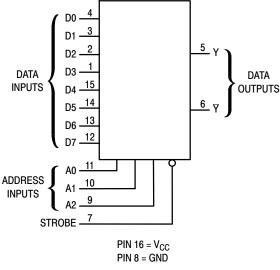
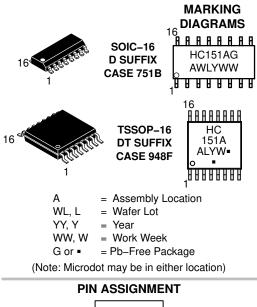



Figure 1. Logic Diagram

ON Semiconductor®

www.onsemi.com

D3 [1•	16	V _{CC} D4
D2 🛛	2	15	D D4
D1 🛛	3	14	D D5
D0 [4	13	D6
ΥC	5	12	D7
ΥC	6	11	D A0
STROBE	7	10	D A1
GND [8	9	D A2

FUNCTION TABLE

Inputs			Out	puts		
A2	A1	A0	Strobe	Y	Y	
Х	Х	Х	Н	L	Н	
L	L	L	L	D0	D0	
L	L	н	L	D1	D1	
L	н	L	L	D2	D2	
L	н	н	L	D3	D3	
Н	L	L	L	D4	D4	
н	L	н	L	D5	D5	
н	н	L	L	D6	D6	
Н	Н	Н	L	D7	D7	

D0, D1, ..., D7 = the level of the respective D input.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage (Referenced	to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to	DC Input Voltage (Referenced to GND)		
V _{out}	DC Output Voltage (Referenced	DC Output Voltage (Referenced to GND)		
l _{in}	DC Input Current, per Pin		±20	mA
I _{out}	DC Output Current, per Pin		±25	mA
ICC	DC Supply Current, V _{CC} and GND Pins		±50	mA
P _D	Power Dissipation in Still Air SOIC Package TSSOP Package		500 TBD	mW
T _{stg}	Storage Temperature		-65 to +150	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)			6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)			V _{CC}	V
T _A	Operating Temperature, All Package Types		-55	+125	°C
t _r , t _f	(Figure 2) V _C	C = 2.0 V C = 4.5 V C = 6.0 V	0 0 0	1000 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	v _{cc} v	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$\begin{array}{l} V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V} \\ I_{out} \leq 20 \; \mu\text{A} \end{array}$	2.0 4.5 6.0	1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V
V _{IL}	Maximum Low–Level Input Voltage	$\begin{array}{l} V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V} \\ I_{out} \leq 20 \; \mu\text{A} \end{array}$	2.0 4.5 6.0	0.3 0.9 1.2	0.3 0.9 1.2	0.3 0.9 1.2	V
V _{OH}	Minimum High–Level Output Voltage		2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
			4.5 6.0	3.98 5.48	3.84 5.34	3.70 5.20	
V _{OL}	Maximum Low-Level Output Voltage		2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$\begin{array}{ll} V_{in} = V_{IH} \text{ or } V_{IL} & I_{out} \leq 4.0 \text{ mA} \\ I_{out} \leq 5.2 \text{ mA} \end{array}$	4.5 6.0	0.26 0.26	0.33 0.33	0.40 0.40	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μA
Icc	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC} \text{ or GND}$ $I_{out} = 0 \ \mu A$	6.0	8	80	160	μΑ

			Guaranteed Limit			
Symbol	Parameter	v _{cc} v	– 55 to 25°C	≤ 85°C	≤ 125°C	Uni
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input D to Output Y (Figures 2 and 7)	2.0 4.5 6.0	170 34 29	215 43 37	255 51 43	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input D to Output Y (Figures 4 and 7)	2.0 4.5 6.0	185 37 31	230 46 39	280 56 48	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input D to Output Y (Figures 3 and 7)	2.0 4.5 6.0	185 37 31	230 46 39	280 56 48	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y (Figures 3 and 7)	2.0 4.5 6.0	205 41 35	255 51 43	310 62 53	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input D to Output Y (Figures 5 and 7)	2.0 4.5 6.0	125 25 21	155 31 26	190 38 32	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Strobe to Output Y (Figures 6 and 7)	2.0 4.5 6.0	125 25 21	155 31 26	190 38 32	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 2, 4 and 7)	2.0 4.5 6.0	75 15 13	95 19 16	110 22 19	ns
C _{in}	Maximum Input Capacitance	-	10	10	10	pF

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Typical @ 25°C, V_{CC} = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Per Package)	36	pF

PIN DESCRIPTIONS

INPUTS

D0, D1, ..., D7 (Pins 4, 3, 2, 1, 15, 14, 13, 12)

Data inputs. Data on any one of these eight binary inputs may be selected to appear on the output.

CONTROL INPUTS

A0, A1, A2 (Pins 11, 10, 9)

Address inputs. The data on these pins are the binary address of the selected input (see the Function Table).

Strobe (Pin 7)

Strobe. This input pin must be at a low level for the selected data to appear at the outputs. If the Strobe pin is high, the Y output is forced to a low level and the \overline{Y} output is forced to a high level.

OUTPUTS

Y, Y (Pins 5, 6)

Data outputs. The selected data is presented at these pins in both true (Y output) and complemented (\overline{Y} output) forms.

SWITCHING WAVEFORMS

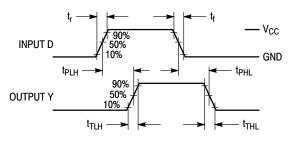
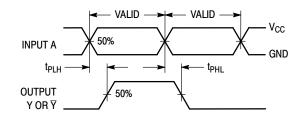



Figure 2.

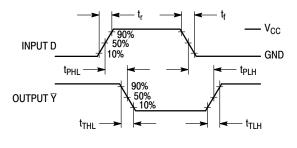


Figure 4.

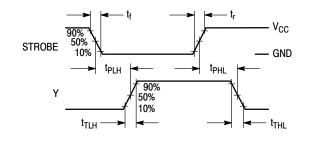


Figure 5.

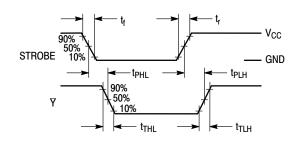
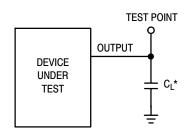



Figure 6.

*Includes all probe and jig capacitance

Figure 7. Test Circuit

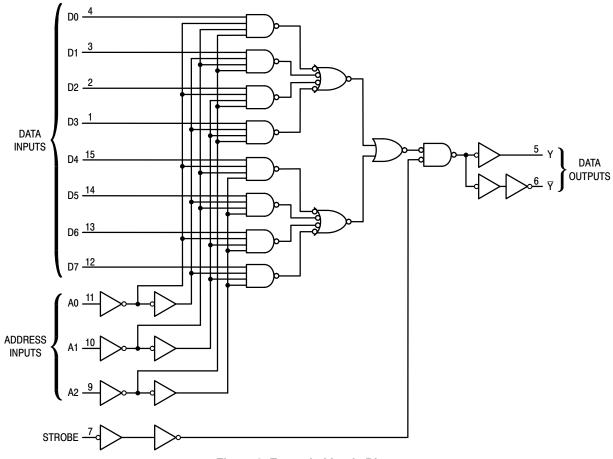


Figure 8. Expanded Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HC151ADG		48 Units / Rail
MC74HC151ADR2G	SOIC–16 (Pb–Free)	2500 Tape & Reel
NLV74HC151ADR2G*		2500 Tape & Reel
MC74HC151ADTG		96 Units / Tube
MC74HC151ADTR2G	TSSOP–16 (Pb–Free)	2500 Tape & Reel
NLV74HC151ADTR2G*		2500 Tape & Reel

For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

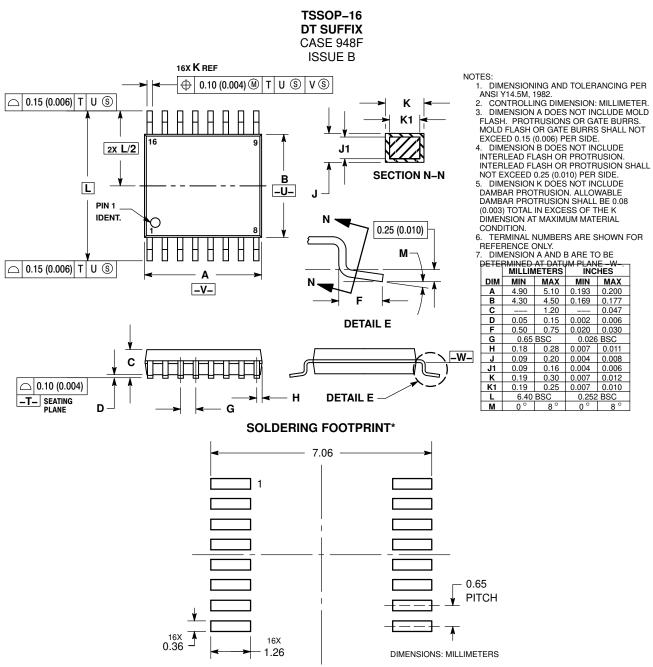
Capable.

PACKAGE DIMENSIONS

MIN MAX

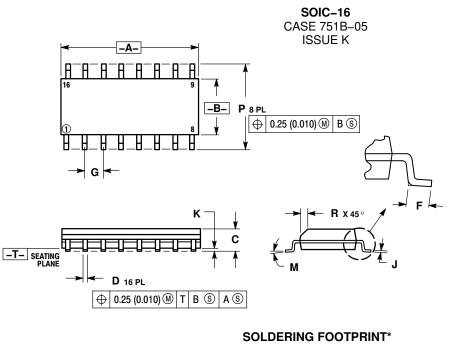
0.007 0.011

0.004 0.008


0.252 BSC

8

0

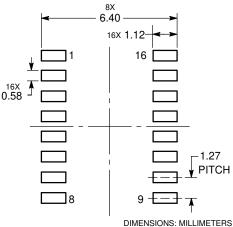

8

0.047

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

NOTES:


DIMENSIONING AND TOLERANCING PER ANSI

VI14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION

MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION 5.

SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
М	0 °	7°	0°	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without particular pupped, not observe soluce assume any inability arising out of the application of use of any product of inscitle. C data sheets and/or specifications and an inability, including without influence may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications and do vary in different applications and a vary over time. All operating parameters, including "Typical" arisent with the validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the applications intended to support or sustain life, or for any other application in which the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors hamless against all claims, costs, damages, and exponses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative