: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MC74HC161A, MC74HC163A

Presettable Counters

High-Performance Silicon-Gate CMOS

The MC74HC161A and HC163A are identical in pinout to the LS161 and LS163. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

The HC161A and HC163A are programmable 4-bit binary counters with asynchronous and synchronous reset, respectively.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1.0 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 192 FETs or 48 Equivalent Gates
- These are $\mathrm{Pb}-$ Free Devices
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
MARKING
DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet.

MC74HC161A, MC74HC163A

FUNCTION TABLE

Inputs					Output
Clock	Reset*	Load	Enable P	Enable T	Q
Γ	L	X	X	X	Reset
Γ	H	L	X	X	Load Preset Data
Γ	H	H	H	H	Count
Γ	H	H	L	X	No Count
Γ	H	H	X	L	No Count

*HC163A only. HC161A is an Asynchronous Reset Device $H=$ high level, $L=$ low level, $X=$ don't care

Figure 1. Pin Assignment

Figure 2. Logic Diagram

DEVICE/MODE TABLE

Device	Count Mode	Reset Mode
HC161A	Binary	Asynchronous
HC163A	Binary	Synchronous

MC74HC161A, MC74HC163A

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
V_{1}	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
V_{O}	DC Output Voltage (Note 1)	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	V
IIK	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 25	mA
Io	DC Output Sink Current	± 25	mA
ICC	DC Supply Current per Supply Pin	± 50	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 50	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+ 150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance $\begin{array}{r}\text { SOIC } \\ \text { TSSOP }\end{array}$	$\begin{aligned} & 112 \\ & 148 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$ SOIC	$\begin{aligned} & 500 \\ & 450 \end{aligned}$	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 30\% - 35\%	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\mathrm{ESD}}$	ESD Withstand VoltageHuman Body Model (Note 2) Machine Model (Note 3)	$\begin{aligned} & >2000 \\ & >200 \end{aligned}$	V
ILATCHUP	Latchup Performance Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 4)	± 300	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. I_{0} absolute maximum rating must be observed.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
$V_{C C}$	DC Supply Voltage	(Referenced to GND)	2.0	6.0	V
$V_{\text {in }}, V_{\text {out }}$	DC Input Voltage, Output Voltage	(Referenced to GND)	0	V_{CC}	V
T_{A}	Operating Temperature, All Package Types		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time (Figure 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 1000 \\ 600 \\ 500 \\ 400 \end{gathered}$	ns

5. Unused inputs may not be left open. All inputs must be tied to a high- or low-logic input voltage level.

MC74HC161A, MC74HC163A

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit	
				-55 to $25^{\circ} \mathrm{C}$	$\leq \mathbf{8 5}^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$		
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	V	
VIL	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	V	
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$ $\begin{array}{\|ll} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \left\|\left.\right\|_{\mathrm{lout} \mid \leq 3.6 \mathrm{~mA}}\right. \\ & \left\|\left.\right\|_{\text {out }}\right\| \leq 4.0 \mathrm{~mA} \\ & \left\|\left.\right\|_{\text {out }}\right\| \leq 5.2 \mathrm{~mA} \end{array}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	1.9 4.4 5.9 2.48 3.98 5.48	$\begin{aligned} & \hline 1.9 \\ & 4.4 \\ & 5.9 \\ & \hline 2.34 \\ & 3.84 \\ & 5.34 \end{aligned}$	1.9 4.4 5.9 2.2 3.7 5.2	V	
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL} $\left\|\left.\right\|_{\text {out }} \leq 3.6 \mathrm{~mA}\right.$ $\left\|\left.\right\|_{\text {out }}\right\| \leq 4.0 \mathrm{~mA}$ $\left\|l_{\text {out }}\right\| \leq 5.2 \mathrm{~mA}$	2.0 4.5 6.0 3.0 4.5 6.0	0.1 0.1 0.1 0.26 0.26 0.26	0.1 0.1 0.1 0.33 0.33 0.33	0.1 0.1 0.1 0.4 0.4 0.4	V	
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	
Icc	Maximum Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	6.0	4.0	40	160	$\mu \mathrm{A}$	

MC74HC161A, MC74HC163A

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}$)

Symbol	Parameter	Figure	$\underset{\mathbf{V}}{\mathbf{V}_{\mathbf{C C}}}$	Guaranteed Limit			Unit
				- 55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{f}_{\max }$	Maximum Clock Frequency (50\% Duty Cycle) (Note 6)	4, 10	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 6 \\ 15 \\ 30 \\ 35 \end{gathered}$	$\begin{gathered} \hline 5 \\ 12 \\ 24 \\ 28 \end{gathered}$	$\begin{gathered} 4 \\ 10 \\ 20 \\ 24 \end{gathered}$	MHz
$t_{\text {PLH }}$	Maximum Propagation Delay, Clock to Q	4, 10	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 120 \\ 75 \\ 20 \\ 16 \end{gathered}$	$\begin{gathered} 160 \\ 120 \\ 23 \\ 20 \end{gathered}$	$\begin{gathered} 200 \\ 150 \\ 28 \\ 22 \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$		4, 10	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 145 \\ 100 \\ 22 \\ 18 \end{gathered}$	$\begin{gathered} \hline 185 \\ 135 \\ 25 \\ 20 \end{gathered}$	$\begin{gathered} \hline 220 \\ 150 \\ 30 \\ 23 \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay, Reset to Q (HC161A Only)	5, 10	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 145 \\ 100 \\ 20 \\ 17 \end{gathered}$	$\begin{gathered} 185 \\ 135 \\ 22 \\ 19 \end{gathered}$	$\begin{gathered} 220 \\ 150 \\ 25 \\ 21 \end{gathered}$	ns
$t_{\text {PLH }}$	Maximum Propagation Delay, Enable T to Ripple Carry Out	6, 10	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 110 \\ 60 \\ 16 \\ 14 \end{gathered}$	$\begin{gathered} \hline 150 \\ 115 \\ 18 \\ 15 \end{gathered}$	$\begin{aligned} & 190 \\ & 140 \\ & 20 \\ & 17 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$		6, 10	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 135 \\ 100 \\ 18 \\ 15 \end{gathered}$	$\begin{gathered} \hline 175 \\ 130 \\ 20 \\ 16 \end{gathered}$	$\begin{gathered} 210 \\ 160 \\ 22 \\ 20 \end{gathered}$	ns
$t_{\text {PLH }}$	Maximum Propagation Delay, Clock to Ripple Carry Out	4, 10	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 120 \\ 75 \\ 22 \\ 18 \end{gathered}$	$\begin{aligned} & \hline 160 \\ & 135 \\ & 27 \\ & 22 \end{aligned}$	$\begin{gathered} \hline 200 \\ 150 \\ 30 \\ 25 \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$		4, 10	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 145 \\ & 100 \\ & 22 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 185 \\ & 135 \\ & 28 \\ & 24 \end{aligned}$	$\begin{aligned} & \hline 220 \\ & 150 \\ & 35 \\ & 28 \end{aligned}$	ns
$t_{\text {PHL }}$	Maximum Propagation Delay, Reset to Ripple Carry Out (HC161A Only)	5,10	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 155 \\ 120 \\ 22 \\ 18 \end{gathered}$	$\begin{gathered} \hline 190 \\ 140 \\ 26 \\ 22 \end{gathered}$	$\begin{gathered} \hline 230 \\ 155 \\ 30 \\ 25 \end{gathered}$	ns
$t_{\text {TLH }}$, ${ }^{t_{\text {THL }}}$	Maximum Output Transition Time, Any Output	5,10	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 40 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 110 \\ & 55 \\ & 22 \\ & 19 \end{aligned}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	4, 10	-	10	10	10	pF

6. Applies to noncascaded/nonsynchronous clocked configurations only with synchronously cascaded counters. (1) Clock to Ripple Carry Out propagation delays. (2) Enable T or Enable P to Clock setup times and (3) Clock to Enable T or Enable P hold times determine f $\mathrm{f}_{\text {max }}$. However, if Ripple Carry out of each stage is tied to the Clock of the next stage (nonsynchronously clocked) the $\mathrm{f}_{\text {max }}$ in the table above is applicable. See Applications information in this data sheet.

		Typical @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{~ V}$	
C_{PD}	Power Dissipation Capacitance (Per Gate) (Note 7)	$\mathbf{p F}$	

7. Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} \vee_{C C}^{2 f}+I_{C C} \vee_{C C}$.

MC74HC161A, MC74HC163A

TIMING REQUIREMENTS $\left(C_{L}=50 \mathrm{pF}\right.$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}$)

Symbol	Parameter	Figure	$\underset{\mathbf{V C}}{\mathrm{V}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Preset Data Inputs to Clock	8	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \\ & 30 \\ & 20 \end{aligned}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Load to Clock	8	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 25 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 90 \\ & 40 \\ & 30 \\ & 20 \end{aligned}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Reset to Clock (HC163A Only)	7	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 25 \\ & 20 \\ & 17 \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & 25 \\ & 23 \end{aligned}$	$\begin{aligned} & 90 \\ & 40 \\ & 35 \\ & 25 \end{aligned}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Enable T or Enable P to Clock	9	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 35 \\ & 20 \\ & 17 \end{aligned}$	$\begin{aligned} & 95 \\ & 40 \\ & 25 \\ & 23 \end{aligned}$	$\begin{aligned} & 110 \\ & 50 \\ & 35 \\ & 25 \end{aligned}$	ns
$t_{\text {h }}$	Minimum Hold Time, Clock to Load or Preset Data Inputs	8	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	ns
$t_{\text {h }}$	Minimum Hold Time, Clock to Reset (HC163A Only)	7	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	ns
$t_{\text {h }}$	Minimum Hold Time, Clock to Enable T or Enable P	9	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	ns
$\mathrm{t}_{\text {rec }}$	Minimum Recovery Time, Reset Inactive to Clock (HC161A Only)	5	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 35 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 95 \\ & 40 \\ & 20 \\ & 17 \end{aligned}$	$\begin{gathered} \hline 110 \\ 50 \\ 26 \\ 23 \end{gathered}$	ns
$\mathrm{t}_{\text {rec }}$	Minimum Recovery Time, Load Inactive to Clock	8	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 35 \\ & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & 95 \\ & 40 \\ & 20 \\ & 17 \end{aligned}$	$\begin{gathered} \hline 110 \\ 50 \\ 26 \\ 23 \end{gathered}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Clock	4	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 25 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 40 \\ & 18 \\ & 15 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Reset (HC161A Only)	5	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 25 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 40 \\ & 18 \\ & 15 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{tf}$	Maximum Input Rise and Fall Times		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	ns

MC74HC161A, MC74HC163A

FUNCTION DESCRIPTION

The HC161A/163A are programmable 4-bit synchronous counters that feature parallel Load, synchronous or asynchronous Reset, a Carry Output for cascading, and count-enable controls.

The HC161A and HC163A are binary counters with asynchronous Reset and synchronous Reset, respectively.

INPUTS

Clock (Pin 2)

The internal flip-flops toggle and the output count advances with the rising edge of the Clock input. In addition, control functions, such as resetting and loading, occur with the rising edge of the Clock input.

Preset Data Inputs P0, P1, P2, P3 (Pins 3, 4, 5, 6)

These are the data inputs for programmable counting. Data on these pins may be synchronously loaded into the internal flip-flops and appear at the counter outputs. P 0 (Pin 3) is the least-significant bit and $\mathrm{P} 3(\operatorname{Pin} 6)$ is the most-significant bit.

OUTPUTS

Q0, Q1, Q2, Q3 (Pins 14, 13, 12, 11)

These are the counter outputs. Q0 (Pin 14) is the least-significant bit and Q3 (Pin 11) is the most-significant bit.

Ripple Carry Out (Pin 15)

When the counter is in its maximum state, 1111, this output goes high, providing an external look-ahead carry pulse that may be used to enable successive cascaded counters. Ripple Carry Out remains high only during the maximum count state. The logic equation for this output is:

Ripple Carry Out $=$ Enable T •Q0 •Q1 •Q2 • Q3
OUTPUT STATE DIAGRAMS

Figure 3. Binary Counters

CONTROL FUNCTIONS

Resetting

A low level on the Reset pin (Pin 1) resets the internal flip-flops and sets the outputs (Q0 through Q3) to a low level. The HC161A resets asynchronously, and the HC163A resets with the rising edge of the Clock input (synchronous reset).

Loading

With the rising edge of the Clock, a low level on Load (Pin 9) loads the data from the Preset Data input pins (P0, P1, P2, P3) into the internal flip-flops and onto the output pins, Q0 through Q3. The count function is disabled as long as Load is low.

Count Enable/Disable

These devices have two count-enable control pins: Enable P (Pin 7) and Enable T (Pin 10). The devices count when these two pins and the Load pin are high. The logic equation is:
Count Enable = Enable P • Enable T • Load

The count is either enabled or disabled by the control inputs according to Table 1. In general, Enable P is a count-enable control: Enable T is both a count-enable and a Ripple-Carry Output control.

Table 1. Count Enable/Disable

Control Inputs			Result at Outputs	
Load	Enable P	Enable T	Q0 - Q3	Ripple Carry Out
H	H	H	Count	High when Q0-Q3
L	H	H	No Count	are maximum*
X	L	H	No Count	High when Q0-Q3 are maximum*
X	X	L	No Count	L

MC74HC161A, MC74HC163A

SWITCHING WAVEFORMS

Figure 4.

Figure 6.

Figure 8.

Figure 5.

Figure 7. HC163A Only

Figure 9.

TEST CIRCUIT

*Includes all probe and jig capacitance
Figure 10.

The flip-flops shown in the circuit diagrams are Toggle-Enable flip-flops. A Toggle-
Enable flip-flop is a combination of a D flip-flop and a T flip-flop. When loading data from Preset inputs P0, P1, P2, and P3, the Load signal is used to disable the Toggle input (Tn) of the flip-flop. The logic level at the Pn input is then clocked to the Q output of the flip-flop on the next rising edge of the clock.
A logic zero on the Reset device input forces the internal clock (C) high and resets the Q output of the flip-flop low.

MC74HC161A, MC74HC163A

Figure 12. Timing Diagram

Figure 13. 4-Bit Binary Counter with Synchronous Reset (MC74HC163A)

MC74HC161A, MC74HC163A

TYPICAL APPLICATIONS CASCADING

NOTE: When used in these cascaded configurations the clock $f_{m a x}$ guaranteed limits may not apply. Actual performance will depend on number of stages. This limitation is due to set up times between Enable (Port) and Clock.

Figure 14. N-Bit Synchronous Counters

Figure 15. Nibble Ripple Counter

MC74HC161A, MC74HC163A

TYPICAL APPLICATIONS VARYING THE MODULUS

Figure 16. Modulo-5 Counter

Figure 17. Modulo-11 Counter

The HC163A facilitates designing counters of any modulus with minimal external logic. The output is glitch-free due to the synchronous Reset.

ORDERING INFORMATION

Device	Package	Shipping †
MC74HC161ADTG	TSSOP-16 (Pb-Free)	96 Units / Tube
MC74HC163ADTG	TSSOP-16 (Pb-Free)	96 Units / Tube
MC74HC161ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC161ADR2G	SOIC-16 (Pb-Free)	2500 Units / Tape \& Reel
MC74HC161ADTR2G	TSSOP-16*	2500 Units / Tape \& Reel
MC74HC163ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC163ADR2G	SOIC-16 (Pb-Free)	2500 Units / Tape \& Reel
MC74HC163ADTR2G	TSSOP-16*	2500 Units / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb -Free.

MC74HC161A, MC74HC163A

PACKAGE DIMENSIONS

MC74HC161A, MC74HC163A

PACKAGE DIMENSIONS

ON Semiconductor and (OiN are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

