imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

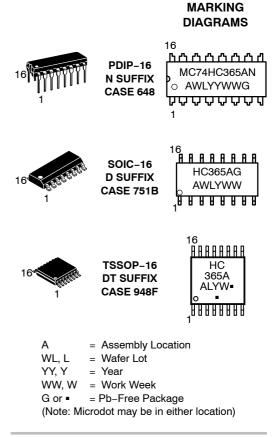
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Hex 3-State Noninverting Buffer with Common Enables

High-Performance Silicon-Gate CMOS

The MC74HC365A is identical in pinout to the LS365. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device is a high-speed hex buffer with 3-state outputs and two common active-low Output Enables. When either of the enables is high, the buffer outputs are placed into high-impedance states. The HC365A has noninverting outputs.


Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 µA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 90 FETs or 22.5 Equivalent Gates
- These are Pb-Free Devices*

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

	1•	16	v _{cc}
A0 [2	15	OUTPUT ENABLE 2
Y0 [3	14] A5
A1 [4	13] Y5
Y1 [5	12] A4
A2 [6	11] Y4
Y2 [7	10] A3
	8	9] Y3

Figure 1. Pin Assignment

FUNCTION TABLE

	Output		
Enable 1	Enable 2	А	Y
L	L	L	L
L	L	Н	Н
н	Х	Х	Z
Х	Н	Х	Z

X = don't care

Z = high impedance

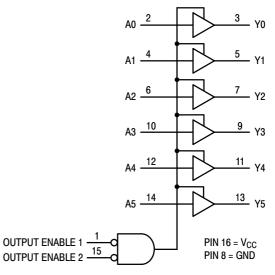


Figure 2. Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HC365ANG	PDIP-16 (Pb-Free)	500 Units / Rail
MC74HC365ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC365ADR2G	SOIC-16 (Pb-Free)	2500 Units / Reel
MC74HC365ADTR2G	TSSOP-16*	2500 Units / Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb-Free.

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	– 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V_{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V_{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	± 20	mA
I _{out}	DC Output Current, per Pin	± 25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	± 50	mA
P _D	Power Dissipation in Still Air, Plastic DIP† SOIC Package† TSSOP Package†	750 500 450	mW
T _{stg}	Storage Temperature	– 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds Plastic DIP, SOIC or TSSOP Package	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

†Derating — Plastic DIP: – 10 mW/°C from 65° to 125°C SOIC Package: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C

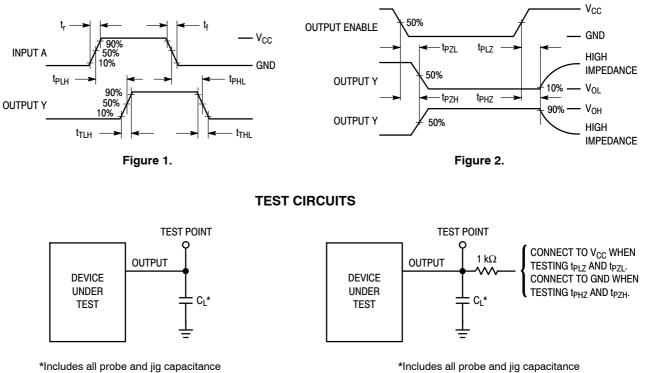
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)		0	V _{CC}	V
T _A	Operating Temperature, All Package Types			+ 125	°C
t _r , t _f	(Figure 1) V _{CC} V _{CC}	= 2.0 V = 3.0 V = 4.5 V = 6.0 V	0 0 0 0	1000 600 500 400	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	v _{cc} v	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
V _{IH}	Minimum High–Level Input Voltage	$V_{out} = V_{CC} - 0.1 V$ $ I_{out} \le 20 \mu A$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
V _{IL}	Maximum Low–Level Input Voltage	$V_{out} = 0.1 V$ $ I_{out} \le 20 \mu A$	2.0 3.0 4.5 6.0	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	0.50 0.90 1.35 1.80	V
V _{OH}	Minimum High–Level Output Voltage	$V_{in} = V_{IH}$ $ I_{out} \le 20 \ \mu A$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$ \begin{array}{ll} V_{in} = V_{IH} & \left I_{out} \right \leq 3.6 \text{ mA} \\ \left I_{out} \right \leq 6.0 \text{ mA} \\ \left I_{out} \right \leq 7.8 \text{ mA} \end{array} $	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

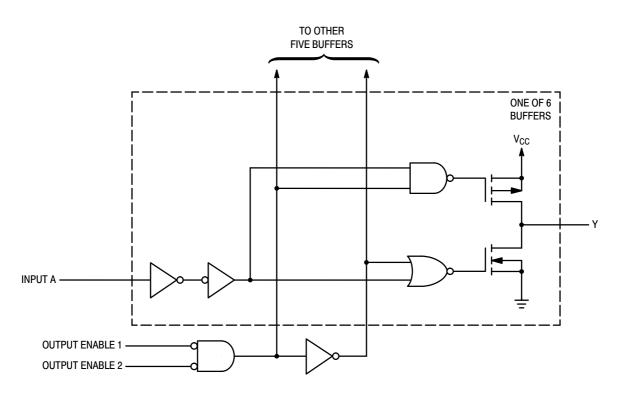

				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	V _{CC} V	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{IL}$ $ I_{out} \le 20 \ \mu A$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$ \begin{array}{ll} V_{in} = V_{IL} & \left I_{out} \right \leq 3.6 \text{ mA} \\ \left I_{out} \right \leq 6.0 \text{ mA} \\ \left I_{out} \right \leq 7.8 \text{ mA} \end{array} $	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
l _{in}	Maximum Input Leakage Current	$V_{in} = V_{CC}$ or GND	6.0	± 0.1	± 1.0	± 1.0	μA
I _{OZ}	Maximum Three-State Leakage Current	Output in High–Impedance State $V_{in} = V_{IL} \text{ or } V_{IH}$ $V_{out} = V_{CC} \text{ or GND}$	6.0	± 0.5	± 5.0	± 10	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC} \text{ or } GND$ $I_{out} = 0 \ \mu A$	6.0	4	40	160	μΑ

AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input t_r = t_f = 6 ns)

			Guaranteed Limit			
Symbol	Parameter	V _{CC} V	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y (Figures 1 and 3)	2.0 3.0 4.5 6.0	120 60 24 20	150 75 30 26	180 90 36 31	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Output Y (Figures 2 and 4)	2.0 3.0 4.5 6.0	220 110 44 37	275 140 55 47	330 170 66 56	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Output Y (Figures 2 and 4)	2.0 3.0 4.5 6.0	220 110 44 37	275 140 55 47	330 170 66 56	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 1 and 3)	2.0 3.0 4.5 6.0	60 22 12 10	75 28 15 13	90 34 18 15	ns
C _{in}	Maximum Input Capacitance	—	10	10	10	pF
Cout	Maximum Three-State Output Capacitance (Output in High-Impedance State)	_	15	15	15	pF
			Typical	@ 25°C, V _C	_C = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Per Buffer)*			60		pF

*Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

SWITCHING WAVEFORMS



*Includes all probe and jig capacitance

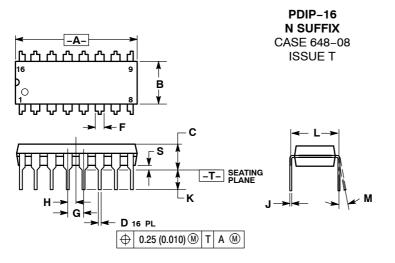
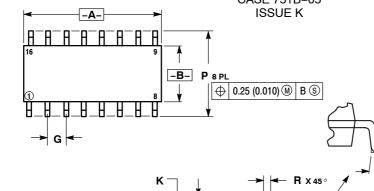

Figure 3.

Figure 4.

PACKAGE DIMENSIONS



- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD ELACH

- MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100 BSC		2.54	BSC
Н	0.050	BSC	1.27	BSC
ſ	0.008	0.015	0.21	0.38
Κ	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
М	0 °	10 °	0 °	10 °
S	0.020	0.040	0.51	1.01

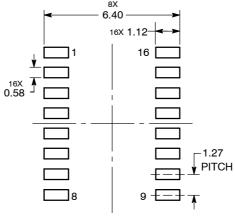
SOIC-16 **D SUFFIX** CASE 751B-05

С

ſF

Ħ

-T- SEATING PLANE

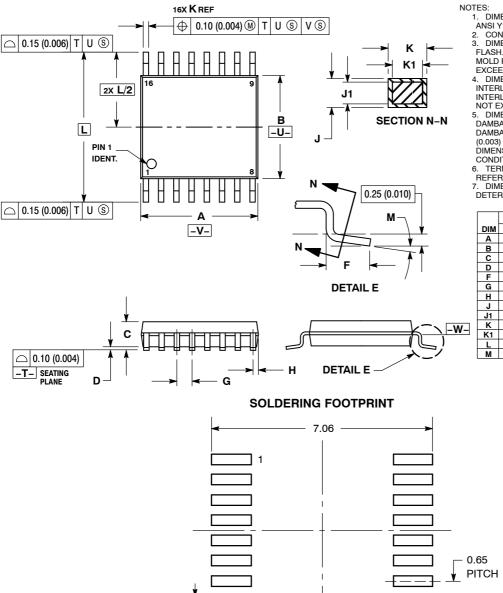


- 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) DED 0102
- MAXIMUM MOLD PHOTHOSION 0.15 (0.006) PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT 5. MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27 BSC		0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
Μ	0°	7°	0 °	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

SOLDERING FOOTPRINT

F



DIMENSIONS: MILLIMETERS

D 16 PL ⊕ 0.25 (0.010) M T B S A S 8X

PACKAGE DIMENSIONS

TSSOP-16 **DT SUFFIX** CASE 948F-01 **ISSUE B**

1 16X 0.36

16X 1.26 NOTES: 1. DIMENSIONING AND TOLERANCING PER

ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
DIMENSION A DOES NOT INCLUDE MOLT.
DIMENSION A DOES NOT INCLUDE MOLT.

FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL

CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR

TERMINAL NOMBERS ARE SHOWN REFERENCE ONLY.
DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026	BSC	
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
к	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40		0.252 BSC		
Μ	0 °	8 °	0 °	8 °	

.

DIMENSIONS: MILLIMETERS

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the BSCILLC product cand its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use paperses that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative