Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # Dual 4-Stage Binary Ripple Counter with ÷ 2 and ÷ 5 Sections # **High-Performance Silicon-Gate CMOS** The MC74HC390A is identical in pinout to the LS390. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. This device consists of two independent 4-bit counters, each composed of a divide-by-two and a divide-by-five section. The divide-by-two and divide-by-five counters have separate clock inputs, and can be cascaded to implement various combinations of \div 2 and/or \div 5 up to a \div 100 counter. Flip-flops internal to the counters are triggered by high-to-low transitions of the clock input. A separate, asynchronous reset is provided for each 4-bit counter. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used as clocks or strobes except when gated with the Clock of the HC390A. - Output Drive Capability: 10 LSTTL Loads - Outputs Directly Interface to CMOS, NMOS, and TTL - Operating Voltage Range: 2 to 6 V - Low Input Current: 1 μA - High Noise Immunity Characteristic of CMOS Devices - In Compliance with the Requirements Defined by JEDEC Standard No 7A - Chip Complexity: 244 FETs or 61 Equivalent Gates # **LOGIC DIAGRAM** PIN 16 = V_{CC} PIN 8 = GND ## **FUNCTION TABLE** | Clo | ock | | | |-----|-----|-------|----------------------| | Α | В | Reset | Action | | Х | Х | Н | Reset
÷ 2 and ÷ 5 | | ~ | Χ | L | Increment
÷ 2 | | Х | ~ | L | Increment
÷ 5 | # ON Semiconductor http://onsemi.com # MARKING DIAGRAMS PDIP-16 N SUFFIX CASE 648 MC74HC390AN AWLYYWW 1 SO-16 D SUFFIX CASE 751B TSSOP-16 DT SUFFIX CASE 948F A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week ## **PIN ASSIGNMENT** ## **ORDERING INFORMATION** | Device | Package | Shipping | |----------------|----------|-------------| | MC74HC390AN | PDIP-16 | 2000 / Box | | MC74HC390AD | SOIC-16 | 48 / Rail | | MC74HC390ADR2 | SOIC-16 | 2500 / Reel | | MC74HC390ADT | TSSOP-16 | 96 / Rail | | MC74HC390ADTR2 | TSSOP-16 | 2500 / Reel | #### **MAXIMUM RATINGS*** | Symbol | Parameter | Value | Unit | |------------------|---|--------------------------|------| | VCC | DC Supply Voltage (Referenced to GND) | - 0.5 to + 7.0 | V | | V _{in} | DC Input Voltage (Referenced to GND) | -0.5 to $V_{CC} + 0.5$ | V | | V _{out} | DC Output Voltage (Referenced to GND) | -0.5 to $V_{CC} + 0.5$ | V | | l _{in} | DC Input Current, per Pin | ± 20 | mA | | l _{out} | DC Output Current, per Pin | ± 25 | mA | | Icc | DC Supply Current, V _{CC} and GND Pins | ± 50 | mA | | PD | Power Dissipation in Still Air, Plastic DIP† SOIC Package† TSSOP Package† | 750
500
450 | mW | | T _{stg} | Storage Temperature | - 65 to + 150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds
Plastic DIP, SOIC or TSSOP Package | 260 | °C | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $\mbox{GND} \leq (V_{in} \mbox{ or } V_{out}) \leq V_{CC}.$ Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. Functional operation should be restricted to the Recommended Operating Conditions. †Derating — Plastic DIP: - 10 mW/°C from 65° to 125°C SOIC Package: $-~7~mW/^{\circ}C$ from 65° to $125^{\circ}C$ TSSOP Package: - 6.1 mW/°C from 65° to 125°C For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D). # RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | | | Max | Unit | |------------------------------------|---|--------------|------------------|---------------------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | | 2.0 | 6.0 | V | | V _{in} , V _{out} | DC Input Voltage, Output Voltage (Referenced to GND) | | | VCC | V | | TA | Operating Temperature, All Package Types | | | + 125 | °C | | t _r , t _f | Input Rise and Fall Time $V_{CC} = 2$. (Figure 1) $V_{CC} = 3$. $V_{CC} = 4$. $V_{CC} = 6$. | .0 V
.5 V | 0
0
0
0 | 1000
600
500
400 | ns | # DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | | Gu | aranteed Li | mit | | |-----------------|--------------------------------------|--|--------------------------|---------------------------|---------------------------|---------------------------|------| | Symbol | Parameter | Test Conditions | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | VIH | Minimum High-Level Input
Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
3.0
4.5
6.0 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | V | | VIL | Maximum Low-Level Input
Voltage | $V_{Out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{Out} \le 20 \mu\text{A}$ | 2.0
3.0
4.5
6.0 | 0.5
0.9
1.35
1.8 | 0.5
0.9
1.35
1.8 | 0.5
0.9
1.35
1.8 | V | | VOH | Minimum High-Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \ \mu\text{A}$ | 2.0
4.5
6.0 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | V | | | | $ \begin{aligned} V_{in} = V_{IH} \text{ or } V_{IL} & I_{out} \leq 2.4 \text{ mA} \\ & I_{out} \leq 4.0 \text{ mA} \\ & I_{out} \leq 5.2 \text{ mA} \end{aligned} $ | 3.0
4.5
6.0 | 2.48
3.98
5.48 | 2.34
3.84
5.34 | 2.20
3.70
5.20 | | | V _{OL} | Maximum Low-Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \ \mu\text{A}$ | 2.0
4.5
6.0 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | V | | | | $\begin{aligned} V_{in} = V_{IH} \text{ or } V_{IL} & I_{out} \leq 2.4 \text{ mA} \\ & I_{out} \leq 4.0 \text{ mA} \\ & I_{out} \leq 5.2 \text{ mA} \end{aligned}$ | 3.0
4.5
6.0 | 0.26
0.26
0.26 | 0.33
0.33
0.33 | 0.40
0.40
0.40 | | ^{*}Maximum Ratings are those values beyond which damage to the device may occur. # DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | | Gu | Guaranteed Limit | | | |-----------------|---|---|-----------------|-----------------|------------------|---------|------| | Symbol | Parameter | Test Conditions | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | l _{in} | Maximum Input Leakage
Current | V _{in} = V _{CC} or GND | 6.0 | ± 0.1 | ± 1.0 | ± 1.0 | μΑ | | ICC | Maximum Quiescent Supply
Current (per Package) | V _{in} = V _{CC} or GND
I _{out} = 0 µA | 6.0 | 4 | 40 | 160 | μА | NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D). # AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \ pF$, Input $t_f = t_f = 6 \ ns$) | | | | Guaranteed Limit | | mit | | |-------------------------------|--|-----------------|------------------|----------|----------|------| | Symbol | Parameter | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | fmax | Maximum Clock Frequency (50% Duty Cycle) | 2.0 | 10 | 9 | 8 | MHz | | | (Figures 1 and 3) | 3.0 | 15 | 14 | 12 | | | | | 4.5 | 30 | 28 | 25 | | | | | 6.0 | 50 | 45 | 40 | | | tPLH, | Maximum Propagation Delay, Clock A to QA | 2.0 | 70 | 80 | 90 | ns | | ^t PHL | (Figures 1 and 3) | 3.0 | 40 | 45 | 50 | | | | | 4.5 | 24 | 30 | 36 | | | | | 6.0 | 20 | 26 | 31 | | | ^t PLH [,] | Maximum Propagation Delay, Clock A to QC | 2.0 | 200 | 250 | 300 | ns | | ^t PHL | (QA connected to Clock B) | 3.0 | 160 | 185 | 210 | | | | (Figures 1 and 3) | 4.5 | 58 | 65 | 70 | | | | | 6.0 | 49 | 62 | 68 | | | tPLH, | Maximum Propagation Delay, Clock B to QB | 2.0 | 70 | 80 | 90 | ns | | ^t PHL | (Figures 1 and 3) | 3.0 | 40 | 45 | 50 | | | | | 4.5 | 26
22 | 33 | 39 | | | | | 6.0 | | 28 | 33 | | | tPLH, | Maximum Propagation Delay, Clock B to QC | 2.0 | 90 | 105 | 180 | ns | | ^t PHL | (Figures 1 and 3) | 3.0 | 56 | 70 | 100 | | | | | 4.5 | 37
31 | 46
39 | 56
48 | | | | | 6.0 | | | | | | t _{PLH} , | Maximum Propagation Delay, Clock B to QD | 2.0 | 70 | 80 | 90 | ns | | ^t PHL | (Figures 1 and 3) | 3.0
4.5 | 40
26 | 45
33 | 50
39 | | | | | 6.0 | 20 | 28 | 33 | | | + | Maximum Propagation Delay, Reset to any Q | 2.0 | 80 | 95 | 110 | | | ^t PHL | (Figures 2 and 3) | 3.0 | 48 | 65 | 75 | ns | | | (i iguies 2 ailu 3) | 4.5 | 30 | 38 | 44 | | | | | 6.0 | 26 | 33 | 39 | | | t _{TLH} , | Maximum Output Transition Time, Any Output | 2.0 | 75 | 95 | 110 | ns | | tTHL | (Figures 1 and 3) | 3.0 | 27 | 32 | 36 | 110 | | , IUF | (98.00 . 4.14 0) | 4.5 | 15 | 19 | 22 | | | | | 6.0 | 13 | 15 | 19 | | | C _{in} | Maximum Input Capacitance | | 10 | 10 | 10 | рF | | VIII | I maximum input oupdottatioo | | | | .,, | Pi | ^{1.} For propagation delays with loads other than 50 pF, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D). ^{2.} Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D). | | | Typical @ 25°C, V _{CC} = 5.0 V | | |----------|--|---|----| | C_{PD} | Power Dissipation Capacitance (Per Counter)* | 35 | pF | ^{*} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$. For load considerations, see Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D). **TIMING REQUIREMENTS** (Input $t_r = t_f = 6 \text{ ns}$) | | | | Gu | Guaranteed Limit | | | |---------------------------------|--|--------------------------|---------------------------|---------------------------|---------------------------|------| | Symbol | Parameter | V _{CC} | – 55 to
25°C | ≤ 85°C | ≤ 125°C | Unit | | t _{rec} | Minimum Recovery Time, Reset Inactive to Clock A or Clock B (Figure 2) | 2.0
3.0
4.5
6.0 | 25
15
10
9 | 30
20
13
11 | 40
30
15
13 | ns | | t _W | Minimum Pulse Width, Clock A, Clock B (Figure 1) | 2.0
3.0
4.5
6.0 | 75
27
15
13 | 95
32
19
15 | 110
36
22
19 | ns | | t _W | Minimum Pulse Width, Reset
(Figure 2) | 2.0
3.0
4.5
6.0 | 75
27
20
18 | 95
32
24
22 | 110
36
30
28 | ns | | t _f , t _f | Maximum Input Rise and Fall Times
(Figure 1) | 2.0
3.0
4.5
6.0 | 1000
800
500
400 | 1000
800
500
400 | 1000
800
500
400 | ns | NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D). # **PIN DESCRIPTIONS** # INPUTS Clock A (Pins 1, 15) and Clock B (Pins 4, 15) Clock A is the clock input to the \div 2 counter; Clock B is the clock input to the \div 5 counter. The internal flip-flops are toggled by high-to-low transitions of the clock input. # CONTROL INPUTS Reset (Pins 2, 14) Asynchronous reset. A high at the Reset input prevents counting, resets the internal flip-flops, and forces Q_A through Q_D low. # OUTPUTS QA (Pins 3, 13) Output of the \div 2 counter. # QB, QC, QD (Pins 5, 6, 7, 9, 10, 11) Outputs of the \div 5 counter. Q_D is the most significant bit. Q_A is the least significant bit when the counter is connected for BCD output as in Figure 4. Q_B is the least significant bit when the counter is operating in the bi–quinary mode as in Figure 5. # **SWITCHING WAVEFORMS** Figure 2. # **TEST CIRCUIT** *Includes all probe and jig capacitance Figure 3. # **EXPANDED LOGIC DIAGRAM** # TIMING DIAGRAM (QA Connected to Clock B) # **APPLICATIONS INFORMATION** Each half of the MC54/74HC390A has independent \div 2 and \div 5 sections (except for the Reset function). The \div 2 and \div 5 counters can be connected to give BCD or bi–quinary (2–5) count sequences. If Output QA is connected to the Clock B input (Figure 4), a decade divider with BCD output is obtained. The function table for the BCD count sequence is given in Table 1. To obtain a bi–quinary count sequence, the input signals connected to the Clock B input, and output QD is connected to the Clock A input (Figure 5). QA provides a 50% duty cycle output. The bi–quinary count sequence function table is given in Table 2. Table 1. BCD Count Sequence* | | Output | | | | | |-------|--------|----|----|----------------|--| | Count | QD | СС | QB | Q _A | | | 0 | L | L | L | L | | | 1 | L | L | L | Н | | | 2 | L | L | Н | L | | | 3 | L | L | Н | Н | | | 4 | L | Н | L | L | | | 5 | L | Н | L | Н | | | 6 | L | Н | Н | L | | | 7 | L | Н | Н | Н | | | 8 | Н | L | L | L | | | 9 | Н | L | L | Н | | ^{*}QA connected to Clock B input. Table 2. Bi-Quinary Count Sequence** | | Output | | | | | |-------|----------------|----|----|----|--| | Count | Q _A | QD | QC | QB | | | 0 | L | L | L | L | | | 1 | L | L | L | Н | | | 2 | L | L | Н | L | | | 3 | L | L | Н | Н | | | 4 | L | Н | L | L | | | 8 | Н | L | L | L | | | 9 | Н | L | L | Н | | | 10 | Н | L | Н | L | | | 11 | Н | L | Н | Н | | | 12 | Н | Н | L | L | | ^{**} QD connected to Clock A input. # **CONNECTION DIAGRAMS** Figure 4. BCD Count Figure 5. Bi-Quinary Count # **PACKAGE DIMENSIONS** # PDIP-16 **N SUFFIX** CASE 648-08 ISSUE R #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - 2 14.5M, 1982. 2 CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. | | INC | HES | MILLIN | IETERS | |-----|-------|---------|--------|---------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.740 | 0.770 | 18.80 | 19.55 | | В | 0.250 | 0.270 | 6.35 | 6.85 | | С | 0.145 | 0.175 | 3.69 | 4.44 | | D | 0.015 | 0.021 | 0.39 | 0.53 | | F | 0.040 | 0.070 | 1.02 | 1.77 | | G | 0. | 100 BSC | 2 | .54 BSC | | Н | 0. | 050 BSC | 1 | .27 BSC | | J | 0.008 | 0.015 | 0.21 | 0.38 | | K | 0.110 | 0.130 | 2.80 | 3.30 | | L | 0.295 | 0.305 | 7.50 | 7.74 | | M | 0° | 10° | 0° | 10° | | S | 0.020 | 0.040 | 0.51 | 1.01 | #### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | INCHES | | |-----|-------------|-------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 BSC | | 0.050 BSC | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0° | 7° | 0° | 7° | | Р | 5.80 | 6.20 | 0.229 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | #### PACKAGE DIMENSIONS # TSSOP-16 DT SUFFIX CASE 948F-01 ISSUE O #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - 2. CONTROLLING DIMENSION: MILLIMETER - 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. - DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. - DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. - TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY - DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–. | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 BSC | | 0.026 BSC | | | Н | 0.18 | 0.28 | 0.007 | 0.011 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 BSC | | 0.252 BSC | | | M | 0° | 8° | 0° | 8° | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. #### **PUBLICATION ORDERING INFORMATION** ## NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada #### N. American Technical Support: 800-282-9855 Toll Free USA/Canada **EUROPE:** LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com #### EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, England, Ireland # CENTRAL/SOUTH AMERICA: **Spanish Phone**: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit-asia@hibbertco.com JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549 Phone: 81–3–5740–2745 Email: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.