imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Quad 2-Input NAND Gate with Schmitt-Trigger Inputs with LSTTL Compatible Inputs

High-Performance Silicon-Gate CMOS

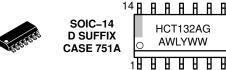
The MC74HCT132A is identical in pinout to the LS132. The device inputs are compatible with standard CMOS outputs; with pull-up resistors, they are compatible with LSTTL outputs.

The MC74HCT132A can be used to enhance noise immunity or to square up slowly changing waveforms.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 µA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements as Defined by JEDEC Standard No. 7A
- Chip Complexity: 72 FETs or 18 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

A1 [1•	14	l v _{cc}
B1 [2	13] в4
Y1 [3	12	D A4
A2 [4	11	D Y4
в2 [5	10	🛛 вз
Y2 [6	9	а а
GND [7	8	□үз



ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

O AWLYWW						
	ß	ß	H	H	ß	ß

= Assembly Location = Wafer Lot WL, L = Year γ WW, W = Work Week

G or = Pb-Free Package

(Note: Microdot may be in either location)

FUNCTION TABLE

Inp	Inputs		
Α	В	Y	
L	L	Н	
L	н	Н	
н	L	Н	
Н	Н	L	

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

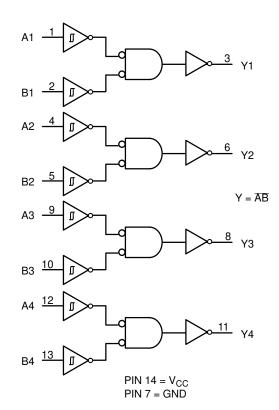


Figure 2. Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HCT132ADG		55 Units / Rail
MC74HCT132ADR2G	2G SOIC-14 (Pb-Free)	
NLV74HCT132ADR2G*		2500 / Tape & Reel
MC74HCT132ADTR2G	TSSOP-14	2500 / Tape & Reel
NLVHCT132ADTR2G*	(Pb-Free)	2500 / Tape & Reel

For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.

MAXIMUM RATINGS

Symbol	Pa	Value	Unit		
V _{CC}	Positive DC Supply Voltage		-0.5 to +7.0	V	
V _{IN}	Digital Input Voltage		-0.5 to +7.0	V	
V _{OUT}	DC Output Voltage	Output in 3–State High or Low State	-0.5 to +7.0 -0.5 to V_{CC} +0.5	V	
I _{IK}	Input Diode Current		-20	mA	
I _{OK}	Output Diode Current		±20	mA	
I _{OUT}	DC Output Current, per Pin		±25	mA	
I _{CC}	DC Supply Current, V _{CC} and GND Pin	ns	±75	mA	
I _{GND}	DC Ground Current per Ground Pin		±75	mA	
T _{STG}	Storage Temperature Range	-65 to +150	°C		
ΤL	Lead Temperature, 1 mm from Case f	260	°C		
ТJ	Junction Temperature Under Bias		+ 150	°C	
θ_{JA}	Thermal Resistance	125 170	°C/W		
P _D	Power Dissipation in Still Air at 85°C	ower Dissipation in Still Air at 85°C SOIC TSSOP			
MSL	Moisture Sensitivity		Level 1		
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL 94 V0 @ 0.125 in		
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	>2000 >100 >500	V	
I _{Latch-Up}	Latch–Up Performance	Above V_{CC} and Below GND at 85°C (Note 4)	±300	mA	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Tested to EIA/JESD22–A114–A.

2. Tested to EIA/JESD22-A115-A.

3. Tested to JESD22-C101-A.

4. Tested to EIA/JESD78.

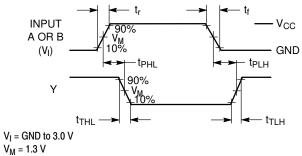
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	- 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time (Figure 3)	-	No Limit (Note 5)	ns

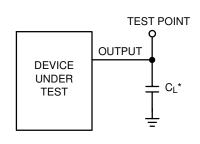
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

5. When $V_{IN} \sim 0.5 V_{CC}$, $I_{CC} >>$ quiescent current. 6. Unused inputs may not be left open. All inputs must be tied to a high–logic voltage level or a low–logic input voltage level.

			V _{CC}	Guaranteed Limit			
Symbol	Parameter	Test Conditions	v	-55°C to 25°C	≤85°C	≤125°C	Unit
$V_{T_{+}}max$	Maximum Positive–Going Input Threshold Voltage	$ \begin{array}{l} V_{OUT} = 0.1 \ V \\ I_{OUT} \leq 20 \ \mu A \end{array} $	4.5 5.5	1.9 2.1	1.9 2.1	1.9 2.1	V
V_{T+} min	Minimum Positive–Going Input Threshold Voltage		4.5 5.5	1.2 1.4	1.2 1.4	1.2 1.4	V
V _T _max	Maximum Negative–Going Input Threshold Voltage	$\begin{array}{l} V_{OUT} = V_{CC} - 0.1 \ V \\ I_{OUT} \leq 20 \ \mu A \end{array} \end{array} \label{eq:Vout}$	4.5 5.5	1.2 1.4	1.2 1.4	1.2 1.4	V
V_{T-} min	Minimum Negative–Going Input Threshold Voltage	$\label{eq:Vout} \begin{array}{l} V_{OUT} = V_{CC} - 0.1 \ V \\ I_{OUT} \leq 20 \ \mu A \end{array}$	4.5 5.5	0.5 0.6	0.5 0.6	0.5 0.6	V
V _H min (Note 7)	Minimum Hysteresis Voltage	V_{OUT} = 0.1 V or V_{CC} – 0.1 V $ I_{OUT} $ \leq 20 μA	4.5 5.5	0.4 0.4	0.4 0.4	0.4 0.4	V
V _{OH}	Minimum High–Level Output Voltage	$\begin{array}{ll} V_{IN} \leq & V_{T_} \text{min or } V_{T_} \text{max} \\ I_{OUT} \leq 20 \ \mu\text{A} \end{array}$	4.5 5.5	4.4 5.4	4.4 5.4	4.4 5.4	V
		$V_{IN} \leq -V_{T_{-}}$ min or $V_{T_{+}}$ max $ I_{OUT} \leq 4.0 \text{ mA}$	4.5	3.98	3.84	3.7	
V _{OL}	Maximum Low-Level Output Voltage	$ \begin{array}{l} V_{IN} \geq V_{T+}max \\ I_{OUT} \ \leq \ 20 \ \mu A \end{array} $	4.5 5.5	0.1 0.1	0.1 0.1	0.1 0.1	V
		$V_{IN} \ge V_{T+}max$ $ I_{OUT} \le 4.0 mA$	4.5	0.26	0.33	0.4	
I _{IN}	Maximum Input Leakage Current	V _{IN} = V _{CC} or GND	5.5	±0.1	±1.0	±1.0	μA
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \ \mu A$	5.5	1.0	10	40	μA


DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 7. $V_Hmin > (V_{T_+}min) - (V_{T_-}max); V_Hmax = (V_{T_+}max) + (V_{T_-}min).$


AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6.0 ns, V_{CC} = 5.0 V \pm 10%)

		V _{CC}	Guarar	nteed Limit			
Symbol	Parameter	v	−55°C to 25°C	≤ 85°C	≤125°C	Unit	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A or B to Output Y (Figures 3 and 4)	5.0	25	31	38	ns	
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 3 and 4)	5.0	15	19	22	ns	
C _{in}	Maximum Input Capacitance	—	10	10	10	pF	
		Typical @ 2	5°C, V _{CC} =	5.0 V			
C _{PD}	Power Dissipation Capacitance (per Gate) (Note 8)			24		pF	

8. Used to determine the no-load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

*Includes all probe and jig capacitance

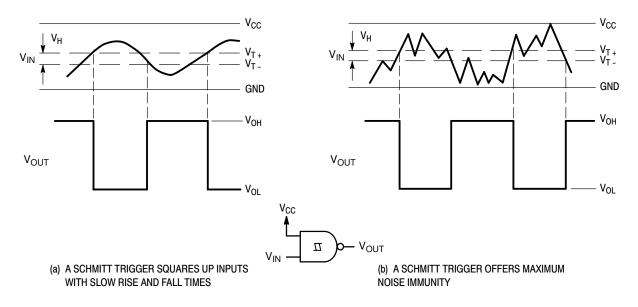
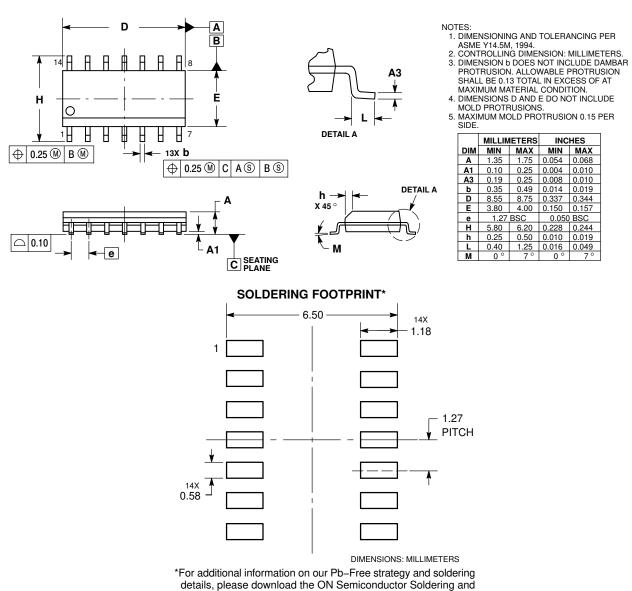
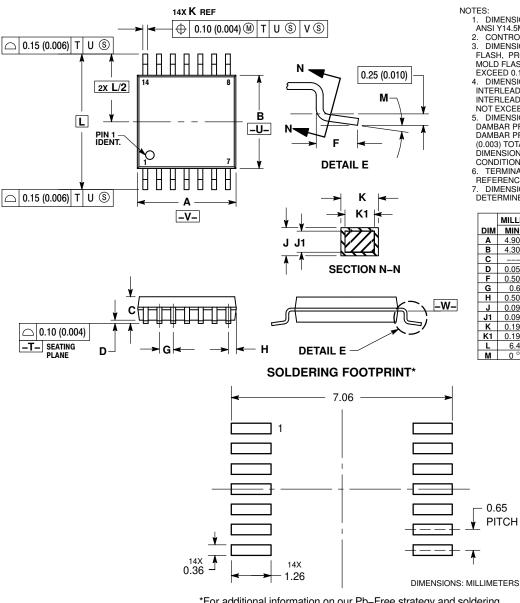



Figure 5. Typical Schmitt-Trigger Applications

PACKAGE DIMENSIONS


SOIC-14 NB CASE 751A-03 ISSUE L

Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-14 WB CASE 948G **ISSUE C**

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

- ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR

TENNING NOMBERS ARE SHOWN REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE – W–.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
н	0.50	0.60	0.020	0.024	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
Κ	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	BSC	0.252 BSC		
М	0 °	8 °	0 °	8 °	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out 0f, directly or indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative