: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MC74HCT595A

8-Bit Serial-Input/Serial or Parallel-Output Shift Register with Latched 3-State Outputs and LSTTL Compatible Inputs

High-Performance Silicon-Gate CMOS

The MC74HCT595A consists of an 8-bit shift register and an 8-bit D-type latch with three-state parallel outputs. The shift register accepts serial data and provides a serial output. The shift register also provides parallel data to the 8 -bit latch. The shift register and latch have independent clock inputs. This device also has an asynchronous reset for the shift register.

The HCT595A directly interfaces with the SPI serial data port on CMOS MPUs and MCUs. The device inputs are compatible with standard CMOS or LSTTL outputs.

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 4.5 to 5.5 V
- Low Input Current: $1.0 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 328 FETs or 82 Equivalent Gates
- Improvements over HC595 / HCT595
- Improved Propagation Delays
- 50% Lower Quiescent Power
- Improved Input Noise and Latchup Immunity
- $\mathrm{Pb}-$ Free Packages are Available*

[^0]

ORDERING INFORMATION

Device	Package	Shipping †
MC74HCT595ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HCT595ADR2G	SOIC-16 (Pb-Free)	2500 Tape \& Reel
MC74HCT595ADTG	TSSOP-16*	96 Units / Rail
MC74HCT595ADTR2G	TSSOP-16* (Pb-Free)	2500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb -Free.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{Cc}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{V}_{\text {in }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $V_{C C}+0.5$	V
$1{ }_{\text {in }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 35	mA
ICC	DC Supply Current, V_{CC} and GND Pins	± 75	mA
P_{D}	Power Dissipation in Still Air, Package \dagger TSSOP Package \dagger	$\begin{aligned} & 500 \\ & 450 \end{aligned}$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to + 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP, SOIC or TSSOP Package)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
\dagger Derating - SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	4.5	5.5	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature Range, All Package Types	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise/Fall Time (Figure 1)	0	500	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\stackrel{\mathrm{v}_{\mathrm{cc}}}{\mathrm{~V}}$	Guaranteed Limit			Unit	
				-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$		
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid l_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} \hline 4.5 \\ \text { to } \\ 5.5 \end{gathered}$	2.0	2.0	2.0	V	
V_{IL}	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid l_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 4.5 \\ \text { to } \\ 5.5 \end{gathered}$	0.8	0.8	0.8	V	
V_{OH}	Minimum High-Level Output Voltage, $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	4.5	4.4	4.4	4.4	V	
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \quad\left\|l_{\text {out }}\right\| \leq 6.0 \mathrm{~mA}$	4.5	3.98	3.84	3.7		
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage, $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$\begin{aligned} & \mathrm{V}_{\text {in }} \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid l_{\text {out }} \leq 20 \end{aligned}$	4.5	0.1	0.1	0.1	V	
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \quad\left\|\mathrm{l}_{\text {out }}\right\| \leq 6.0 \mathrm{~mA}$	4.5	0.26	0.33	0.4		
V_{OH}	Minimum High-Level Output Voltage, SQ $_{\mathrm{H}}$	$\begin{aligned} & V_{\text {in }} \mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	4.5	4.4	4.4	4.4	V	
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \quad \mathrm{Il}_{\text {out }} \mathrm{I} \leq 4.0 \mathrm{~mA}$	4.5	3.98	3.84	3.7		
V_{OL}	Maximum Low-Level Output Voltage, SQ $_{H}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	4.5	0.1	0.1	0.1	V	
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \quad \mathrm{Il}_{\text {out }} \leq 4.0 \mathrm{~mA}$	4.5	0.26	0.33	0.4		
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {cC }}$ or GND	5.5	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	
loz	Maximum Three-State Leakage Current, $Q_{A}-Q_{H}$	Output in High-Impedance State $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} $V_{\text {out }}=V_{\text {CC }}$ or GND	5.5	± 0.5	± 5.0	± 10	$\mu \mathrm{A}$	
I_{CC}	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & V_{\text {in }}=V_{C C} \text { or GND } \\ & I_{\text {out }}=0 \mu A \end{aligned}$	5.5	4.0	40	160	$\mu \mathrm{A}$	

$\Delta_{\text {CC }}$	Additional Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\text {in }}=2.4 \mathrm{~V}, \text { Any One Input } \\ & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \text { Other Inputs } \\ & \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	5.5	$\geq-55^{\circ} \mathrm{C}$	25 to $125^{\circ} \mathrm{C}$	mA
				2.9	2.4	

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.$, $\left.\operatorname{Input} \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}\right)$

Symbol	Parameter	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit
			-55 to $25^{\circ} \mathrm{C}$	$\leq 8^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50\% Duty Cycle) (Figures 1 and 7)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	30	24	20	MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Maximum Propagation Delay, Shift Clock to SQ_{H} (Figures 1 and 7)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	28	35	42	ns
${ }_{\text {tPHL }}$	Maximum Propagation Delay, Reset to SQ_{H} (Figures 2 and 7)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	29	36	44	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Maximum Propagation Delay, Latch Clock to $Q_{A}-Q_{H}$ (Figures 3 and 7)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	28	35	42	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \\ & \hline \end{aligned}$	Maximum Propagation Delay, Output Enable to $Q_{A}-Q_{H}$ (Figures 4 and 8)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	30	38	45	ns
$\begin{aligned} & \text { tpzL, } \\ & \text { tpZH } \\ & \hline \end{aligned}$	Maximum Propagation Delay, Output Enable to $Q_{A}-Q_{H}$ (Figures 4 and 8)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	27	34	41	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}}, \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Maximum Output Transition Time, $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$ (Figures 3 and 7)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	12	15	18	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{t} \mathrm{LH},}, \\ & \mathrm{t}_{\mathrm{TH} \mathrm{HL}} \end{aligned}$	Maximum Output Transition Time, SQ $_{H}$ (Figures 1 and 7)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	15	19	22	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF
$\mathrm{C}_{\text {out }}$	Maximum Three-State Output Capacitance (Output in High-Impedance State), $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	-	15	15	15	pF

		Typical @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{~ V}$	
C_{PD}	Power Dissipation Capacitance (Per Package)*	$\mathbf{p F}$	

*Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2}+I_{C C} V_{C C}$.
TIMING REQUIREMENTS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}$)

Symbol	Parameter	v_{cc}	Guaranteed Limit			Unit
			$25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Serial Data Input A to Shift Clock (Figure 5)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	10	13	15	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Shift Clock to Latch Clock (Figure 6)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	15	19	22	ns
$t_{\text {h }}$	Minimum Hold Time, Shift Clock to Serial Data Input A (Figure 5)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	5.0	5.0	5.0	ns
$\mathrm{t}_{\text {rec }}$	Minimum Recovery Time, Reset Inactive to Shift Clock (Figure 2)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	10	13	15	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Reset (Figure 2)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	12	15	18	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Shift Clock (Figure 1)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	10	13	15	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Latch Clock (Figure 6)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	10	13	15	ns
$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}_{\text {f }}$	Maximum Input Rise and Fall Times (Figure 1)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	500	500	500	ns

FUNCTION TABLE

Operation	Inputs					Resulting Function			
	Reset	Serial Input A	Shift Clock	Latch Clock	Output Enable	Shift Register Contents	Latch Contents	Serial Output S_{H}	Parallel Outputs $Q_{A}-Q_{H}$
Reset shift register	L	X	X	L, H, \downarrow	L	L	U	L	U
Shift data into shift register	H	D	\uparrow	L, H, \downarrow	L	$\begin{gathered} \mathrm{D} \rightarrow \mathrm{SR}_{\mathrm{A}} ; \\ \mathrm{SR}_{\mathrm{N}} \rightarrow \mathrm{SR}_{\mathrm{N}+1} \end{gathered}$	U	$\mathrm{SR}_{\mathrm{G}} \rightarrow \mathrm{SR}_{\mathrm{H}}$	U
Shift register remains unchanged	H	X	L, H, \downarrow	L, H, \downarrow	L	U	U	U	U
Transfer shift register contents to latch register	H	X	L, H, \downarrow	\uparrow	L	U	$\mathrm{SR}_{\mathrm{N}} \rightarrow \mathrm{LR}_{\mathrm{N}}$	U	SR_{N}
Latch register remains unchanged	X	X	X	L, H, \downarrow	L	*	U	*	U
Enable parallel outputs	X	X	X	X	L	*	**	*	Enabled
Force outputs into high impedance state	X	X	X	X	H	*	**	*	Z
SR = shift register conte LR = latch register conte	$D=$ data (L, H) logic level $\mathrm{U}=$ remains unchanged				$\begin{aligned} & \uparrow=\text { Low-to-High } \\ & \downarrow=\text { High-to-Low } \end{aligned}$		* = depends on Reset and Shift Clock inputs ** $=$ depends on Latch Clock input		

PIN DESCRIPTIONS

INPUTS

A (Pin 14)

Serial Data Input. The data on this pin is shifted into the 8-bit serial shift register.

CONTROL INPUTS

Shift Clock (Pin 11)

Shift Register Clock Input. A low- to-high transition on this input causes the data at the Serial Input pin to be shifted into the 8 -bit shift register.

Reset (Pin 10)

Active-low, Asynchronous, Shift Register Reset Input. A low on this pin resets the shift register portion of this device only. The 8 -bit latch is not affected.

Latch Clock (Pin 12)

Storage Latch Clock Input. A low-to-high transition on this input latches the shift register data.

Output Enable (Pin 13)

Active-low Output Enable. A low on this input allows the data from the latches to be presented at the outputs. A high on this input forces the outputs $\left(\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}\right)$ into the high-impedance state. The serial output is not affected by this control unit.

OUTPUTS

$Q_{A}-Q_{H}($ Pins 15, 1, 2, 3, 4, 5, 6, 7)
Noninverted, 3-state, latch outputs.

SQ $\mathbf{H}_{\mathbf{H}}$ (Pin $)^{\text {(}}$

Noninverted, Serial Data Output. This is the output of the eighth stage of the 8 -bit shift register. This output does not have three-state capability.

MC74HCT595A

SWITCHING WAVEFORMS

$$
\left(\mathrm{V}_{\mathrm{I}}=0 \text { to } 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=1.3 \mathrm{~V}\right)
$$

Figure 1.

Figure 3.

Figure 5.

Figure 2.

Figure 4.

Figure 6.

TEST CIRCUITS

EXPANDED LOGIC DIAGRAM

TIMING DIAGRAM

MC74HCT595A

PACKAGE DIMENSIONS

SOLDERING FOOTPRINT

PACKAGE DIMENSIONS

ON Semiconductor and (Oil are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
"Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

