imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

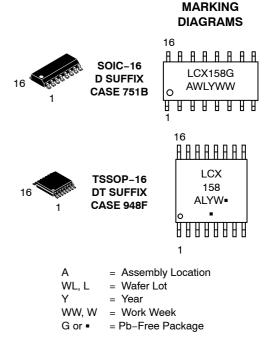
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low-Voltage CMOS Quad 2-Input Multiplexer

With 5 V-Tolerant Inputs (Inverting)

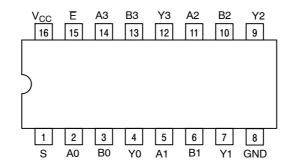
The MC74LCX158 is a high performance, quad 2–input inverting multiplexer operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX158 inputs to be safely driven from 5 V devices.

Four bits of data from two sources can be selected using the Select and Enable inputs. The four outputs present the selected data in the inverted form. The MC74LCX158 can also be used as a function generator. Current drive capability is 24 mA at the outputs.


Features

- Designed for 2.3 to 3.6 V V_{CC} Operation
- 5 V Tolerant Inputs Interface Capability With 5 V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current (10 µA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance:
 - ♦ Human Body Model >2000 V
 - ♦ Machine Model >200 V
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®


http://onsemi.com

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

PIN NAMES

Pins	Function		
An	Source 0 Data Inputs		
Bn	Source 1 Data Inputs		
Ē	Enable Input		
S	Select Input		
Yn	Outputs		

TRUTH TABLE

Inp	outs	Outputs
Output Enable	Select	Y0-Y3
Н	Х	Н
L	L	A0-A3
L	Н	B0-B3

X = Don't Care

A0–A3, B0–B3 = The levels of the respective Data–Word Inputs

PIN DESCRIPTIONS

INPUTS

OUTPUTS

A0-A3 (Pins 2, 5, 11, 14)

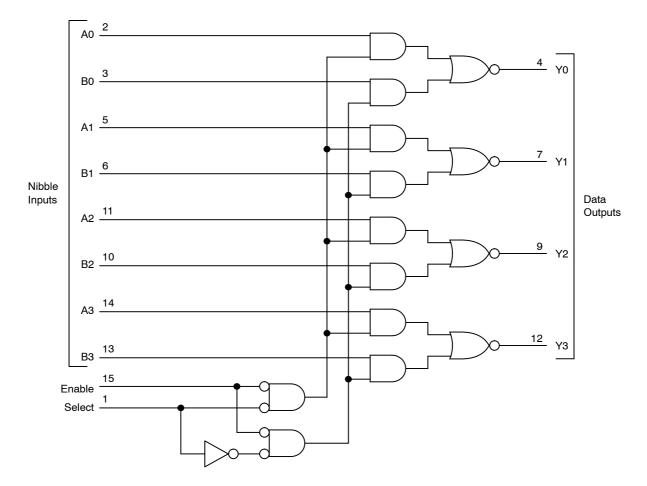
Nibble A inputs. The data present on these pins is transferred to the outputs when the Select input is at a low level and the Output Enable input is at a low level. The data is presented to the outputs in inverted form for the LCX158.

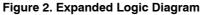
B0-B3 (Pins 3, 6, 10, 13)

Nibble B inputs. The data present on these pins is transferred to the outputs when the Select input is at a high level and the Output Enable input is at a low level. The data is presented to the outputs in inverted form for the LCX158.

Y0-Y3 (Pins 4, 7, 9, 12)

Data outputs. The selected input nibble is presented at these outputs when the Output Enable input is at a low level. The data present on these pins is in its inverted form for the LCX158. For the Output Enable input at a high level, the outputs are at a high level for the LCX158.


Select (Pin 1)


Nibble select. This input determines the data word to be transferred to the outputs. A low level on this input selects the A inputs and a high level selects the B inputs.

CONTROL INPUTS

Enable (Pin 15)

Output Enable input. A low level on this input allows the selected data to be presented at the outputs. A high level on this input sets all of the outputs to a high level for the LCX158.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LCX158DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74LCX158DR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74LCX158DTG	TSSOP-16 (Pb-Free)	96 Units / Rail
MC74LCX158DTR2G	TSSOP-16 (Pb-Free)	2500 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Units
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_{\rm I} \le +7.0$		V
Vo	DC Output Voltage	$-0.5 \leq V_{\rm O} \leq V_{\rm CC} + 0.5$	Output in HIGH or LOW State (Note 1)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	mA
Ι _Ο	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C
MSL	Moisture Sensitivity		Level 1	

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. I_O absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage Operating Data Retention Only	2.0 1.5	2.3 to 3.3	3.6 3.6	V
VI	Input Voltage	0		5.5	V
V _O	Output Voltage (HIGH or LOW State) (3-State)	0		V _{CC}	V
I _{OH}				-24 -12 -8	mA
I _{OL}				+24 +12 +8	mA
T _A	Operating Free-Air Temperature	-40		+85	°C
$\Delta t/\Delta V$	Input Transition Rise or Fall Rate, V _{IN} from 0.8 V to 2.0 V, V _{CC} = 3.0 V	0		10	ns/V

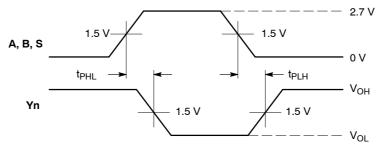
DC ELECTRICAL CHARACTERISTICS

			T _A = -40°C		
Symbol	Characteristic	Condition	Min	Max	Units
VIH	Minimum HIGH Level Input Voltage (Note 2)	$2.3 \text{ V} \le \text{V}_{\text{CC}} \le 2.7 \text{ V}$	1.7		V
		$2.7~\textrm{V} \leq \textrm{V}_{\textrm{CC}} \leq 3.0~\textrm{V}$	2.0		
		$3.0 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V}$	2.0		
VIL	Maximum LOW Level Input Voltage (Note 2)	$2.3 \text{ V} \le \text{V}_{\text{CC}} \le 2.7 \text{ V}$		0.7	V
		$2.7 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.0 \text{ V}$		0.8	
		$3.0 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V}$		0.8	
V _{OH}	Minimum HIGH Level Output Voltage	$2.3 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}; \text{ I}_{\text{OH}} = -100 \ \mu\text{A}$	V _{CC} – 0.2		V
		$V_{CC} = 2.3 \text{ V}; \text{ I}_{OH} = -8 \text{ mA}$	1.7		
		V _{CC} = 2.7 V; I _{OH} = -12 mA	2.2		
		V_{CC} = 3.0 V; I_{OH} = -18 mA	2.4		
		V_{CC} = 3.0 V; I_{OH} = -24 mA	2.2		
V _{OL}	Maximum LOW Level Output Voltage	$2.3 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}; \text{ I}_{\text{OH}} = 100 \ \mu\text{A}$		0.2	V
		V _{CC} = 2.3 V; I _{OH} = 8 mA		0.7	
		V _{CC} = 2.7 V; I _{OH} = 12 mA		0.4	
		V _{CC} = 3.0 V; I _{OH} = 16 mA		0.4	
		V_{CC} = 3.0 V; I_{OH} = 24 mA		0.55	
I _{OFF}	Power Off Leakage Current	V_{CC} = 0, V_{IN} = 5.5 V or V_{OUT} = 5.5 V		10	μA
I _{IN}	Input Leakage Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		±5	μA
I _{CC}	Quiescent Supply Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		10	μA
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \le V_{CC} \le 3.6 \text{ V}; \text{ V}_{IH} = V_{CC} - 0.6 \text{ V}$		500	μA

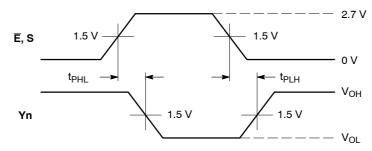
2. These values of V_I are used to test DC electrical characteristics only.

AC CHARACTERISTICS

			Limits T _A = -40°C to +85°C					
		V _{CC} = 3.0) V ± 3.6 V	V _{CC} =	= 2.7 V	V _{CC} = 2.3	V to 2.7 V	
		C _L =	50 pF	C _L =	50 pF	C _L =	30 pF	
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
t _{PLH}	Propagation Delay	1.0	6.5	1.0	7.5	1.0	8.5	ns
t _{PHL}	A or B to Y	1.0	6.5	1.0	7.5	1.0	8.5	
t _{PLH}	Propagation Delay	1.0	7.0	1.0	8.0	1.0	9.0	ns
t _{PHL}	S to Y	1.0	7.0	1.0	8.0	1.0	9.0	
t _{PLH}	Propagation Delay	1.0	7.0	1.0	8.0	1.0	9.0	ns
t _{PHL}	Output Enable to Y	1.0	7.0	1.0	8.0	1.0	9.0	
t _{OSHL}	Output-to-Output Skew		1.0					ns
t _{OSLH}			1.0					

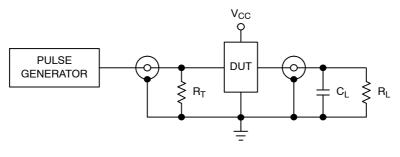

DYNAMIC SWITCHING CHARACTERISTICS

			T,	_A = +25°	С	
Symbol	Characteristic	Condition	Min	Тур	Max	Units
V _{OLP}	Dynamic LOW Peak Voltage (Note 3)	V_{CC} = 3.3 V, C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V		0.8		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 3)	V_{CC} = 3.3 V, C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V		0.8		V


Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

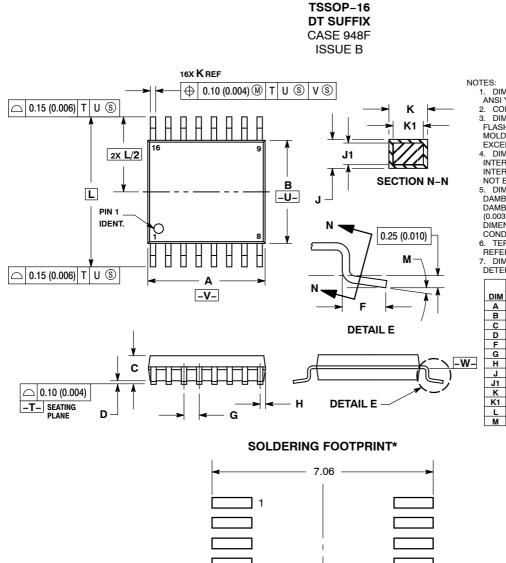
Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_I = 0 V or V_{CC}	25	pF



WAVEFORM 1 – INVERTING PROPAGATION DELAYS $t_R = t_F = 2.5 \text{ ns}, 10\%$ to 90%; f = 1 MHz; $t_W = 500 \text{ ns}$

WAVEFORM 2 – INVERTING PROPAGATION DELAYS $t_{R} = t_{F} = 2.5 \text{ ns}, 10\% \text{ to } 90\%; \text{ f} = 1 \text{ MHz}; t_{W} = 500 \text{ ns}$

Figure 3. AC Waveforms


C_L = 50 pF or equivalent (Includes jig and probe capacitance)

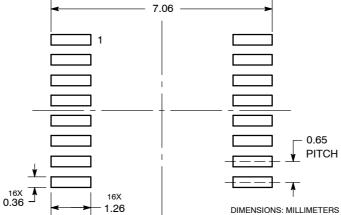
 $R_L = R_1 = 500 \Omega$ or equivalent

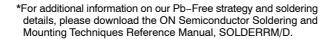
 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 4. Test Circuit

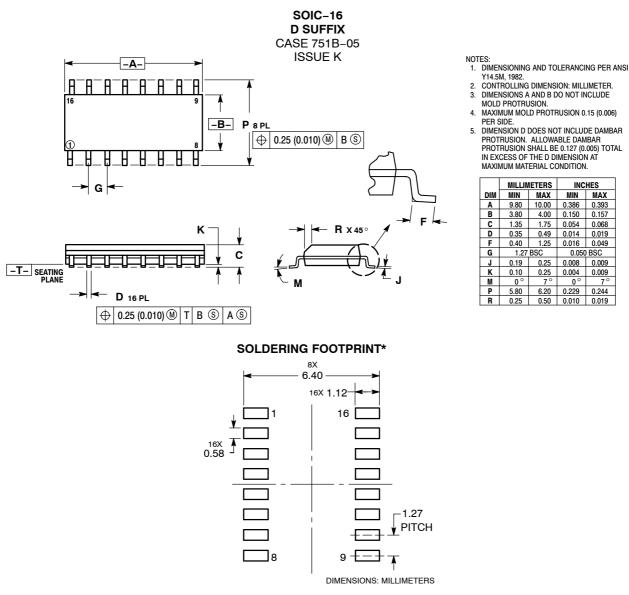
PACKAGE DIMENSIONS

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.


3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.


4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION

CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR


REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
в	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
к	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC			2 BSC
М	0 °	8 °	0 °	8 °

PACKAGE DIMENSIONS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

INCHES