: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

MC74LVX259

8-Bit Addressable Latch/1-of-8 Decoder CMOS Logic Level Shifter
 With LSTTL-Compatible Inputs

The MC74LVX259 is an 8-bit Addressable Latch fabricated with silicon gate CMOS technology.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The LVX259 is designed for general purpose storage applications in digital systems. The device has four modes of operation as shown in the mode selection table. In the addressable latch mode, the data on Data In is written into the addressed latch. The addressed latch follows the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the Data or Address inputs. In the one-of-eight decoding or demultiplexing mode, the addressed output follows the state of Data In with all other outputs in the LOW state. In the Reset mode, all outputs are LOW and unaffected by the address and data inputs. When operating the LVX259 as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.

The MC74LVX259 input structure provides protection when voltages up to 7.0 V are applied, regardless of the supply voltage. This allows the MC74LVX259 to be used to interface 5.0 V circuits to 3.0 V circuits.

Features

- High Speed: $\mathrm{t}_{\mathrm{PD}}=7.0 \mathrm{~ns}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}$ (Max) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High Noise Immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}$
- CMOS-Compatible Outputs: $\mathrm{V}_{\mathrm{OH}}>0.8 \mathrm{~V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{OL}}<0.1 \mathrm{~V}_{\mathrm{CC}} @ L o a d$
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance:

Human Body Model > 2000 V;
Machine Model > 200 V

- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Figure 1. Logic Diagram

Figure 2. IEC Logic Symbol
MODE SELECTION TABLE

Enable	Reset	Mode
L	H	Addressable Latch
H	H	Memory
L	L	8-Line Demultiplexer
H	L	Reset

LATCH SELECTION TABLE

Address Inputs		Latch Addressed	
C	B		Q0
L	L	L	Q1
L	L	H	Q2
L	H	L	Q3
L	H	H	Q4
H	L	L	Q5
H	L	H	Q6
H	H	L	Q7
H	H	H	

Figure 3. Expanded Logic Diagram

MC74LVX259

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage	-0.5 to +7.0	V
V OUT	DC Output Voltage	-0.5 to $\mathrm{V}_{\text {CC }}+0.5$	V
IIK	Input Diode Current	-20	mA
lok	Output Diode Current	± 20	mA
Iout	DC Output Current, per Pin	± 25	mA
ICC	DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND Pins	± 75	mA
P_{D}	$\begin{array}{lr}\text { Power Dissipation in Still Air } & \text { SOIC Package } \\ & \text { TSSOP }\end{array}$	$\begin{aligned} & 200 \\ & 180 \end{aligned}$	mW
TSTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	$\begin{gathered} >2000 \\ >200 \\ >2000 \end{gathered}$	V
L LATCHUP	Latchup Performance \quad Above $\mathrm{V}_{\text {CC }}$ and Below GND at 125${ }^{\circ} \mathrm{C}$ (Note 4)	± 300	mA
θ_{JA}	$\begin{array}{lr}\text { Thermal Resistance, Junction-to-Ambient } & \text { SOIC Package } \\ & \text { TSSOP }\end{array}$	$\begin{aligned} & \hline 143 \\ & 164 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Tested to EIA/JESD22-A114-A
2. Tested to EIA/JESD22-A115-A
3. Tested to JESD22-C101-A
4. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	3.6	V
$\mathrm{~V}_{\mathrm{IN}}$	DC Input Voltage	0	5.5	V
$\mathrm{~V}_{\mathrm{OUT}}$	DC Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature Range, all Package Types	-40	85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0	100

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Condition	v_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 0.75 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	- - -		$\begin{aligned} & 0.75 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	-	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.6 \end{aligned}$	-	-	$\begin{aligned} & \hline 0.25 \mathrm{~V}_{\mathrm{CC}} \\ & 0.3 \mathrm{~V}_{\mathrm{CC}} \\ & 0.3 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	-	$\begin{aligned} & \hline 0.25 \mathrm{~V}_{\mathrm{CC}} \\ & 0.3 \mathrm{~V}_{\mathrm{CC}} \\ & 0.3 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	V
V_{OH}	High-Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$	2.0	1.9	2.0	-	1.9	-	V
		$\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$	3.0	2.9	3.0	-	2.9	-	
		$\mathrm{IOH}=-4 \mathrm{~mA}$	3.0	2.58	-	-	2.48	-	
V_{OL}	Low-Level Output Voltage	$\mathrm{l} \mathrm{OL}=50 \mu \mathrm{~A}$	2.0	-	0.0	0.1	-	0.1	V
		$\mathrm{l} \mathrm{OL}=50 \mu \mathrm{~A}$	3.0	-	0.0	0.1	-	0.1	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	3.0	-	-	0.36	-	0.44	
1 N	Input Leakage Current	$\mathrm{V}_{1 \mathrm{I}}=5.5 \mathrm{~V}$ or GND	0 to 3.6	-	-	± 0.1	-	± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current (per package)	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{CC}}$ or GND	3.6	1.0	1.0	2.0	-	-	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$

Symbol	Parameter	Test Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL }^{2} \end{aligned}$	Maximum Propagation Delay, Data to Output (Figures 4 and 8)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	-	$\begin{aligned} & 6.3 \\ & 9.0 \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 14.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 15.0 \end{aligned}$	ns
		$\mathrm{V}_{C C}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	-	$\begin{aligned} & 5.6 \\ & 8.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 14.0 \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{tpLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Maximum Propagation Delay, Address Select to Output (Figures 5 and 8)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	-	$\begin{aligned} & 6.3 \\ & 9.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 14.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 15.0 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	-	$\begin{aligned} & 5.6 \\ & 8.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 14.0 \end{aligned}$	
$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL }^{2} \end{aligned}$	Maximum Propagation Delay, Enable to Output (Figures 6 and 8)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & \hline 6.3 \\ & 9.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 14.0 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 15.0 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	-	$\begin{aligned} & 5.6 \\ & 8.0 \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 14.0 \end{aligned}$	
$\mathrm{t}_{\text {PHL }}$	Maximum Propogation Delay, Reset to Output (Figures 6 and 8)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 6.3 \\ & 9.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 14.0 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 12.0 \\ & 15.0 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	-	$\begin{aligned} & 5.6 \\ & 8.0 \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 14.0 \end{aligned}$	
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance			-	6	10	-	10	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 5)			Typical @ 25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$					pF
				30					

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{C C(O P R)}=C_{P D} \bullet V_{C C} \bullet f_{i n}+I_{C C} . C_{P D}$ is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

TIMING REQUIREMENTS Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$

Symbol	Parameter	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=\leq 85^{\circ} \mathrm{C}$		Unit
			Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Reset or Enable (Figure 7)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	4.5	-	-	5.0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	4.5	-	-	5.0	-	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Address or Data to Enable (Figure 7)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	4.0	-	-	4.0	-	ns
		$\mathrm{V}_{C C}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	3.0	-	-	3.0	-	
$t_{\text {h }}$	Minimum Hold Time, Enable to Address or Data (Figure 6 or 7)	$\mathrm{V}_{C C}=2.7 \mathrm{~V}$	2.0	-	-	2.0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	2.0	-	-	2.0	-	
$\mathrm{tr}_{\mathrm{r}, \mathrm{t}} \mathrm{t}$	Maximum Input, Rise and Fall Times (Figure 4)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	-	400	-	300	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	-	-	300	-	300	

Figure 4. Switching Waveform
Figure 5. Switching Waveform

Figure 6. Switching Waveform

Figure 7. Switching Waveform

Figure 8. Switching Waveform

*Includes all probe and jig capacitance
Figure 9. Test Circuit

MC74LVX259

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74LVX259DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74LVX259DR2G	SOIC-16 (Pb-Free)	2500 Tape \& Reel
MC74LVX259DTG	TSSOP-16 (Pb-Free)	96 Units / Rail
MC74LVX259DTR2G	TSSOP-16 (Pb-Free)	2500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

EMBOSSED CARRIER DIMENSIONS (See Notes 6 and 7)

Tape Size	$\begin{aligned} & B_{1} \\ & \text { Max } \end{aligned}$	D	D_{1}	E	F	K	P	P_{0}	P_{2}	R	T	W
8 mm	$\begin{aligned} & 4.35 \mathrm{~mm} \\ & \left(0.179^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 1.5 \mathrm{~mm} \\ +0.1 \\ -0.0 \\ \left(0.059^{\prime \prime}\right. \\ +0.004 \\ -0.0) \end{gathered}$	1.0 mm Min (0.179")	$\begin{gathered} 1.75 \mathrm{~mm} \\ \pm 0.1 \\ (0.069 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 3.5 \mathrm{~mm} \\ \pm 0.5 \\ (1.38 \\ \left. \pm 0.002^{\prime \prime}\right) \end{gathered}$		$\begin{gathered} 4.0 \mathrm{~mm} \\ \pm 0.10 \\ (0.157 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 4.0 \mathrm{~mm} \\ \pm 0.1 \\ (0.157 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 2.0 \mathrm{~mm} \\ \pm 0.1 \\ (0.079 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 25 \mathrm{~mm} \\ & \left(0.98^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~mm} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 8.3 \mathrm{~mm} \\ & (0.327) \end{aligned}$
12 mm	$\begin{aligned} & 8.2 \mathrm{~mm} \\ & \left(0.323^{\prime}\right) \end{aligned}$		$\begin{gathered} 1.5 \mathrm{~mm} \\ \mathrm{Min} \\ (0.060) \end{gathered}$		$\begin{gathered} 5.5 \mathrm{~mm} \\ \pm 0.5 \\ (0.217 \\ \left. \pm 0.002^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 6.4 \mathrm{~mm} \\ \mathrm{Max} \\ \left(0.252^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 4.0 \mathrm{~mm} \\ \pm 0.10 \\ (0.157 \\ \left. \pm 0.004^{\prime \prime}\right) \\ 8.0 \mathrm{~mm} \\ \pm 0.10 \\ (0.315 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$			$\begin{gathered} 30 \mathrm{~mm} \\ \left(1.18^{\prime \prime}\right) \end{gathered}$		$\begin{gathered} 12.0 \mathrm{~mm} \\ \pm 0.3 \\ (0.470 \\ \left. \pm 0.012^{\prime \prime}\right) \end{gathered}$
16 mm	$\begin{aligned} & 12.1 \mathrm{~mm} \\ & \left(0.4766^{\prime \prime}\right) \end{aligned}$				$\begin{gathered} 7.5 \mathrm{~mm} \\ \pm 0.10 \\ (0.295 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} \hline 7.9 \mathrm{~mm} \\ \mathrm{Max} \\ \left(0.311^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 4.0 \mathrm{~mm} \\ \pm 0.10 \\ (0.157 \\ \left. \pm 0.004^{\prime \prime}\right) \\ 8.0 \mathrm{~mm} \\ \pm 0.10 \\ (0.315 \\ \left. \pm 0.004^{\prime \prime}\right) \\ 12.0 \mathrm{~mm} \\ \pm 0.10 \\ (0.472 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$					$\begin{gathered} 16.3 \mathrm{~mm} \\ (0.642) \end{gathered}$
24 mm	$\begin{gathered} 20.1 \mathrm{~mm} \\ \left(0.791^{\prime \prime}\right) \end{gathered}$				$\begin{gathered} 11.5 \mathrm{~mm} \\ \pm 0.10 \\ (0.453 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	11.9 mm Max (0.468")	$\begin{gathered} 16.0 \mathrm{~mm} \\ \pm 0.10 \\ (0.63 \\ \left. \pm 0.004^{\prime \prime}\right) \\ \hline \end{gathered}$					$\begin{gathered} 24.3 \mathrm{~mm} \\ (0.957) \end{gathered}$

6. Metric Dimensions Govern-English are in parentheses for reference only.
7. $\mathrm{A}_{0}, \mathrm{~B}_{0}$, and K_{0} are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity

MC74LVX259

PACKAGE DIMENSIONS

TSSOP-16
CASE 948F
ISSUE B

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC74LVX259

PACKAGE DIMENSIONS

SOIC-16
CASE 751B-05
ISSUE K

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSIONS A AND B DO NOT INCLUDE MOLD

PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
5. DIMENSION D DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE $0.127(0.005)$ TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	9.80	10.00	0.386	0.393
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

> ON Semiconductor and the $1 \mathbb{N}$ are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: $303-675-2175$ or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

