

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







# **Octal Bus Buffer/Line Driver**

The MC74VHC245 is an advanced high speed CMOS octal bus transceiver fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

It is intended for two-way asynchronous communication between data buses. The direction of data transmission is determined by the level of the DIR input. The output enable pin  $(\overline{OE})$  can be used to disable the device, so that the buses are effectively isolated.

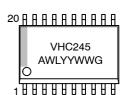
All inputs are equipped with protection circuits against static discharge.

- High Speed:  $t_{PD} = 4.0 \text{ ns (Typ)}$  at  $V_{CC} = 5 \text{ V}$
- Low Power Dissipation:  $I_{CC} = 4 \mu A \text{ (Max)}$  at  $T_A = 25^{\circ}\text{C}$
- High Noise Immunity:  $V_{NIH} = V_{NIL} = 28\% V_{CC}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2 V to 5.5 V Operating Range
- Low Noise: V<sub>OLP</sub> = 1.2 V (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- Chip Complexity: 308 FETs or 77 Equivalent Gates
- These Devices are Pb-Free and are RoHS Compliant

#### **APPLICATION NOTES**

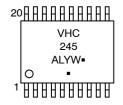
- Do not force a signal on an I/O pin when it is an active output, damage may occur.
- All floating (high impedance) input or I/O pins must be fixed by means of pull up or pull down resistors or bus terminator ICs.
- A parasitic diode is formed between the bus and V<sub>CC</sub> terminals.
   Therefore, the VHC245 cannot be used to interface 5 V to 3 V systems directly.




### ON Semiconductor™

http://onsemi.com

#### MARKING DIAGRAMS




SOIC-20 DW SUFFIX CASE 751D





**CASE 948E** 



VHC245 = Specific Device Code A = Assembly Location

WL, L = Wafer Lot Y = Year WW, W = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

#### **ORDERING INFORMATION**

| Device          | Package  | Shipping <sup>†</sup> |
|-----------------|----------|-----------------------|
| MC74VHC245DWG   | SOIC-20  | 38 Units/Rail         |
| MC74VHC245DTG   | TSSOP-20 | 75 Units/Rail         |
| MC74VHC245DWR2G | SOIC-20  | 1000 Units/Reel       |
| MC74VHC245DTR2G | TSSOP-20 | 2500 Units/T&R        |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

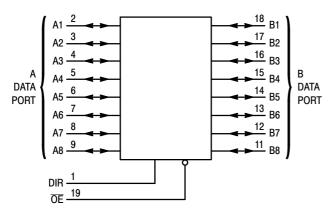



Figure 1. LOGIC DIAGRAM

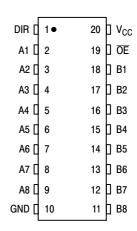



Figure 2. PIN ASSIGNMENT

#### **FUNCTION TABLE**

| Control Inputs |   |                                       |
|----------------|---|---------------------------------------|
| ŌE DIR         |   | Operation                             |
| L              | L | Data Transmitted from Bus B to Bus A  |
| L              | Н | Data Transmitted from Bus A to Bus B  |
| Н              | Х | Buses Isolated (High-Impedance State) |

#### **MAXIMUM RATINGS\***

| Symbol           | Parameter                                     |                                | Value                     | Unit |
|------------------|-----------------------------------------------|--------------------------------|---------------------------|------|
| V <sub>CC</sub>  | DC Supply Voltage                             | - 0.5 to + 7.0                 | V                         |      |
| V <sub>in</sub>  | DC Input Voltage                              |                                | - 0.5 to + 7.0            | V    |
| V <sub>out</sub> | DC Output Voltage                             |                                | $-$ 0.5 to $V_{CC}$ + 0.5 | V    |
| I <sub>IK</sub>  | Input Diode Current                           | - 20                           | mA                        |      |
| I <sub>OK</sub>  | Output Diode Current                          | ± 20                           | mA                        |      |
| l <sub>out</sub> | DC Output Current, per Pin                    |                                | ± 25                      | mA   |
| Icc              | DC Supply Current, V <sub>CC</sub> and GND Pi | ± 75                           | mA                        |      |
| P <sub>D</sub>   | •                                             | OIC Packages†<br>SSOP Package† | 500<br>450                | mW   |
| T <sub>stg</sub> | Storage Temperature                           |                                | - 65 to + 150             | °C   |

<sup>\*</sup> Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

#### **RECOMMENDED OPERATING CONDITIONS**

| Symbol                          | Parameter                                                      | Min          | Max      | Unit      |      |
|---------------------------------|----------------------------------------------------------------|--------------|----------|-----------|------|
| V <sub>CC</sub>                 | DC Supply Voltage                                              | 2.0          | 5.5      | V         |      |
| V <sub>in</sub>                 | DC Input Voltage                                               |              |          | 5.5       | V    |
| V <sub>out</sub>                | DC Output Voltage                                              | 0            | $V_{CC}$ | V         |      |
| T <sub>A</sub>                  | Operating Temperature                                          |              | - 40     | + 85      | °C   |
| t <sub>r</sub> , t <sub>f</sub> | Input Rise and Fall Time $V_{CC}$ = 3.3V ±0 $V_{CC}$ = 5.0V ±0 | ).3V<br>).5V | 0<br>0   | 100<br>20 | ns/V |

### DC ELECTRICAL CHARACTERISTICS

|                 |                                      |                                                                                          | V <sub>CC</sub>      |                               | T <sub>A</sub> = 25°C | ;                             | $T_A = -40$                   | 0 to 85°C                     |      |
|-----------------|--------------------------------------|------------------------------------------------------------------------------------------|----------------------|-------------------------------|-----------------------|-------------------------------|-------------------------------|-------------------------------|------|
| Symbol          | Parameter                            | Test Conditions                                                                          | v                    | Min                           | Тур                   | Max                           | Min                           | Max                           | Unit |
| V <sub>IH</sub> | Minimum High-Level<br>Input Voltage  |                                                                                          | 2.0<br>3.0 to<br>5.5 | 1.50<br>V <sub>CC</sub> x 0.7 |                       |                               | 1.50<br>V <sub>CC</sub> x 0.7 |                               | V    |
| V <sub>IL</sub> | Maximum Low-Level Input Voltage      |                                                                                          | 2.0<br>3.0 to<br>5.5 |                               |                       | 0.50<br>V <sub>CC</sub> x 0.3 |                               | 0.50<br>V <sub>CC</sub> x 0.3 | ٧    |
| V <sub>OH</sub> | Minimum High-Level<br>Output Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu A$                                | 2.0<br>3.0<br>4.5    | 1.9<br>2.9<br>4.4             | 2.0<br>3.0<br>4.5     |                               | 1.9<br>2.9<br>4.4             |                               | V    |
|                 |                                      | $V_{in} = V_{IH} \text{ or } V_{IL} \\ I_{OH} = - \text{ 4mA} \\ I_{OH} = - \text{ 8mA}$ | 3.0<br>4.5           | 2.58<br>3.94                  |                       |                               | 2.48<br>3.80                  |                               |      |
| V <sub>OL</sub> | Maximum Low-Level<br>Output Voltage  | $V_{in} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu A$                                 | 2.0<br>3.0<br>4.5    |                               | 0.0<br>0.0<br>0.0     | 0.1<br>0.1<br>0.1             |                               | 0.1<br>0.1<br>0.1             | V    |
|                 |                                      | $V_{in} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4\text{mA}$ $I_{OL} = 8\text{mA}$         | 3.0<br>4.5           |                               |                       | 0.36<br>0.36                  |                               | 0.44<br>0.44                  |      |
| I <sub>in</sub> | Maximum Input<br>Leakage Current     | V <sub>in</sub> = 5.5 V or GND<br>(DIR, OE)                                              | 0 to 5.5             |                               |                       | ± 0.1                         |                               | ± 1.0                         | μА   |

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation,  $V_{in}$  and  $V_{out}$  should be constrained to the range GND  $\leq$  ( $V_{in}$  or  $V_{out}$ )  $\leq$   $V_{CC}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or  $V_{CC}$ ). Unused outputs must be left open.

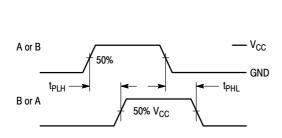
<sup>†</sup>Derating — SOIC Packages: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C

#### DC ELECTRICAL CHARACTERISTICS

|                 |                                           |                                                                           | v <sub>cc</sub> |     | T <sub>A</sub> = 25°C |        | T <sub>A</sub> = - 40 | 0 to 85°C |      |
|-----------------|-------------------------------------------|---------------------------------------------------------------------------|-----------------|-----|-----------------------|--------|-----------------------|-----------|------|
| Symbol          | Parameter                                 | Test Conditions                                                           | v               | Min | Тур                   | Max    | Min                   | Max       | Unit |
| I <sub>OZ</sub> | Maximum<br>Three-State Leakage<br>Current | $V_{in} = V_{IL} \text{ or } V_{IH}$<br>$V_{out} = V_{CC} \text{ or GND}$ | 5.5             |     |                       | ± 0.25 |                       | ± 2.5     | μΑ   |
| I <sub>CC</sub> | Maximum Quiescent<br>Supply Current       | V <sub>in</sub> = V <sub>CC</sub> or GND                                  | 5.5             |     |                       | 4.0    |                       | 40.0      | μА   |

#### AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ns}$ )

|                                          |                                                |                                                                               |                                                |     | T <sub>A</sub> = 25°C |              | T <sub>A</sub> = - 40 | 0 to 85°C    |      |
|------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------|-----|-----------------------|--------------|-----------------------|--------------|------|
| Symbol                                   | Parameter                                      | Test Condi                                                                    | tions                                          | Min | Тур                   | Max          | Min                   | Max          | Unit |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub>   | Maximum Propagation Delay,<br>A to B or B to A | $V_{CC} = 3.3 \pm 0.3 V$                                                      | C <sub>L</sub> = 15pF<br>C <sub>L</sub> = 50pF |     | 5.8<br>8.3            | 8.4<br>11.9  | 1.0<br>1.0            | 10.0<br>13.5 | ns   |
|                                          |                                                | $V_{CC} = 5.0 \pm 0.5 V$                                                      | $C_L = 15pF$<br>$C_L = 50pF$                   |     | 4.0<br>5.5            | 5.5<br>7.5   | 1.0<br>1.0            | 6.5<br>8.5   |      |
| t <sub>PZL</sub> ,<br>t <sub>PZH</sub>   | Output Enable Time OE to A or B                | $\begin{aligned} V_{CC} &= 3.3 \pm 0.3 V \\ R_L &= 1 \ k\Omega \end{aligned}$ |                                                |     | 8.5<br>11.0           | 13.2<br>16.7 | 1.0<br>1.0            | 15.5<br>19.0 | ns   |
|                                          |                                                | $V_{CC} = 5.0 \pm 0.5V$ $R_L = 1 \text{ k}\Omega$                             | $C_L = 15pF$<br>$C_L = 50pF$                   |     | 5.8<br>7.3            | 8.5<br>10.6  | 1.0<br>1.0            | 10.0<br>12.0 |      |
| t <sub>PLZ</sub> ,<br>t <sub>PHZ</sub>   | Output Disable Time<br>OE to A or B            | $\begin{aligned} V_{CC} &= 3.3 \pm 0.3 V \\ R_L &= 1 \ k\Omega \end{aligned}$ | C <sub>L</sub> = 50pF                          |     | 11.5                  | 15.8         | 1.0                   | 18.0         | ns   |
|                                          |                                                | $V_{CC} = 5.0 \pm 0.5V$ $R_L = 1 \text{ k}\Omega$                             | C <sub>L</sub> = 50pF                          |     | 7.0                   | 9.7          | 1.0                   | 11.0         |      |
| t <sub>OSLH</sub> ,<br>t <sub>OSHL</sub> | Output to Output Skew                          | V <sub>CC</sub> = 3.3 ± 0.3V<br>(Note 1)                                      | C <sub>L</sub> = 50pF                          |     |                       | 1.5          |                       | 1.5          | ns   |
|                                          |                                                | V <sub>CC</sub> = 5.0 ± 0.5V<br>(Note 1)                                      | C <sub>L</sub> = 50pF                          |     |                       | 1.0          |                       | 1.0          | ns   |
| C <sub>in</sub>                          | Maximum Input Capacitance DIR, OE              |                                                                               |                                                |     | 4                     | 10           |                       | 10           | pF   |
| C <sub>I/O</sub>                         | Maximum Three-State I/O Capacitance            |                                                                               |                                                |     | 8                     |              |                       |              | pF   |


|          |                                        | Typical @ 25°C, V <sub>CC</sub> = 5.0V |    |
|----------|----------------------------------------|----------------------------------------|----|
| $C_{PD}$ | Power Dissipation Capacitance (Note 2) | 21                                     | рF |

### **NOISE CHARACTERISTICS** (Input $t_r = t_f = 3.0$ ns, $C_L = 50$ pF, $V_{CC} = 5.0$ V)

|                  |                                              | T <sub>A</sub> = 25°C |      |      |
|------------------|----------------------------------------------|-----------------------|------|------|
| Symbol           | Parameter                                    | Тур                   | Max  | Unit |
| V <sub>OLP</sub> | Quiet Output Maximum Dynamic V <sub>OL</sub> | 0.9                   | 1.2  | V    |
| V <sub>OLV</sub> | Quiet Output Minimum Dynamic V <sub>OL</sub> |                       | -1.2 | V    |
| V <sub>IHD</sub> | Minimum High Level Dynamic Input Voltage     |                       | 3.5  | V    |
| V <sub>ILD</sub> | Maximum Low Level Dynamic Input Voltage      |                       | 1.5  | V    |

Parameter guaranteed by design. t<sub>OSLH</sub> = |t<sub>PLHm</sub> - t<sub>PLHn</sub>|, t<sub>OSHL</sub> = |t<sub>PHLm</sub> - t<sub>PHLn</sub>|.
 C<sub>PD</sub> is defined as the value of the internal equivalent cance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I<sub>CC(OPR)</sub> = C<sub>PD</sub> • V<sub>CC</sub> • f<sub>in</sub> + I<sub>CC</sub> / 8 (per bit). C<sub>PD</sub> is used to determine the no-load dynamic power consumption; P<sub>D</sub> = C<sub>PD</sub> • V<sub>CC</sub><sup>2</sup> • f<sub>in</sub> + I<sub>CC</sub> • V<sub>CC</sub>.

#### **SWITCHING WAVEFORMS**



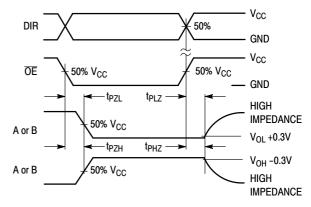
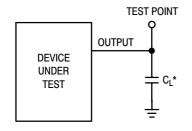




Figure 3.

Figure 4.

#### **TEST CIRCUITS**



\*Includes all probe and jig capacitance

Figure 5.

CONNECT TO  $V_{CC}$  WHEN TESTING  $t_{PLZ}$  AND  $t_{PZL}$ . CONNECT TO GND WHEN OUTPUT DEVICE UNDER TESTING t<sub>PHZ</sub> AND t<sub>PZH</sub>. C<sub>L</sub>\* TEST

TEST POINT

\*Includes all probe and jig capacitance

Figure 6.

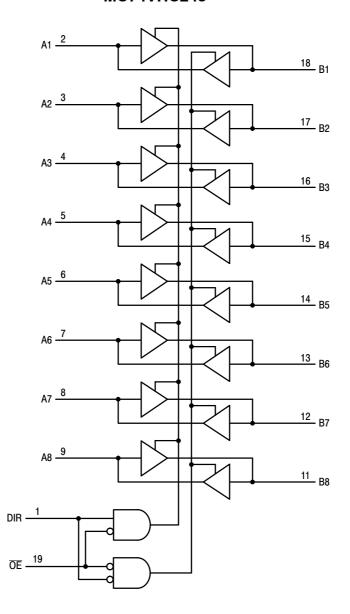



Figure 7. EXPANDED LOGIC DIAGRAM

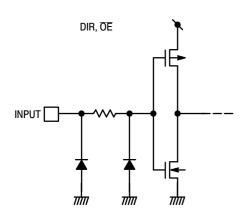



Figure 8. INPUT EQUIVALENT CIRCUIT

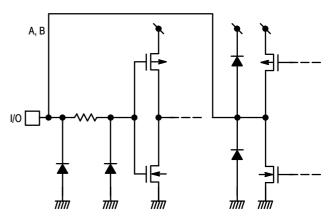
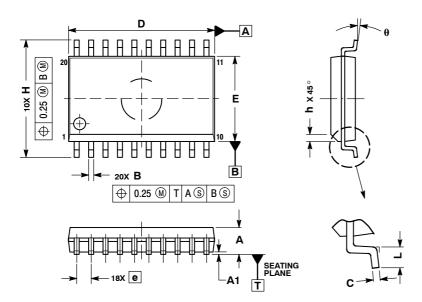
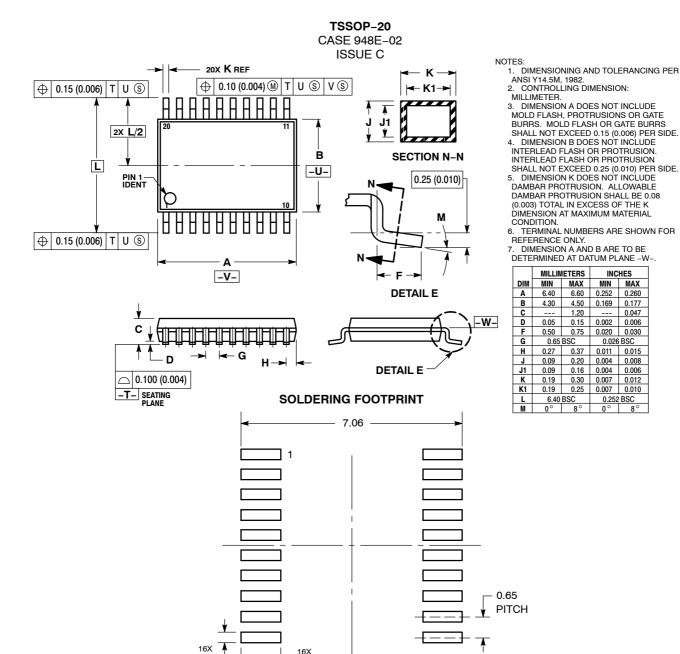




Figure 9. BUS TERMINAL EQUIVALENT CIRCUIT

#### **PACKAGE DIMENSIONS**


SOIC-20 CASE 751D-05 ISSUE G



- NOTES:
  1. DIMENSIONS ARE IN MILLIMETERS.
  2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
  3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
  4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
  5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

|     | MILLIMETERS |       |  |  |  |
|-----|-------------|-------|--|--|--|
| DIM | MIN         | MAX   |  |  |  |
| Α   | 2.35        | 2.65  |  |  |  |
| A1  | 0.10        | 0.25  |  |  |  |
| В   | 0.35        | 0.49  |  |  |  |
| С   | 0.23        | 0.32  |  |  |  |
| D   | 12.65       | 12.95 |  |  |  |
| Е   | 7.40        | 7.60  |  |  |  |
| е   | 1.27        | BSC   |  |  |  |
| Н   | 10.05       | 10.55 |  |  |  |
| h   | 0.25        | 0.75  |  |  |  |
| L   | 0.50        | 0.90  |  |  |  |
| θ   | 0 °         | 7 °   |  |  |  |

#### PACKAGE DIMENSIONS



ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

1.26

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

0.36

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

DIMENSIONS: MILLIMETERS

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative