

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Hex Inverter

The MC74VHCT04A is an advanced high speed CMOS inverter fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7 V, allowing the interface of 5 V systems to 3 V systems.

The VHCT inputs are compatible with TTL levels. This device can be used as a level converter for interfacing 3.3 V to 5.0 V, because it has full 5 V CMOS level output swings.

The VHCT04A input structures provide protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. The output structures also provide protection when $V_{CC} = 0$ V. These input and output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc.

Features

- High Speed: $t_{PD} = 4.7 \text{ ns (Typ)}$ at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 2 \mu A \text{ (Max)}$ at $T_A = 25 \text{°C}$
- TTL-Compatible Inputs: $V_{IL} = 0.8 \text{ V}$; $V_{IH} = 2.0 \text{ V}$
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Designed for 4.5 V to 5.5 V Operating Range
- Low Noise: V_{OLP} = 1.0 V (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- Chip Complexity: 48 FETs or 12 Equivalent Gates
- These Devices are Pb-Free and are RoHS Compliant

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

SOIC-14 D SUFFIX CASE 751A

TSSOP-14 DT SUFFIX CASE 948G

A = Assembly Location

WL, L = Wafer LotY = Year

WW, W = Work Week
G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74VHCT04ADR2G	SOIC-14 (Pb-Free)	2500 / Tape & Reel
MC74VHCT04ADTR2G	TSSOP14 (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

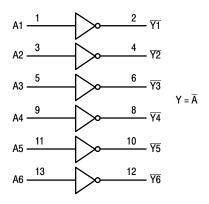


Figure 1. Logic Diagram

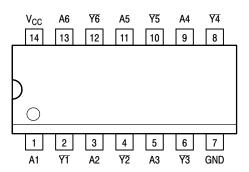


Figure 2. Pinout: 14-Lead Packages (Top View)

FUNCTION TABLE

Inputs	Outputs
A	Y
L	Н
Н	L

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage	- 0.5 to + 7.0	V
V _{out}	DC Output Voltage $V_{CC} = 0$ High or Low State	- 0.5 to + 7.0 - 0.5 to V _{CC} + 0.5	V
I _{IK}	Input Diode Current	- 20	mA
lok	Output Diode Current (V _{OUT} < GND; V _{OUT} > V _{CC})	± 20	mA
l _{out}	DC Output Current, per Pin	± 25	mA
Icc	DC Supply Current, V _{CC} and GND Pins	± 50	mA
P _D	Power Dissipation in Still Air, SOIC Packages† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or $V_{\rm CC}$). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating — SOIC Packages: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage	4.5	5.5	V
V _{in}	DC Input Voltage	0	5.5	V
V _{out}	DC Output Voltage V _{CC} = 0 High or Low State	0	5.5 V _{CC}	V
T _A	Operating Temperature	- 40	+ 85	°C
t _r , t _f	Input Rise and Fall Time V _{CC} =5.0V ±0.5V	0	20	ns/V

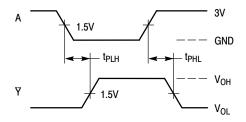
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

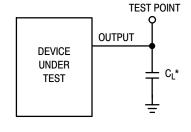
DC ELECTRICAL CHARACTERISTICS

		Voc		T _A = 25°C	;	T _A = -4	0 to 85°C	
Parameter	Test Conditions	V	Min	Тур	Max	Min	Max	Unit
Minimum High–Level Input Voltage		4.5 to 5.5	2.0			2.0		V
Maximum Low-Level Input Voltage		4.5 to 5.5			0.8		0.8	V
Minimum High-Level	$I_{OH} = -50\mu A$	4.5	4.4	4.5		4.4		V
V _{in} = V _{IH} or V _{IL}	I _{OH} = - 8mA	4.5	3.94			3.80		
Maximum Low-Level	I _{OL} = 50μA	4.5		0.0	0.1		0.1	V
V _{in} = V _{IH} or V _{IL}	I _{OL} = 8mA	4.5			0.36		0.44	
Maximum Input Leakage Current	V _{in} = 5.5 V or GND	0 to 5.5			± 0.1		± 1.0	μА
Maximum Quiescent Supply Current	V _{in} = V _{CC} or GND	5.5			2.0		20.0	μА
Quiescent Supply Current	Per Input: V _{IN} = 3.4V Other Input: V _{CC} or GND	5.5			1.35		1.50	mA
Output Leakage Current	V _{OUT} = 5.5V	0			0.5		5.0	μА
	Minimum High-Level Input Voltage Maximum Low-Level Input Voltage Minimum High-Level Output Voltage Vin = VIH or VIL Maximum Low-Level Output Voltage Vin = VIH or VIL Maximum Input Leakage Current Maximum Quiescent Supply Current Output Leakage	$\begin{array}{c} \mbox{Minimum High-Level} \\ \mbox{Input Voltage} \\ \mbox{Maximum Low-Level} \\ \mbox{Input Voltage} \\ \mbox{Vin Input Voltage} \\ Vin Input Volta$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c } \hline \textbf{Parameter} & \textbf{Test Conditions} & \textbf{V} & \textbf{Min} & \textbf{Typ} \\ \hline \hline \textbf{Minimum High-Level} & 4.5 to \\ \textbf{Input Voltage} & 5.5 & 2.0 \\ \hline \hline \textbf{Maximum Low-Level} & 4.5 to \\ \textbf{Input Voltage} & 5.5 & \\ \hline \hline \textbf{Minimum High-Level} & I_{OH} = -50 \mu A & 4.5 & 4.4 & 4.5 \\ \hline \textbf{Output Voltage} & I_{OH} = -8 m A & 4.5 & 3.94 \\ \hline \hline \textbf{Maximum Low-Level} & I_{OL} = 50 \mu A & 4.5 & 0.0 \\ \hline \textbf{Output Voltage} & I_{OL} = 8 m A & 4.5 & 0.0 \\ \hline \textbf{Maximum Input} & I_{OL} = 8 m A & 4.5 & 0.0 \\ \hline \textbf{Maximum Input} & V_{in} = 5.5 \text{ V or GND} & 0 \text{ to } 5.5 \\ \hline \textbf{Maximum Quiescent} & V_{in} = V_{CC} \text{ or GND} & 5.5 \\ \hline \textbf{Output Leakage} & V_{OUT} = 5.5 \text{ V} \\ \hline \textbf{Output Leakage} & V_{OUT} = 5.5 \text{ V} \\ \hline \textbf{Output Leakage} & V_{OUT} = 5.5 \text{ V} \\ \hline \textbf{Output Leakage} & V_{OUT} = 5.5 \text{ V} \\ \hline \textbf{Output Leakage} & V_{OUT} = 5.5 \text{ V} \\ \hline \textbf{Output Leakage} & V_{OUT} = 5.5 \text{ V} \\ \hline \end{tabular}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter Test Conditions V	Parameter Test Conditions V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $t_f = t_f = 3.0 \text{ns}$)


					T _A = 25°C		$T_A = -40$) to 85°C	
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, A to Y	$V_{CC} = 5.0 \pm 0.5 V$	$C_L = 15pF$ $C_L = 50pF$		4.7 5.5	6.7 7.7	1.0 1.0	7.5 8.5	ns
C _{in}	Maximum Input Capacitance				4	10		10	pF


		Typical @ 25°C, V _{CC} = 5.0V	
C_{PD}	Power Dissipation Capacitance (Note 1)	11	pF

^{1.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \cdot V_{CC} \cdot f_{in} + I_{CC}/6$ (per buffer). C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \cdot V_{CC}^2 \cdot f_{in} + I_{CC} \cdot V_{CC}$.

NOISE CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ns}, C_L = 50 \text{pF}, V_{CC} = 5.0 \text{V})$

		T _A =	25°C	
Symbol	Characteristic	Тур	Max	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	0.8	1.0	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-0.8	-1.0	V
V _{IHD}	Minimum High Level Dynamic Input Voltage		2.0	V
V _{ILD}	Maximum Low Level Dynamic Input Voltage		0.8	V

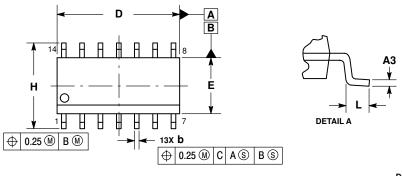
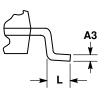
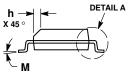

*Includes all probe and jig capacitance

Figure 3. Switching Waveforms


Figure 4. Test Circuit


PACKAGE DIMENSIONS

SOIC-14 CASE 751A-03 ISSUE K

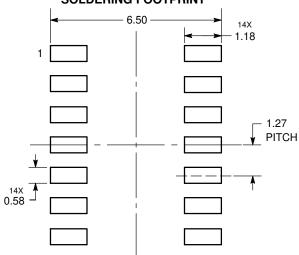
е

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.

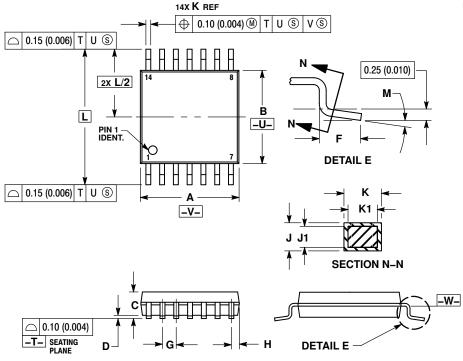

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.

 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A 1	0.10	0.25	0.004	0.010
А3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
е	1.27	BSC	0.050	BSC
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
М	0 °	7°	0 °	7°

SOLDERING FOOTPRINT*

C SEATING PLANE



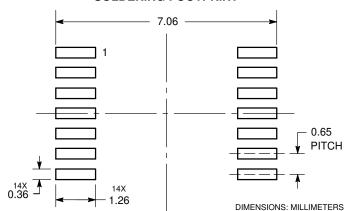
DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-14 **DT SUFFIX** CASE 948G **ISSUE B**

NOTES:


- IES:

 1. DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD
 FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE
- DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
 DIMENSION AT MAXIMUM MATERIAL
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
C		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.50	0.60	0.020	0.024
L	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
Κ	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	10 BSC 0.252 BSC		
М	0 °	8 °	0 °	8 °

SOLDERING FOOTPRINT

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative