imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Freescale Semiconductor Technical Data

Document Number: MPC8641D Rev. 3, 05/2014

MPC8641 and MPC8641D Integrated Host Processor Hardware Specifications

1 Overview

The MPC8641 processor family integrates either one or two Power Architecture® e600 processor cores with system logic required for networking, storage, wireless infrastructure, and general-purpose embedded applications. The MPC8641 integrates one e600 core while the MPC8641D integrates two cores.

This section provides a high-level overview of the MPC8641 and MPC8641D features. When referring to the MPC8641 throughout the document, the functionality described applies to both the MPC8641 and the MPC8641D. Any differences specific to the MPC8641D are noted.

Figure 1 shows the major functional units within the MPC8641 and MPC8641D. The major difference between the MPC8641 and MPC8641D is that there are two cores on the MPC8641D.

Contents

1.	Overview
2.	Electrical Characteristics
3.	Power Characteristics 14
4.	Input Clocks 17
5.	RESET Initialization
6.	DDR and DDR2 SDRAM 21
7.	DUART
8.	Ethernet: Enhanced Three-Speed Ethernet (eTSEC),
	MII Management
9.	Ethernet Management Interface Electrical
	Characteristics
0.	Local Bus 45
11.	JTAG 54
2.	I ² C
3.	High-Speed Serial Interfaces (HSSI) 59
4.	PCI Express
15.	Serial RapidIO 77
6.	Package
17.	Signal Listings
8.	Clocking 104
9.	Thermal 108
20.	System Design Information 116
21.	Ordering Information 126
22.	Document Revision History 128

Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.

© 2008-2014 Freescale Semiconductor, Inc. All rights reserved.

Overview

Figure 1. MPC8641 and MPC8641D

1.1 Key Features

The following lists an overview of the MPC8641 key feature set:

- Major features of the e600 core are as follows:
 - High-performance, 32-bit superscalar microprocessor that implements the PowerPC ISA
 - Eleven independent execution units and three register files
 - Branch processing unit (BPU)
 - Four integer units (IUs) that share 32 GPRs for integer operands
 - 64-bit floating-point unit (FPU)
 - Four vector units and a 32-entry vector register file (VRs)
 - Three-stage load/store unit (LSU)
 - Three issue queues, FIQ, VIQ, and GIQ, can accept as many as one, two, and three instructions, respectively, in a cycle.
 - Rename buffers
 - Dispatch unit
 - Completion unit
 - Two separate 32-Kbyte instruction and data level 1 (L1) caches
 - Integrated 1-Mbyte, eight-way set-associative unified instruction and data level 2 (L2) cache with ECC
 - 36-bit real addressing
 - Separate memory management units (MMUs) for instructions and data
 - Multiprocessing support features
 - Power and thermal management
 - Performance monitor
 - In-system testability and debugging features
 - Reliability and serviceability
- MPX coherency module (MCM)
 - Ten local address windows plus two default windows
 - Optional low memory offset mode for core 1 to allow for address disambiguation
- Address translation and mapping units (ATMUs)
 - Eight local access windows define mapping within local 36-bit address space
 - Inbound and outbound ATMUs map to larger external address spaces
 - Three inbound windows plus a configuration window on PCI Express
 - Four inbound windows plus a default window on serial RapidIO
 - Four outbound windows plus default translation for PCI Express
 - Eight outbound windows plus default translation for serial RapidIO with segmentation and sub-segmentation support

Overview

- DDR memory controllers
 - Dual 64-bit memory controllers (72-bit with ECC)
 - Support of up to a 300-MHz clock rate and a 600-MHz DDR2 SDRAM
 - Support for DDR, DDR2 SDRAM
 - Up to 16 Gbytes per memory controller
 - Cache line and page interleaving between memory controllers.
- Serial RapidIO interface unit
 - Supports *RapidIO Interconnect Specification*, Revision 1.2
 - Both 1x and 4x LP-Serial link interfaces
 - Transmission rates of 1.25-, 2.5-, and 3.125-Gbaud (data rates of 1.0-, 2.0-, and 2.5-Gbps) per lane
 - RapidIO-compliant message unit
 - RapidIO atomic transactions to the memory controller
- PCI Express interface
 - PCI Express 1.0a compatible
 - Supports x1, x2, x4, and x8 link widths
 - 2.5 Gbaud, 2.0 Gbps lane
- Four enhanced three-speed Ethernet controllers (eTSECs)
 - Three-speed support (10/100/1000 Mbps)
 - Four IEEE 802.3, 802.3u, 802.3x, 802.3z, 802.3ac, 802.3ab-compatible controllers
 - Support of the following physical interfaces: MII, RMII, GMII, RGMII, TBI, and RTBI
 - Support a full-duplex FIFO mode for high-efficiency ASIC connectivity
 - TCP/IP off-load
 - Header parsing
 - Quality of service support
 - VLAN insertion and deletion
 - MAC address recognition
 - Buffer descriptors are backward compatible with PowerQUICC II and PowerQUICC III programming models
 - RMON statistics support
 - MII management interface for control and status
- Programmable interrupt controller (PIC)
 - Programming model is compliant with the OpenPIC architecture
 - Supports 16 programmable interrupt and processor task priority levels
 - Supports 12 discrete external interrupts and 48 internal interrupts
 - Eight global high resolution timers/counters that can generate interrupts
 - Allows processors to interrupt each other with 32b messages

- Support for PCI-Express message-shared interrupts (MSIs)
- Local bus controller (LBC)
 - Multiplexed 32-bit address and data operating at up to 133 MHz
 - Eight chip selects support eight external slaves
- Integrated DMA controller
 - Four-channel controller
 - All channels accessible by both the local and the remote masters
 - Supports transfers to or from any local memory or I/O port
 - Ability to start and flow control each DMA channel from external 3-pin interface
- Device performance monitor
 - Supports eight 32-bit counters that count the occurrence of selected events
 - Ability to count up to 512 counter-specific events
 - Supports 64 reference events that can be counted on any of the 8 counters
 - Supports duration and quantity threshold counting
 - Burstiness feature that permits counting of burst events with a programmable time between bursts
 - Triggering and chaining capability
 - Ability to generate an interrupt on overflow
- Dual I²C controllers
 - Two-wire interface
 - Multiple master support
 - Master or slave I^2C mode support
 - On-chip digital filtering rejects spikes on the bus
- Boot sequencer
 - Optionally loads configuration data from serial ROM at reset via the I²C interface
 - Can be used to initialize configuration registers and/or memory
 - Supports extended I^2C addressing mode
 - Data integrity checked with preamble signature and CRC
- DUART
 - Two 4-wire interfaces (SIN, SOUT, $\overline{\text{RTS}}$, $\overline{\text{CTS}}$)
 - Programming model compatible with the original 16450 UART and the PC16550D
- IEEE 1149.1-compatible, JTAG boundary scan
- Available as 1023 pin Hi-CTE flip chip ceramic ball grid array (FC-CBGA)

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8641. The MPC8641 is currently targeted to these specifications.

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

Characteristic	Symbol	Absolute Maximum Value	Unit	Notes
Cores supply voltages	V _{DD} _Core0, V _{DD} _Core1	-0.3 to 1.21 V	V	2
Cores PLL supply	AV _{DD} _Core0, AV _{DD} _Core1	–0.3 to 1.21 V	V	_
SerDes Transceiver Supply (Ports 1 and 2)	SV _{DD}	–0.3 to 1.21 V	V	_
SerDes Serial I/O Supply Port 1	XV _{DD} _SRDS1	–0.3 to 1.21V	V	_
SerDes Serial I/O Supply Port 2	XV _{DD} _SRDS2	-0.3 to 1.21 V	V	
SerDes DLL and PLL supply voltage for Port 1 and Port 2	AV _{DD} _SRDS1, AV _{DD} _SRDS2	-0.3 to 1.21V	V	—
Platform Supply voltage	V _{DD} _PLAT	-0.3 to 1.21V	V	_
Local Bus and Platform PLL supply voltage	AV _{DD} _LB, AV _{DD} _PLAT	-0.3 to 1.21V	V	—
DDR and DDR2 SDRAM I/O supply voltages	D1_GV _{DD,}	-0.3 to 2.75 V	V	3
	D2_GV _{DD}	–0.3 to 1.98 V	V	3
eTSEC 1 and 2 I/O supply voltage	LV _{DD}	–0.3 to 3.63 V	V	4
		-0.3 to 2.75 V	V	4
eTSEC 3 and 4 I/O supply voltage	TV _{DD}	-0.3 to 3.63 V	V	4
		–0.3 to 2.75 V	V	4
Local Bus, DUART, DMA, Multiprocessor Interrupts, System Control & Clocking, Debug, Test, Power management, I ² C, JTAG and Miscellaneous I/O voltage	OV _{DD}	–0.3 to 3.63 V	V	

Characteristic		Symbol	Absolute Maximum Value	Unit	Notes
Input voltage	DDR and DDR2 SDRAM signals	D <i>n</i> _MV _{IN}	– 0.3 to (D <i>n</i> _GV _{DD} + 0.3)	V	5
	DDR and DDR2 SDRAM reference	Dn_MV _{REF}	- 0.3 to (D <i>n</i> _GV _{DD} /2 + 0.3)	V	—
Three-speed Ethernet signals		LV _{IN} TV _{IN}	GND to (LV _{DD} + 0.3) GND to (TV _{DD} + 0.3)	V	5
	DUART, Local Bus, DMA, Multiprocessor Interrupts, System Control & Clocking, Debug, Test, Power management, I ² C, JTAG and Miscellaneous I/O voltage	OV _{IN}	GND to (OV _{DD} + 0.3)	V	5
Storage temperature range)	T _{STG}	-55 to 150	°C	

Table 1.	Absolute	Maximum	Ratings ¹	(continued)
----------	----------	---------	----------------------	-------------

Notes:

1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

- 2. Core 1 characteristics apply only to MPC8641D. If two separate power supplies are used for V_{DD}_Core0 and V_{DD}_Core1, they must be kept within 100 mV of each other during normal run time.
- 3. The -0.3 to 2.75 V range is for DDR and -0.3 to 1.98 V range is for DDR2.
- 4. The 3.63V maximum is only supported when the port is configured in GMII, MII, RMII, or TBI modes; otherwise the 2.75V maximum applies. See Section 8.2, "FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications," for details on the recommended operating conditions per protocol.
- 5. During run time (M,L,T,O)V_{IN} and D*n*_MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.

2.1.2 Recommended Operating Conditions

Table 2 provides the recommended operating conditions for the MPC8641. Note that the values in Table 2 are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed. For details on order information and specific operating conditions for parts, see Section 21, "Ordering Information."

Characteristic	Symbol	Recommended Value	Unit	Notes
Cores supply voltages	V _{DD} _Core0,	1.10 ± 50 mV	V	1, 2, 8
	V _{DD} _Core1	1.05 ± 50 mV		1, 2, 7
		0.95 ± 50 mV		1, 2, 12
Cores PLL supply	AV _{DD} _Core0,	1.10 ± 50 mV	V	8, 13
	AV _{DD} _Core1	1.05 ± 50 mV		7, 13
		0.95 ± 50 mV		12, 13
SerDes Transceiver Supply (Ports 1 and 2)	SV _{DD}	1.10 ± 50 mV	V	8, 11
		1.05 ± 50 mV		7, 11

Table 2. Recommended Operating Conditions

Cł	naracteristic	Symbol	Recommended Value	Unit	Notes
SerDes Serial I/O Supply	Port 1	XV _{DD_} SRDS1	1.10 ± 50 mV	V	8
			1.05 ± 50 mV		7
SerDes Serial I/O Supply	Port 2	XV _{DD_} SRDS2	1.10 ± 50 mV	V	8
			1.05 ± 50 mV		7
SerDes DLL and PLL sup	ply voltage for Port 1 and Port 2	AV _{DD} _SRDS1,	1.10 ± 50 mV	V	8
		AV _{DD} _SRDS2	1.05 ± 50 mV		7
Platform Supply voltage		V _{DD} _PLAT	1.10 ± 50 mV	V	8
			1.05 ± 50 mV		7
Local Bus and Platform PLL supply voltage		AV _{DD} _LB,	1.10 ± 50 mV	V	8
		AV _{DD} _PLAT	1.05 ± 50 mV		7
DDR and DDR2 SDRAM I/O supply voltages		D1_GV _{DD,}	2.5 V ± 125 mV	V	9
		D2_GV _{DD}	1.8 V ± 90 mV	V	9
eTSEC 1 and 2 I/O supply	/ voltage	LV _{DD}	3.3 V ± 165 mV	V	10
			2.5 V ± 125 mV	V	10
eTSEC 3 and 4 I/O supply	/ voltage	TV _{DD}	3.3 V ± 165 mV	V	10
			2.5 V ± 125 mV	V	10
Local Bus, DUART, DMA, Multiprocessor Interrupts, System Control & Clocking, Debug, Test, Power management, I ² C, JTAG and Miscellaneous I/O voltage		OV _{DD}	3.3 V ± 165 mV	V	5
Input voltage	DDR and DDR2 SDRAM signals	D <i>n</i> _MV _{IN}	GND to Dn_GV _{DD}	V	3, 6
	DDR and DDR2 SDRAM reference	Dn_MV _{REF}	$Dn_GV_{DD}/2 \pm 1\%$	V	
	Three-speed Ethernet signals	LV _{IN} TV _{IN}	GND to LV _{DD} GND to TV _{DD}	V	4, 6
	DUART, Local Bus, DMA, Multiprocessor Interrupts, System Control & Clocking, Debug, Test, Power management, I ² C, JTAG and Miscellaneous I/O voltage	OV _{IN}	GND to OV _{DD}	V	5,6

Table 2. Recommended Operating Conditions (continued)

Table 2. Recommended Operating Conditions (continued)

Characteristic	Symbol	Recommended Value	Unit	Notes
Junction temperature range	Τ _J	0 to 105	°C	

Notes:

- 1. Core 1 characteristics apply only to MPC8641D
- 2. If two separate power supplies are used for V_{DD}_Core0 and V_{DD}_Core1, they must be at the same nominal voltage and the individual power supplies must be tracked and kept within 100 mV of each other during normal run time.
- 3. Caution: Dn_MV_{IN} must meet the overshoot/undershoot requirements for Dn_GV_{DD} as shown in Figure 2.
- 4. Caution: L/TV_{IN} must meet the overshoot/undershoot requirements for L/TV_{DD} as shown in Figure 2 during regular run time.
- 5. Caution: OV_{IN} must meet the overshoot/undershoot requirements for OV_{DD} as shown in Figure 2 during regular run time.
- 6. Timing limitations for M,L,T,O)V_{IN} and Dn_MV_{REF} during regular run time is provided in Figure 2
- 7. Applies to devices marked with a core frequency of 1333 MHz and below. Refer to Table 74 Part Numbering Nomenclature to determine if the device has been marked for a core frequency of 1333 MHz and below.
- 8. Applies to devices marked with a core frequency above 1333 MHz. Refer to Table 74 Part Numbering Nomenclature to determine if the device has been marked for a core frequency above 1333 MHz.
- 9. The 2.5 V \pm 125 mV range is for DDR and 1.8 V \pm 90 mV range is for DDR2.
- 10. See Section 8.2, "FIFO, GMII, MII, TBI, RGMII, RMII, and RTBI AC Timing Specifications," for details on the recommended operating conditions per protocol.
- 11. The PCI Express interface of the device is expected to receive signals from 0.175 to 1.2 V. For more information refer to Section 14.4.3, "Differential Receiver (RX) Input Specifications."
- 12. Applies to Part Number MC8641xxx1000NX only. V_{DD} _Core n = 0.95 V and V_{DD} _PLAT = 1.05 V devices. Refer to Table 74 Part Numbering Nomenclature to determine if the device has been marked for V_{DD} _Core n = 0.95 V.
- 13. This voltage is the input to the filter discussed in Section 20.2, "Power Supply Design and Sequencing," and not necessarily the voltage at the AV_{DD}_Core*n* pin, which may be reduced from V_{DD}_Core*n* by the filter.

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8641.

Figure 2. Overshoot/Undershoot Voltage for Dn_M/O/L/TV_{IN}

The MPC8641 core voltage must always be provided at nominal V_{DD} _Core*n* (See Table 2 for actual recommended core voltage). Voltage to the processor interface I/Os are provided through separate sets of supply pins and must be provided at the voltages shown in Table 2. The input voltage threshold scales with respect to the associated I/O supply voltage. OV_{DD} and L/TV_{DD} based receivers are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR SDRAM interface uses a single-ended differential receiver referenced to each externally supplied Dn_MV_{REF} signal (nominally set to $Dn_GV_{DD}/2$) as is appropriate for the (SSTL-18 and SSTL-25) electrical signaling standards.

2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Programmable Output Impedance (Ω)	Supply Voltage	Notes
DDR1 signal	18 36 (half strength mode)	D <i>n</i> _GV _{DD} = 2.5 V	4, 9
DDR2 signal	18 36 (half strength mode)	D <i>n</i> _GV _{DD} = 1.8 V	1, 5, 9
Local Bus signals	45 25	OV _{DD} = 3.3 V	2, 6
eTSEC/10/100 signals	45	T/LV _{DD} = 3.3 V	6
	30	$T/LV_{DD} = 2.5 V$	6
DUART, DMA, Multiprocessor Interrupts, System Control & Clocking, Debug, Test, Power management, JTAG and Miscellaneous I/O voltage	45	OV _{DD} = 3.3 V	6
l ² C	150	OV _{DD} = 3.3 V	7
SRIO, PCI Express	100	SV _{DD} = 1.1/1.05 V	3, 8

Table 3. Output Drive Capability

Notes:

- 1. See the DDR Control Driver registers in the MPC8641D reference manual for more information.
- 2. Only the following local bus signals have programmable drive strengths: LALE, LAD[0:31], LDP[0:3], LA[27:31], LCKE, LCS[1:2], LWE[0:3], LGPL1, LGPL2, LGPL3, LGPL4, LGPL5, LCLK[0:2]. The other local bus signals have a fixed drive strength of 45 Ω. See the POR Impedance Control register in the MPC8641D reference manual for more information about local bus signals and their drive strength programmability.
- 3. See Section 17, "Signal Listings," for details on resistor requirements for the calibration of SD*n*_IMP_CAL_TX and SD*n*_IMP_CAL_RX transmit and receive signals.
- 4. Stub Series Terminated Logic (SSTL-25) type pins.
- 5. Stub Series Terminated Logic (SSTL-18) type pins.
- 6. Low Voltage Transistor-Transistor Logic (LVTTL) type pins.
- 7. Open Drain type pins.
- 8. Low Voltage Differential Signaling (LVDS) type pins.
- 9. The drive strength of the DDR interface in half strength mode is at $T_i = 105C$ and at Dn_GV_{DD} (min).

2.2 Power Up/Down Sequence

The MPC8641 requires its power rails to be applied in a specific sequence in order to ensure proper device operation.

NOTE

The recommended maximum ramp up time for power supplies is 20 milliseconds.

The chronological order of power up is as follows:

1. All power rails other than DDR I/O (Dn_GV_{DD} , and Dn_MV_{REF}).

NOTE

There is no required order sequence between the individual rails for this item (# 1). However, V_{DD} _PLAT, AV_{DD} _PLAT rails must reach 90% of their recommended value before the rail for Dn_GV_DD, and Dn_MV_{REF} (in next step) reaches 10% of their recommended value. AV_{DD} type supplies must be delayed with respect to their source supplies by the RC time constant of the PLL filter circuit described in Section 20.2.1, "PLL Power Supply Filtering."

2. Dn_GV_{DD} , Dn_MV_{REF}

NOTE

It is possible to leave the related power supply $(Dn_GV_{DD}, Dn_MV_{REF})$ turned off at reset for a DDR port that will not be used. Note that these power supplies can only be powered up again at reset for functionality to occur on the DDR port.

3. SYSCLK

The recommended order of power down is as follows:

- 1. Dn_GV_{DD}, Dn_MV_{REF}
- 2. All power rails other than DDR I/O (Dn_GV_{DD} , Dn_MV_{REF}).

NOTE

SYSCLK may be powered down simultaneous to either of item # 1 or # 2 in the power down sequence. Beyond this, the power supplies may power down simultaneously if the preservation of DDRn memory is not a concern.

See Figure 3 for more details on the Power and Reset Sequencing details.

Notes:

- 1. Dotted waveforms correspond to optional supply values for a specified power supply. See Table 2.
- 2. The recommended maximum ramp up time for power supplies is 20 milliseconds.
- 3. Refer to Section 5, "RESET Initialization" for additional information on PLL relock and reset signal assertion timing requirements.
- 4. Refer to Table 11 for additional information on reset configuration pin setup timing requirements. In addition see Figure 68 regarding HRESET and JTAG connection details including TRST.
- 5. e600 PLL relock time is 100 microseconds maximum plus 255 MPX_clk cycles.
- 6. Stable PLL configuration signals are required as stable SYSCLK is applied. All other POR configuration inputs are required 4 SYSCLK cycles before HRESET negation and are valid at least 2 SYSCLK cycles after HRESET has negated (hold requirement). See Section 5, "RESET Initialization" for more information on setup and hold time of reset configuration signals.
- V_{DD}_PLAT, AV_{DD}_PLAT must strictly reach 90% of their recommended voltage before the rail for Dn_GV_{DD}, and Dn_MV_{REF} reaches 10% of their recommended voltage.
- 8. SYSCLK must be driven only AFTER the power for the various power supplies is stable.
- In device sleep mode, the reset configuration signals for DRAM types (TSEC2_TXD[4],TSEC2_TX_ER) must be valid BEFORE HRESET is asserted.

Figure 3. MPC8641 Power-Up and Reset Sequence

Power Characteristics

3 Power Characteristics

The power dissipation for the dual core MPC8641D device is shown in Table 4.

Power Mode	Core Frequency (MHz)	Platform Frequency (MHz)	V _{DD} _Coren, V _{DD} _PLAT (Volts)	Junction Temperature	Power (Watts)	Notes
Typical				65 °C	32.1	1, 2
Thermal	1500 MHz	600 MHz	1.1 V		43.4	1, 3
Maximum			105 °C	49.9	1, 4	
Typical				65 °C	23.9	1, 2
Thermal	1333 MHz	533 MHz	1.05 V		30.0	1, 3
Maximum				105 °C	34.1	1, 4
Typical				65 °C	23.9	1, 2
Thermal	1250 MHz	500 MHz	1.05 V		30.0	1, 3
Maximum				105 °C	34.1	1, 4
Typical				65 °C	23.9	1, 2
Thermal	1000 MHz	400 MHz	1.05 V		30.0	1, 3
Maximum				105 °C	34.1	1, 4
Typical			/	65 °C	16.2	1, 2, 5
Thermal	1000 MHz	500 MHz	0.95 V, 1.05 V		21.8	1, 3, 5
Maximum				105 °C	25.0	1, 4, 5

Table 4. MPC8641D Power Dissipation (Dual Core)

Notes:

1. These values specify the power consumption at nominal voltage and apply to all valid processor bus frequencies and configurations. The values do not include power dissipation for I/O supplies.

- Typical power is an average value measured at the nominal recommended core voltage (V_{DD}_Core*n*) and 65°C junction temperature (see Table 2)while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz with one core at 100% efficiency and the second core at 65% efficiency.
- 3. Thermal power is the average power measured at nominal core voltage (V_{DD}_Core*n*) and maximum operating junction temperature (see Table 2) while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz on both cores and a typical workload on platform interfaces.
- 4. Maximum power is the maximum power measured at nominal core voltage (V_{DD}_Core*n*) and maximum operating junction temperature (see Table 2) while running a test which includes an entirely L1-cache-resident, contrived sequence of instructions which keep all the execution units maximally busy on both cores.
- 5. These power numbers are for Part Number MC8641Dxx1000NX only. V_{DD} -Coren = 0.95 V and V_{DD} -PLAT = 1.05 V.

The maximum power dissipation for individual power supplies of the MPC8641D is shown in Table 5.

Table 5. MPC8641D Individual	Supply Maximum	Power Dissipation ¹
	ouppiy maximum	i onoi Biooipation

Component Description	Supply Voltage (Volts)	Power (Watts)	Notes
Per Core voltage Supply	V _{DD} _Core0/V _{DD} _Core1 = 1.1 V @ 1500 MHz	21.00	
Per Core PLL voltage supply	AV _{DD} _Core0/AV _{DD} _Core1 = 1.1 V @ 1500 MHz	0.0125	
Per Core voltage Supply	V _{DD} _Core0/V _{DD} _Core1 = 1.05 V @ 1333 MHz	17.00	
Per Core PLL voltage supply	AV _{DD} _Core0/AV _{DD} _Core1 = 1.05 V @ 1333 MHz	0.0125	
Per Core voltage Supply	V _{DD} _Core0/V _{DD} _Core1 = 0.95 V @ 1000 MHz	11.50	5
Per Core PLL voltage supply	AV _{DD} _Core0/AV _{DD} _Core1 = 0.95 V @ 1000 MHz	0.0125	5
DDR Controller I/O voltage supply	D <i>n</i> _GV _{DD} = 2.5 V @ 400 MHz	0.80	2
	D <i>n</i> _GV _{DD} = 1.8 V @ 533 MHz	0.68	2
	D <i>n</i> _GV _{DD} = 1.8 V @ 600 MHz	0.77	2
16-bit FIFO @ 200 MHz eTsec 1&2/3&4 Voltage Supply	L/TV _{DD} = 3.3 V	0.11	2, 3
non-FIFO eTsecn Voltage Supply	L/TV _{DD} = 3.3 V	0.08	2
x8 SerDes transceiver Supply	SV _{DD} = 1.1 V	0.70	2
x8 SerDes I/O Supply	XV_{DD} SRDS $n = 1.1 V$	0.66	2
SerDes PLL voltage supply Port 1 or 2	AV _{DD} _SRDS1/AV _{DD} _SRDS2 = 1.1 V	0.10	
Platform I/O Supply	OV _{DD} = 3.3 V	0.45	4
Platform source Supply	V _{DD} _PLAT = 1.1 V @ 600 MHz	12.00	
Platform source Supply	V _{DD} _PLAT = 1.05 Vn @ 500 MHz	9.80	5
Platform source Supply	V _{DD} _PLAT = 1.05 Vn @ 400 MHz	7.70	
Platform, Local Bus PLL voltage Supply	AV _{DD} _PLAT, AV _{DD} _LB = 1.1 V	0.0125	

Notes:

1. This is a maximum power supply number which is provided for power supply and board design information. The numbers are based on 100% bus utilization for each component. The components listed are not expected to have 100% bus usage simultaneously for all components. Actual numbers may vary based on activity.

2. Number is based on a per port/interface value.

3. This is based on one eTSEC port used. Since 16-bit FIFO mode involves two ports, the number will need to be multiplied by two for the total. The other eTSEC protocols dissipate less than this number per port. Note that the power needs to be multiplied by the number of ports used for the protocol for the total eTSEC port power dissipation.

4. This includes Local Bus, DUART, I²C, DMA, Multiprocessor Interrupts, System Control & Clocking, Debug, Test, Power management, JTAG and Miscellaneous I/O voltage.

5. These power numbers are for Part Number MC8641xxx1000NX only. V_{DD} _Coren = 0.95 V and V_{DD} _PLAT = 1.05 V.

Power Characteristics

The power dissipation for the MPC8641 single core device is shown in Table 6.

Power Mode	Core Frequency (MHz)	Platform Frequency (MHz)	V _{DD} _Coren, V _{DD} _PLAT (Volts)	Junction Temperature	Power (Watts)	Notes
Typical				65 °C	20.3	1, 2
Thermal	1500 MHz	600 MHz	1.1 V		25.2	1, 3
Maxim				105 °C	28.9	1, 4
Typical				65 ^o C	16.3	1, 2
Thermal	1333 MHz	533 MHz	1.05 V		20.2	1, 3
Maximum				105 °C	23.2	1, 4
Typical			(65 ^o C	16.3	1, 2
Thermal	1250 MHz	500 MHz	1.05 V		20.2	1, 3
Maximum				105 °C	23.2	1, 4
Typical		400 MUL	4.05.1/	65 ^o C	16.3	1, 2
Thermal	1000 MHz	400 MHZ	1.05 V		20.2	1, 3
Maximum				105 °C	23.2	1, 4
Typical		500 MU	0.05.1/	65 ^o C	11.6	1, 2, 5
Thermal	1000 MHZ	500 MHZ	0.95 V, 1.05 V	105.00	14.4	1, 3, 5
Maximum				105 °C	16.5	1, 4, 5

Table 6. MPC8641 Power Dissipation (Single Core)

Notes:

1. These values specify the power consumption at nominal voltage and apply to all valid processor bus frequencies and configurations. The values do not include power dissipation for I/O supplies.

2. Typical power is an average value measured at the nominal recommended core voltage (V_{DD}_Core*n*) and 65°C junction temperature (see Table 2)while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz.

3. Thermal power is the average power measured at nominal core voltage (V_{DD}_Core*n*) and maximum operating junction temperature (see Table 2) while running the Dhrystone 2.1 benchmark and achieving 2.3 Dhrystone MIPs/MHz and a typical workload on platform interfaces.

4. Maximum power is the maximum power measured at nominal core voltage (V_{DD}_Coren) and maximum operating junction temperature (see Table 2) while running a test which includes an entirely L1-cache-resident, contrived sequence of instructions which keep all the execution units maximally busy.

5. These power numbers are for Part Number MC8641xx1000NX only. V_{DD}_Coren = 0.95 V and V_{DD}_PLAT = 1.05 V.

4 Input Clocks

Table 7 provides the system clock (SYSCLK) DC specifications for the MPC8641.

Table 7. SYSCLK DC Electrical Characteristics (OVDD = 3.3 V ± 165 mV)

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current $(V_{IN}^{1} = 0 V \text{ or } V_{IN} = V_{DD})$	I _{IN}		±5	μA

Note:

1. Note that the symbol V_{IN}, in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

4.1 System Clock Timing

Table 8 provides the system clock (SYSCLK) AC timing specifications for the MPC8641.

Table 8. SYSCLK AC Timing Specifications

At recommended operating conditions (see Table 2) with $OV_{DD} = 3.3 \text{ V} \pm 165 \text{ mV}$.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
SYSCLK frequency	fsysclk	66	_	166.66	MHz	1
SYSCLK cycle time	t _{SYSCLK}	6	_	_	ns	_
SYSCLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	1.2	ns	2
SYSCLK duty cycle	t _{KHK} /t _{SYSCLK}	40	_	60	%	3
SYSCLK jitter	_			150	ps	4, 5

Notes:

- Caution: The MPX clock to SYSCLK ratio and e600 core to MPX clock ratio settings must be chosen such that the resulting SYSCLK frequency, e600 (core) frequency, and MPX clock frequency do not exceed their respective maximum or minimum operating frequencies. See Section 18.2, "MPX to SYSCLK PLL Ratio," and Section 18.3, "e600 to MPX clock PLL Ratio," for ratio settings.
- 2. Rise and fall times for SYSCLK are measured at 0.4 V and 2.7 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the short term jitter only and is guaranteed by design.
- 5. The SYSCLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track SYSCLK drivers with the specified jitter. Note that the frequency modulation for SYSCLK reduces significantly for the spread spectrum source case. This is to guarantee what is supported based on design.

4.1.1 SYSCLK and Spread Spectrum Sources

Spread spectrum clock sources are an increasingly popular way to control electromagnetic interference emissions (EMI) by spreading the emitted noise to a wider spectrum and reducing the peak noise magnitude in order to meet industry and government requirements. These clock sources intentionally add long-term jitter in order to diffuse the EMI spectral content. The jitter specification given in Table 8 considers short-term (cycle-to-cycle) jitter only and the clock generator's cycle-to-cycle output jitter

Input Clocks

should meet the MPC8641 input cycle-to-cycle jitter requirement. Frequency modulation and spread are separate concerns, and the MPC8641 is compatible with spread spectrum sources if the recommendations listed in Table 9 are observed.

Table 9. Spread Spectrum Clock Source Recommendations

At recommended operating conditions. See Table 2.

Parameter	Min	Max	Unit	Notes
Frequency modulation	—	50	kHz	1
Frequency spread	—	1.0	%	1, 2

Notes:

1. Guaranteed by design.

2. SYSCLK frequencies resulting from frequency spreading, and the resulting core and VCO frequencies, must meet the minimum and maximum specifications given in Table 8.

It is imperative to note that the processor's minimum and maximum SYSCLK, core, and VCO frequencies must not be exceeded regardless of the type of clock source. Therefore, systems in which the processor is operated at its maximum rated e600 core frequency should avoid violating the stated limits by using down-spreading only.

 SDn_REF_CLK and $\overline{SDn_REF_CLK}$ was designed to work with a spread spectrum clock (+0 to 0.5% spreading at 30–33kHz rate is allowed), assuming both ends have same reference clock. For better results use a source without significant unintended modulation.

4.2 Real Time Clock Timing

The RTC input is sampled by the platform clock (MPX clock). The output of the sampling latch is then used as an input to the counters of the PIC. There is no jitter specification. The minimum pulse width of the RTC signal should be greater than 2x the period of the MPX clock. That is, minimum clock high time is $2 \times t_{MPX}$, and minimum clock low time is $2 \times t_{MPX}$. There is no minimum RTC frequency; RTC may be grounded if not needed.

4.3 eTSEC Gigabit Reference Clock Timing

Table 10 provides the eTSEC gigabit reference clocks (EC1_GTX_CLK125 and EC2_GTX_CLK125) AC timing specifications for the MPC8641.

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
ECn_GTX_CLK125 frequency	f _{G125}	—	125 ±100 ppm	_	MHz	3
ECn_GTX_CLK125 cycle time	t _{G125}	—	8	_	ns	_
ECn_GTX_CLK125 peak-to-peak jitter	t _{G125J}	—		250	ps	1

Table 10. ECn_GTX_CLK125 AC Timing Specifications

Table 10. ECn_GTX_CLK125 AC Timing Specifications (continued)

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
ECn_GTX_CLK125 duty cycle GMII, TBI 1000Base-T for RGMII, RTBI	t _{G125H} /t _{G125}	45 47	_	55 53	%	1, 2

Notes:

1. Timing is guaranteed by design and characterization.

2. ECn_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. ECn_GTX_CLK125 duty cycle can be loosened from 47/53% as long as the PHY device can tolerate the duty cycle generated by the eTSEC GTX_CLK. See Section 8.2.6, "RGMII and RTBI AC Timing Specifications," for duty cycle for 10Base-T and 100Base-T reference clock.

3. ±100 ppm tolerance on ECn_GTX_CLK125 frequency

NOTE

The phase between the output clocks TSEC1_GTX_CLK and TSEC2_GTX_CLK (ports 1 and 2) is no more than 100 ps. The phase between the output clocks TSEC3_GTX_CLK and TSEC4_GTX_CLK (ports 3 and 4) is no more than 100 ps.

4.4 Platform Frequency Requirements for PCI-Express and Serial RapidIO

The MPX platform clock frequency must be considered for proper operation of the high-speed PCI Express and Serial RapidIO interfaces as described below.

For proper PCI Express operation, the MPX clock frequency must be greater than or equal to:

527 MHz x (PCI-Express link width) 16 / (1 + cfg_plat_freq)

Note that at MPX = 400 MHz, cfg_plat_freq = 0 and at MPX > 400 MHz, cfg_plat_freq = 1. Therefore, when operating PCI Express in x8 link width, the MPX platform frequency must be 400 MHz with cfg_plat_freq = 0 or greater than or equal to 527 MHz with cfg_plat_freq = 1.

For proper Serial RapidIO operation, the MPX clock frequency must be greater than or equal to:

2 × (0.8512) × (Serial RapidIO interface frequency) × (Serial RapidIO link width)

64

4.5 Other Input Clocks

For information on the input clocks of other functional blocks of the platform such as SerDes, and eTSEC, see the specific section of this document.

RESET Initialization

5 **RESET** Initialization

This section describes the AC electrical specifications for the RESET initialization timing requirements of the MPC8641. Table 11 provides the RESET initialization AC timing specifications.

Parameter/Condition	Min	Мах	Unit	Notes
Required assertion time of HRESET	100	—	μs	—
Minimum assertion time for $\overline{\text{SRESET}_0}$ & $\overline{\text{SRESET}_1}$	3	—	SYSCLKs	1
Platform PLL input setup time with stable SYSCLK before HRESET negation	100	—	μs	2
Input setup time for POR configs (other than PLL config) with respect to negation of HRESET	4	—	SYSCLKs	1
Input hold time for all POR configs (including PLL config) with respect to negation of HRESET	2	_	SYSCLKs	1
Maximum valid-to-high impedance time for actively driven POR configs with respect to negation of HRESET	_	5	SYSCLKs	1

Table 11. RESET Initialization Timing Specifications

Notes:

1. SYSCLK is the primary clock input for the MPC8641.

2 This is related to HRESET assertion time. Stable PLL configuration inputs are required when a stable SYSCLK is applied. See the *MPC8641D Integrated Host Processor Reference Manual* for more details on the power-on reset sequence.

Table 12 provides the PLL lock times.

Table 12. PLL Lock Times

Parameter/Condition	Min	Мах	Unit	Notes
(Platform and E600) PLL lock times	—	100	μs	1
Local bus PLL	—	50	μs	

Note:

1. The PLL lock time for e600 PLLs require an additional 255 MPX_CLK cycles.

6 DDR and DDR2 SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8641. Note that DDR SDRAM is $Dn_GV_{DD}(typ) = 2.5$ V and DDR2 SDRAM is $Dn_GV_{DD}(typ) = 1.8$ V.

6.1 DDR SDRAM DC Electrical Characteristics

Table 13 provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MPC8641 when $Dn_{GV}(typ) = 1.8 V$.

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	D <i>n_</i> GV _{DD}	1.71	1.89	V	1
I/O reference voltage	Dn_MV _{REF}	$0.49 \times Dn_GV_{DD}$	$0.51 imes Dn_{DD}$	V	2
I/O termination voltage	V _{TT}	D <i>n</i> _MV _{REF} – 0.0 4	D <i>n_</i> MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	D <i>n_</i> MV _{REF} + 0.1 25	D <i>n_</i> GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	D <i>n</i> _MV _{REF} - 0.125	V	_
Output leakage current	I _{OZ}	-50	50	μA	4
Output high current (V _{OUT} = 1.420 V)	I _{ОН}	-13.4	—	mA	
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	—	mA	—

Table 13. DDR2 SDRAM DC Electrical Characteristics for Dn_GV_{DD}(typ) = 1.8 V

Notes:

1. Dn_GV_{DD} is expected to be within 50 mV of the DRAM Dn_GV_{DD} at all times.

2. Dn_MV_{REF} is expected to be equal to $0.5 \times Dn_GV_{DD}$, and to track Dn_GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on Dn_MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to Dn_MV_{REF}. This rail should track variations in the DC level of Dn_MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq Dn_GV_{DD}.

Table 14 provides the DDR2 capacitance when $Dn_{GV_{DD}(typ)} = 1.8 \text{ V}$.

Table 14	. DDR2 SDRAM	Capacitance for Dn	_GV _{DD} (typ)=1.8 V
----------	--------------	--------------------	-------------------------------

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. $Dn_GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$, f = 1 MHz, $T_A = 25^{\circ}C$, $V_{OUT} = Dn_GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

DDR and DDR2 SDRAM

Table 15 provides the recommended operating conditions for the DDR SDRAM component(s) when $Dn_GV_{DD}(typ) = 2.5 \text{ V}.$

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	D <i>n_</i> GV _{DD}	2.375	2.625	V	1
I/O reference voltage	Dn_MV _{REF}	$0.49 \times Dn_GV_{DD}$	$0.51 \times Dn_GV_{DD}$	V	2
I/O termination voltage	V _{TT}	D <i>n</i> _MV _{REF} – 0.04	D <i>n</i> _MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	D <i>n</i> _MV _{REF} + 0.15	D <i>n</i> _GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	D <i>n</i> _MV _{REF} - 0.15	V	—
Output leakage current	I _{OZ}	-50	50	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{ОН}	-16.2	—	mA	—
Output low current (V _{OUT} = 0.35 V)	I _{OL}	16.2	_	mA	—

Table	15 DDR	SDRAM DC	Electrical	Characteristics	for Dn	GV	(tvn)	- 251	/
lable	15. DDn	SURAW DC	Electrical	Characteristics			(LYP)	= 2.5	

Notes:

1. Dn_GV_{DD} is expected to be within 50 mV of the DRAM Dn_GV_{DD} at all times.

2. MV_{REF} is expected to be equal to $0.5 \times Dn_{GV_{DD}}$, and to track $Dn_{GV_{DD}}$ DC variations as measured at the receiver. Peak-to-peak noise on $Dn_{MV_{REF}}$ may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to Dn_MV_{REF}. This rail should track variations in the DC level of Dn_MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq Dn_GV_{DD}.

Table 16 provides the DDR capacitance when $Dn \text{ } \text{GV}_{DD}$ (typ)=2.5 V.

Table 16. DDR SDRAM Capacitance for Dn_GV_{DD} (typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. $Dn_GV_{DD} = 2.5 V \pm 0.125 V$, f = 1 MHz, $T_A = 25^{\circ}C$, $V_{OUT} = Dn_GVDD/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 17 provides the current draw characteristics for MV_{REF} .

Table 17. Current Draw Characteristics for MV_{REF}

Parameter / Condition	Symbol	Min	Max	Unit	Note
Current draw for MV _{REF}	I _{MVREF}	—	500	μA	1

1. The voltage regulator for MV_{REF} must be able to supply up to 500 μA current.

6.2 DDR SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface.

6.2.1 DDR SDRAM Input AC Timing Specifications

Table 18 provides the input AC timing specifications for the DDR2 SDRAM when $Dn GV_{DD}(typ)=1.8 V$.

Table 18. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage 400, 533 MHz 600 MHz	V _{IL}	_	D <i>n_</i> MV _{REF} – 0.25 D <i>n_</i> MV _{REF} – 0.20	V	_
AC input high voltage 400, 533 MHz 600 MHz	V _{IH}	D <i>n_</i> MV _{REF} + 0.25 D <i>n_</i> MV _{REF} + 0.20	_	V	

Table 19 provides the input AC timing specifications for the DDR SDRAM when $Dn_GV_{DD}(typ)=2.5$ V.

 Table 19. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface

At recommended operating conditions.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	—	D <i>n</i> _MV _{REF} – 0.31	V	—
AC input high voltage	V _{IH}	D <i>n</i> _MV _{REF} + 0.31	_	V	—

Table 20 provides the input AC timing specifications for the DDR SDRAM interface.

Table 20. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions.

Parameter	Symbol	Min	Мах	Unit	Notes
Controller Skew for MDQS—MDQ/MECC	^t CISKEW	—		ps	1, 2
600 MH	z —	-240	240	—	3
533 MH	z —	-300	300	—	3
400 MH	z —	-365	365		_

Note:

1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that will be captured with MDQS[n]. This should be subtracted from the total timing budget.

- The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the following equation: t_{DISKEW} =+/-(T/4 - abs(t_{CISKEW})) where T is the clock period and abs(t_{CISKEW}) is the absolute value of t_{CISKEW}.
- 3. Maximum DDR1 frequency is 400 MHz.

DDR and DDR2 SDRAM

Figure 4 shows the DDR SDRAM input timing for the MDQS to MDQ skew measurement (tDISKEW).

Figure 4. DDR Input Timing Diagram for tDISKEW

6.2.2 DDR SDRAM Output AC Timing Specifications

Table 21. DDR SDRAM Output AC Timing Specifications

At recommended operating conditions.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MCK[n] cycle time, MCK[n]/MCK[n] crossing	t _{MCK}	3	10	ns	2
MCK duty cycle 600 MHz 533 MHz 400 MHz	^t мскн/tмск	47.5 47 47	52.5 53 53	%	8 9 9
ADDR/CMD output setup with respect to MCK	t _{DDKHAS}			ns	3
600 MHz		1.10	—		7
533 MHz		1.48	—		7
400 MHz		1.95	—		
ADDR/CMD output hold with respect to MCK	t _{DDKHAX}			ns	3
600 MHz		1.10	—		7
533 MHz		1.48	—		7
400 MHz		1.95	—		
MCS[n] output setup with respect to MCK	t _{DDKHCS}			ns	3
600 MHz		1.10	—		7
533 MHz		1.48	—		7
400 MHz		1.95	—		

Table 21. DDR SDRAM Output AC Timing Specifications (continued)

At recommended operating conditions.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MCS[n] output hold with respect to MCK	t _{DDKHCX}			ns	3
600 MHz		1.10	—		7
533 MHz		1.48	—		7
400 MHz		1.95	—		
MCK to MDQS Skew	t _{DDKHMH}	-0.6	0.6	ns	4
MDQ/MECC/MDM output setup with respect to MDQS	^t DDKHDS, t _{DDKLDS}			ps	5
600 MHz		500	—		7
533 MHz		590	—		7
400 MHz		700	—		
MDQ/MECC/MDM output hold with respect to MDQS	t _{DDKHDX,} t _{DDKLDX}			ps	5
600 MHz		500	—		7
533 MHz		590	—		7
400 MHz		700	—		
MDQS preamble start	t _{DDKHMP}	$-0.5\times t_{\text{MCK}}-0.6$	$-0.5 imes t_{MCK}$ +0.6	ns	6