imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Freescale Semiconductor

Data Sheet: Technical Data

Document Number: MC9S08SE8 Rev. 4, 4/2015

RoHS

16-Pin TSSOP

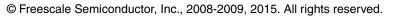
Case 948F-01

MC9S08SE8 Series Covers: MC9S08SE8 MC9S08SE4

Features:

- 8-Bit HCS08 Central Processor Unit (CPU)
 - 20 MHz HCS08 CPU (central processor unit)
 - 10 MHz internal bus frequency
 - HC08 instruction set with added BGND
 - Support for up to 32 interrupt/reset sources
- On-Chip Memory
 - Up to 8 KB of on-chip in-circuit programmable flash memory with block protection and security options
 Up to 512 bytes of on-chip RAM
- · Power-Saving Modes
- Wait plus two stops
- Clock Source Options
 - Oscillator (XOSC) Loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
 - Internal Clock Source (ICS) Internal clock source module containing a frequency-locked-loop (FLL) controlled by internal or external reference; precision trimming of internal reference allows 0.2% resolution and 2% deviation over temperature and voltage; supports bus frequencies from 1 MHz to 10 MHz.
- System Protection
 - Optional computer operating properly (COP) reset with option to run from independent 1 kHz internal clock source or the bus clock
 - Low voltage detection
 - Illegal opcode detection with reset
 - Illegal address detection with reset
- Development Support
 - Single-wire background debug interface
 - Breakpoint capability to allow single breakpoint setting during in-circuit debugging
- Peripherals

28-Pin SOIC Case 751F


28-Pin PDIP Case 710-02

 SCI — Full duplex non-return to zero (NRZ); LIN master extended break generation; LIN slave extended break detection; wakeup on active edge

MC9S08SE8

- ADC 10-channel, 10-bit resolution; 2.5 μs conversion time; automatic compare function; 1.7 mV/°C temperature sensor; internal bandgap reference channel; runs in stop3
- TPMx One 2-channel (TPM1) and one 1-channel (TPM2) 16-bit timer/pulse-width modulator (TPM) modules; selectable input capture, output compare, and edge-aligned PWM capability on each channel; timer module may be configured for buffered, centered PWM (CPWM) on all channels
- KBI 8-pin keyboard interrupt module
- RTC Real-time counter with binary- or decimal-based prescaler
- Input/Output
 - Software selectable pullups on ports when used as inputs
 - Software selectable slew rate control on ports when used as outputs
 - Software selectable drive strength on ports when used as outputs
 - Master reset pin and power-on reset (POR)
 - Internal pullup on RESET, IRQ, and BKGD/MS pins to reduce customer system cost
- Package Options
 - 28-pin PDIP
 - 28-pin SOIC
 - 16-pin TSSOP

This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice.

Table of Contents

1	MCU	Block Diagram
2	Pin A	ssignments4
3	Elect	rical Characteristics6
	3.1	Parameter Classification
	3.2	Absolute Maximum Ratings6
	3.3	Thermal Characteristics7
	3.4	ESD Protection and Latch-Up Immunity
	3.5	DC Characteristics
	3.6	Supply Current Characteristics
	3.7	External Oscillator (XOSC) Characteristics

		Internal Clock Source (ICS) Characteristics 20
	3.9	ADC Characteristics 22
	3.10	AC Characteristics
		3.10.1 Control Timing 25
		3.10.2 TPM/MTIM Module Timing
	3.11	Flash Specifications
4	Orde	ring Information
	4.1	Package Information
	4.2	Mechanical Drawings

Revision History

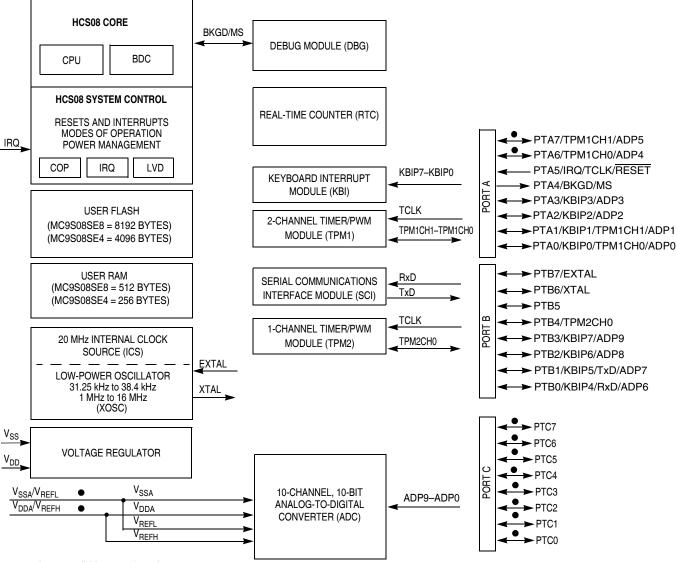
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: freescale.com

The following revision history table summarizes changes contained in this document.

Revision	Date	Description of Changes
1	10/8/2008	Initial public released.
2	1/16/2009	In Table 8, added the Max. of S2I _{DD} and S3I _{DD} in 0–105 °C; changed the Max. of S2I _{DD} and S3I _{DD} in 0–85 °C; changed the typical of S2I _{DD} and S3I _{DD} ; changed the S23I _{DDRTI} to P.
3	4/7/2009	Added $II_{OZTOT}I$ in the Table 7. Changed V _{DDAD} to V _{DDA} , V _{SSAD} to V _{SSA} . Updated Table 9, Table 10, Table 11, and Table 12. Updated Figure 13 and Figure 14.
4	4/10/2015	Updated Table 9.

Related Documentation

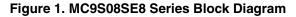
Find the most current versions of all documents at: http://www.freescale.com


Reference Manual (MC9S08SE8RM)

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9S08SE8 series MCUs.



pins not available on 16-pin package

Notes:

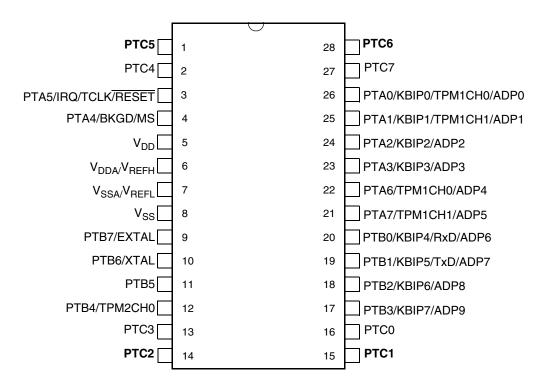
When PTA4 is configured as BKGD, pin is bi-directional.

For the 16-pin package: V_{SSA}/V_{REFL} and V_{DDA}/V_{REFH} are double bonded to V_{SS} and V_{DD} respectively.

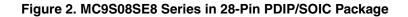
Pin Assignments

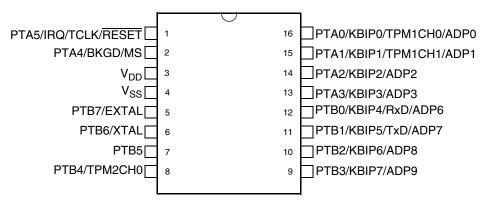
2 Pin Assignments

This chapter shows the pin assignments in the packages available for the MC9S08SE8 series.


Table 1. Pin Availability by Package Pin-Count

Pin Number (Package)		<-	- Lowest Pr	'iority > Hig	hest
28 (SOIC/PDIP)	16 (TSSOP)	Port Pin	Alt 1	Alt 2	Alt 3
1		PTC5			
2		PTC4			
3	1	PTA5	IRQ	TCLK	RESET
4	2	PTA4		BKGD	MS
5	3				V _{DD}
6				V _{DDA}	V _{REFH}
7				V _{SSA}	V _{REFL}
8	4				V _{SS}
9	5	PTB7	EXTAL		
10	6	PTB6	XTAL		
11	7	PTB5			
12	8	PTB4		TPM2CH0	
13	_	PTC3			
14	_	PTC2			
15	_	PTC1			
16	_	PTC0			
17	9	PTB3	KBIP7		ADP9
18	10	PTB2	KBIP6		ADP8
19	11	PTB1	KBIP5	TxD	ADP7
20	12	PTB0	KBIP4	RxD	ADP6
21	_	PTA7		TPM1CH1 ¹	ADP5
22	-	PTA6		TPM1CH0 ¹	ADP4
23	13	PTA3	KBIP3		ADP3
24	14	PTA2	KBIP2		ADP2
25	15	PTA1	KBIP1	TPM1CH1 ¹	ADP1
26	16	PTA0	KBIP0	TPM1CH0 ¹	ADP0
27	—	PTC7			
28	_	PTC6			


¹ TPM1 pins can be remapped to PTA7, PTA6 and PTA1,PTA0



Pins in **bold** are lost in the next lower pin count package.

3 Electrical Characteristics

This chapter contains electrical and timing specifications.

3.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 2. Parameter	Classifications
--------------------	-----------------

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	–0.3 to 5.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	۱ _D	±25	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table 3. Absolute Maximum Ratings

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

3.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit	
Operating temperature range (T _A	T _L to T _H -40 to 85 -40 to 105 -40 to 125	°C	
Maximum junction temperature	T_{JM}	135	°C	
	28-pin SOIC	0	70	°C/W
Thermal resistance single-layer board	28-pin PDIP		68	
	16-pin TSSOP		129	
	28-pin SOIC	θ _{JA}	48	°C/W
Thermal resistance four-layer board	28-pin PDIP		49	
	16-pin TSSOP		85	

Table 4.	Thermal	Characteristics
----------	---------	-----------------

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

Where:

 T_A = Ambient temperature, °C θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W $P_D = P_{int} + P_{I/O}$ $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power $P_{I/O}$ = Power dissipation on input and output pins — user-determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

Where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.4 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human body	Storage capacitance	С	100	pF
	Number of pulses per pin	—	3	—
	Series resistance	R1	0	Ω
Machine	Storage capacitance	С	200	pF
	Number of pulses per pin	_	3	—

Table 5. ESD and Latch-up Test Conditions

Model	Description	Symbol	Value	Unit
Latch-up	Minimum input voltage limit	_	-2.5	V
Laton-up	Maximum input voltage limit	—	7.5	V

Table 5. ESD and Latch-up Test Conditions (continued)

Table 6. ESD and Latch-up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	_	V
2	Machine model (MM)	V _{MM}	±200		V
3	Charge device model (CDM)	V _{CDM}	±500		V
4	Latch-up current at $T_A = 125 \ ^{\circ}C$	I _{LAT}	±100		mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.5 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics. **Table 7. DC Characteristics**

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1	—	Operating voltage		2.7	_	5.5	V
		Output high voltage — Low drive (PTxDSn = 0) 5 V, I _{Load} = -2 mA		V _{DD} – 1.5	_	_	
		$3 \text{ V}, \text{ I}_{\text{Load}} = -0.6 \text{ mA}$		V _{DD} – 1.5	—	—	
		5 V, I _{Load} = -0.4 mA 3 V, I _{Load} = -0.24 mA		V _{DD} – 0.8 V _{DD} – 0.8	_	_	v
		Output high voltage — High drive (PTxDSn = 1) 5 V, I _{Load} = -10 mA		V _{DD} – 1.5	_	_	v
2	Ρ	$3 \text{ V}, \text{ I}_{\text{Load}} = -3 \text{ mA}$		V _{DD} – 1.5	—	—	
		5 V, $I_{Load} = -2 \text{ mA}$		V _{DD} – 0.8	—	—	
		3 V, I _{Load} = -0.4 mA		V _{DD} – 0.8			
		Output low voltage — Low drive (PTxDSn = 0)					
		5 V, I _{Load} = 2 mA		1.5	—	—	
		$3 \text{ V}, \text{I}_{\text{Load}} = 0.6 \text{ mA}$		1.5	—	—	
		$5 \text{ V}, \text{ I}_{\text{Load}} = 0.4 \text{ mA}$		0.8	—	_	
		3 V, I _{Load} = 0.24 mA	V _{OL}	0.8	_	_	V
		Output low voltage — High drive (PTxDSn = 1) 5 V, I _{Load} = 10 mA		1.5	_	—	
3	Ρ	$3 \text{ V}, \text{ I}_{\text{Load}} = 3 \text{ mA}$		1.5	—	_	
		$5 \text{ V}, \text{ I}_{\text{Load}} = 2 \text{ mA}$		0.8	—	—	
		3 V, I _{Load} = 0.4 mA		0.8	_		
4	Ρ	Output high current — Max total I _{OH} for all ports 5 V 3 V	I _{OHT}	—	_	100 60	mA

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
5	Ρ	Output low current — Max total I _{OL} for all ports 5 V 3 V	I _{OLT}			100 60	mA
6	Ρ	Input high voltage; all digital inputs	V _{IH}	$0.65 imes V_{DD}$		—	v
7	Ρ	Input low voltage; all digital inputs	V _{IL}	—	_	$0.35 \times V_{DD}$	v
8	Ρ	Input hysteresis; all digital inputs	V _{hys}	$0.06 imes V_{DD}$	_	—	mV
9	С	Input leakage current; input only pins ²	ll _{ln} l	—	0.1	1	μA
10	Ρ	High impedance (off-state) leakage current ²	ll _{oz} l		0.1	1	μA
11	С	Total leakage combined for all inputs and Hi-Z pins — All input only and I/O ²	I _{OZTOT}	_	_	2	μA
12	Ρ	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
13	Ρ	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ
14	D	DC injection current ^{5, 6, 7} V _{IN} < V _{SS} , V _{IN} > V _{DD} Single pin limit Total MCU limit, includes sum of all stressed pins	I _{IC}	-0.2 -5		0.2 5	mA
15	С	Input capacitance; all non-supply pins	C _{In}	—		8	pF
16	С	RAM retention voltage	V _{RAM}	0.6	1.0	—	V
17	Ρ	POR re-arm voltage ⁸	V _{POR}	0.9	1.4	2.0	V
18	D	POR re-arm time	t _{POR}	10		—	μs
19	Ρ	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising	V _{LVD1}	3.9 4.0	4.0 4.1	4.1 4.2	V
20	Ρ	Low-voltage detection threshold — low range V _{DD} falling V _{DD} rising	V _{LVD0}	2.48 2.54	2.56 2.62	2.64 2.70	V
21	С	Low-voltage warning threshold — high range 1 V _{DD} falling V _{DD} rising	V _{LVW3}	4.5 4.6	4.6 4.7	4.7 4.8	V
22	Ρ	Low-voltage warning threshold — high range 0 V _{DD} falling V _{DD} rising	V _{LVW2}	4.2 4.3	4.3 4.4	4.4 4.5	V
23	Ρ	Low-voltage warning threshold low range 1 V _{DD} falling V _{DD} rising	V _{LVW1}	2.84 2.90	2.92 2.98	3.00 3.06	V
24	с	Low-voltage warning threshold — low range 0 V _{DD} falling V _{DD} rising	V _{LVW0}	2.66 2.72	2.74 2.80	2.82 2.88	v

Table 7. DC Characteristics (continued)

Num	С	Parameter		Symbol	Min	Typical ¹	Max	Unit
		Low-voltage inhibit reset/recover hysteresis						
25	Т		5 V	V _{hvs}	—	100	—	mV
			3 V	,		60	—	
26	Ρ	Bandgap voltage reference ⁹		V_{BG}	1.18	1.20	1.21	V

Table 7. DC Characteristics (continued)

¹ Typical values are measured at 25 °C. Characterized, not tested.

² Measured with $V_{In} = V_{DD}$ or V_{SS} .

- ³ Measured with V_{In} = V_{SS}.
- ⁴ Measured with $V_{In} = V_{DD}$.

 5 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.

- ⁶ Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁷ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).
- ⁸ Maximum is highest voltage that POR is guaranteed.
- ⁹ Factory trimmed at V_{DD} = 5.0 V, Temp = 25 °C.



Figure 4. Typical V_{OL} vs. I_{OL} for High Drive Enabled Pad (V_{DD} = 5 V)

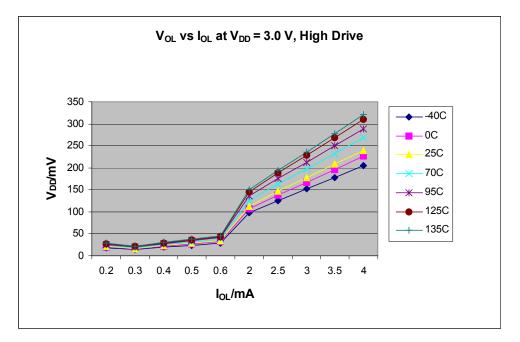


Figure 5. Typical V_{OL} vs. I_{OL} for High Drive Enabled Pad (V_{DD} = 3 V)

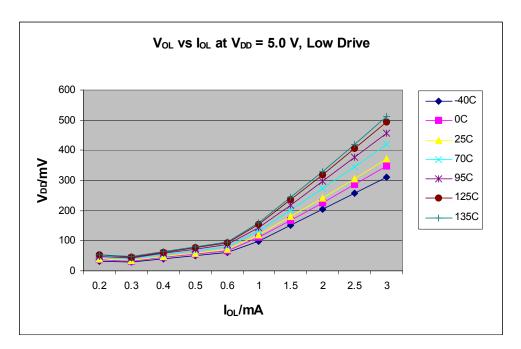


Figure 6. Typical V_{OL} vs. I_{OL} for Low Drive Enabled Pad (V_{DD} = 5 V)

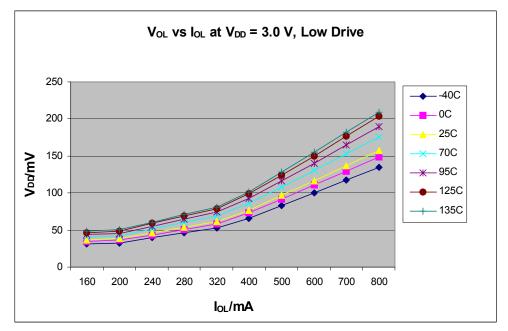


Figure 7. Typical V_{OL} vs. I_{OL} for Low Drive Enabled Pad (V_{DD} = 3 V)

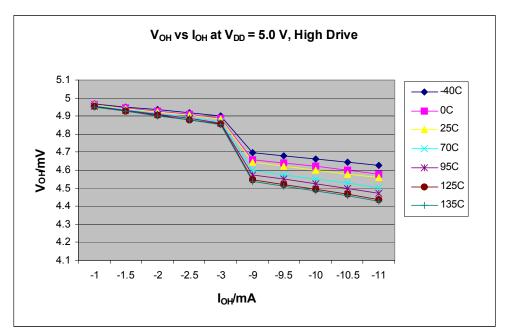


Figure 8. Typical V_{OH} vs. I_{OH} for High Drive Enabled Pad (V_{DD} = 5 V)

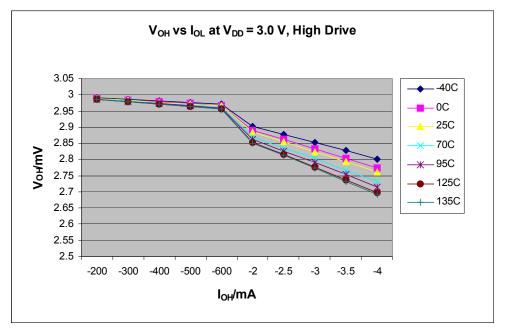


Figure 9. Typical V_{OH} vs. I_{OH} for High Drive Enabled Pad (V_{DD} = 3 V)

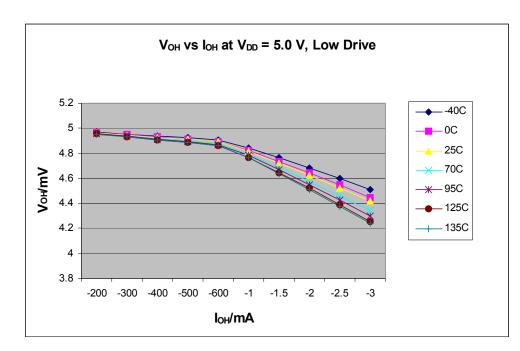


Figure 10. Typical V_{OH} vs. I_{OH} for Low Drive Enabled Pad (V_{DD} = 5 V)

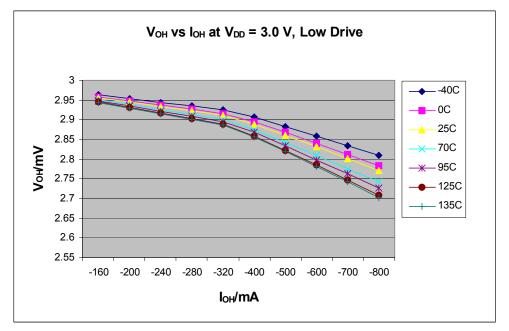


Figure 11. Typical V_{OH} vs. I_{OH} for Low Drive Enabled Pad (V_{DD} = 3 V)

3.6 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Num	с	Parameter	Symbol	V _{DD} (V)	Typical ¹	Max	Unit	Temp (°C)		
1	с	Run supply current ² measured at	RI _{DD}	5	2.4	2.72	mA	-40 to 125		
I		(CPU clock = 4 MHz, f _{Bus} = 2 MHz)	DD	3	2.18	2.26		-40 10 125		
2	Р	Run supply current ² measured at	RI _{DD}	5	6.35	7.29	mA	-40 to 125		
L	<u> </u>	(CPU clock = 20 MHz, f _{Bus} = 10 MHz)		3	5.79	6.42	110.1	4010120		
3	Р	Wait supply current ² measured at	sured at WI _{DD}		1.4	1.56	mA	-40 to 125		
Ũ		f _{Bus} = 2 MHz	UUU	3	1.36	1.53	110 (10 10 120		
4	Р	Stop2 mode supply current S2I _{DD}	5	1.4	19 28 45.8	μA	–40 to 85 –40 to 105 –40 to 125			
+				3	1.3	15 22 37.2	μΑ	-40 to 85 -40 to 105 -40 to 125		
5	Р	Stop3 mode supply current	621	5	1.61	23 43 76.1	μA	-40 to 85 -40 to 105 -40 to 125		
5		Stops mode supply current	S3I _{DD}			3	1.44	19 38 66.4	μA	-40 to 85 -40 to 105 -40 to 125
6	Р	RTC adder to stop2 or stop3 ³	5231	5	300	500 500	nA	-40 to 85 -40 to 125		
U			S23I _{DDRTI}	3	300	500 500	nA	-40 to 85 -40 to 125		
7	с	LVD adder to stop3 (LVDE = LVDSE = 1)	ଟସା	5	122	180	μΑ	-40 to 125		
1			S3I _{DDLVD}	3	110	160	μΑ	-40 to 125		
8	с	Adder to stop3 for oscillator enabled ⁴ (OSCSTEN =1)	S3I _{DDOSC}	5,3	5	8	μΑ	-40 to 125		

Table 8. Supply Current Characteristics

¹ Typical values are based on characterization data at 25 °C unless otherwise stated. See Figure 12 through Figure 13 for typical curves across voltage/temperature.

² All modules except ADC active, ICS configured for FBE, and does not include any dc loads on port pins.

³ Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode. Wait mode typical is 220 μ A at 5 V with f_{Bus} = 1 MHz.

⁴ Values given under the following conditions: low range operation (RANGE = 0) with a 32.768 kHz crystal and low power mode (HGO = 0).

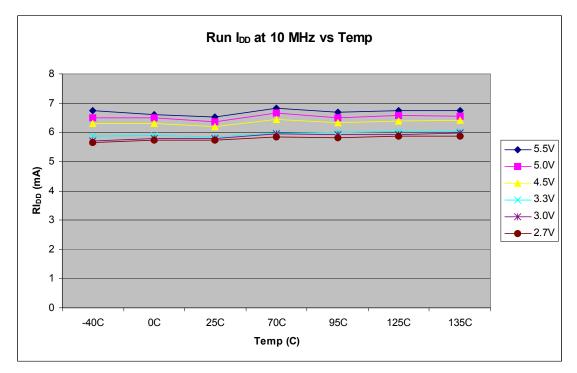


Figure 12. Typical Run I_{DD} Curves

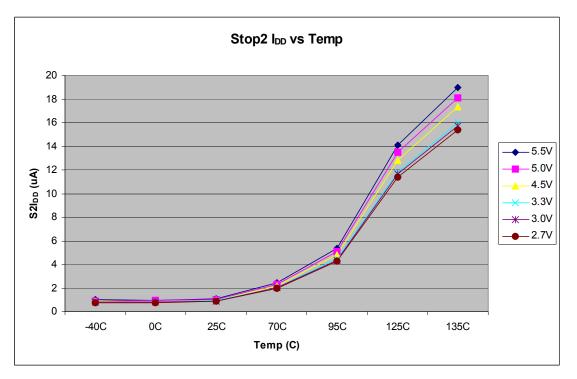


Figure 13. Typical Stop2 I_{DD} Curves

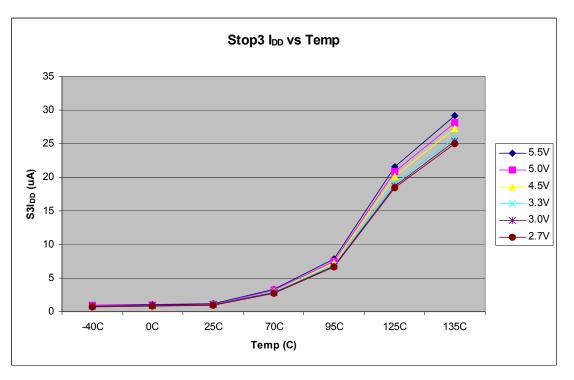


Figure 14. Typical Stop3 I_{DD} Curves

3.7 External Oscillator (XOSC) Characteristics

Num	С	Characteristic	Symbol	Min.	Typical ¹	Max.	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) ² High range (RANGE = 1), low power (HGO = 0) ²	f _{lo} f _{hi-hgo} f _{hi-lp}	32 1 1		38.4 16 8	kHz MHz MHz
2	—	Load capacitors	C _{1,} C ₂	See crystal or resonator manufacturer's recommendation			
3	_	Feedback resistor Low range (32 kHz to 100 kHz) High range (1 MHz to 16 MHz)	R _F		10 1	_	MΩ
4	_	Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0)	- R _S		0 100 0		kΩ
4		High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz			0 0 0	0 10 20	K52

Num	С	Characteristic	Symbol	Min.	Typical ¹	Max.	Unit
5	т	Crystal start-up time ³ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁴ High range, high gain (RANGE = 1, HGO = 1) ⁴	t CSTL-LP CSTH-HGO CSTH-LP CSTH-HGO	 	200 400 5 15		ms
6	Т	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode ² FBELP mode	f _{extal}	0.03125 0	_	20 20	MHz MHz

 $^1\,$ Typical column was characterized at 5.0 V, 25 $^{\circ}\text{C}$ or is recommended value.

² The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications. This data will vary based upon the crystal manufacturer and board design. The crystal should be characterized by the crystal manufacturer.

⁴ 4 MHz crystal.

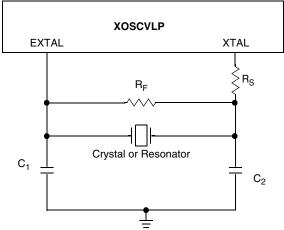


Figure 15. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

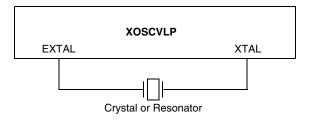


Figure 16. Typical Crystal or Resonator Circuit: Low Range/Low Power

3.8 Internal Clock Source (ICS) Characteristics

Num	С	Characteristic		Symbol	Min.	Typical ¹	Max.	Unit
1	Ρ	Average internal reference frequency at V _{DD} = 5 V and temperature = 25 °C		f _{int_t}	_	39.0625	_	kHz
2	Ρ	Internal reference frequency — user t	rimmed	f _{int_ut}	31.25	—	39.06	kHz
3	Т	Internal reference start-up time		t _{IRST}	_	60	100	μs
4	D	DCO output frequency range — trimmed ²	Low range (DRS = 00)	f _{dco_t}	16	_	20	MHz
5	D	DCO output frequency ² Reference = 32768 Hz and DMX32 =				59.77	_	MHz
6	С	Resolution of trimmed DCO output fre voltage and temperature (using FTRI		$\Delta f_{dco_res_t}$		±0.1	±0.2	%f _{dco}
7	С	Resolution of trimmed DCO output fre voltage and temperature (not using F		$\Delta f_{dco_res_t}$		± 0.2	±0.4	%f _{dco}
8	С	Total deviation of DCO output from trimmed frequency ³ Over full voltage and temperature range Over fixed voltage and temperature range of 0 to 70 °C		Δf_{dco_t}		−1.0 to 0.5 ±0.5	±2 ±1	%f _{dco}
10	С	FLL acquisition time ⁴		t _{Acquire}	_	_	1	ms
11	С	Long term jitter of DCO output clock (averaged over 2-ms interval) ⁵		C _{Jitter}	_	0.02	0.2	%f _{dco}

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This parameter is characterized and not tested on each device.

⁴ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

 5 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

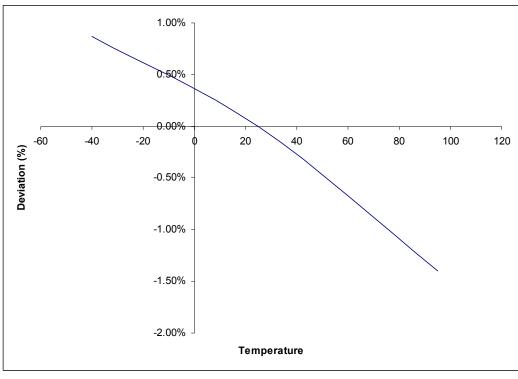


Figure 17. Deviation of DCO Output from Trimmed Frequency (20 MHz, 3.0 V)

3.9 ADC Characteristics

Characteristic	Conditions	Symb	Min	Typ ¹	Мах	Unit	Comment
Supply voltage	Absolute	V _{DDA}	2.7		5.5	V	
Supply voltage	Delta to $V_{DD} (V_{DD} - V_{DDA})^2$	ΔV_{DDA}	-100	0	100	mV	
Ground voltage	Delta to $V_{SS} (V_{SS} - V_{SSA})^2$	ΔV_{SSA}	-100	0	100	mV	
Input voltage		V _{ADIN}	V _{REFL}	—	V _{REFH}	V	
Input capacitance		C _{ADIN}	—	4.5	5.5	pF	
Input resistance		R _{ADIN}	—	3	5	kΩ	
Analog source resistance	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}			5 10	kΩ	External to MCU
	8-bit mode (all valid f _{ADCK})		—		10		
ADC conversion	High speed (ADLPC = 0)	f _{ADCK}	0.4	—	8.0	MHz	
clock frequency	Low power (ADLPC = 1)	'ADCK	0.4	_	4.0		

Table 11. 10-Bit ADC Operating Conditions

- ¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- ² DC potential difference.

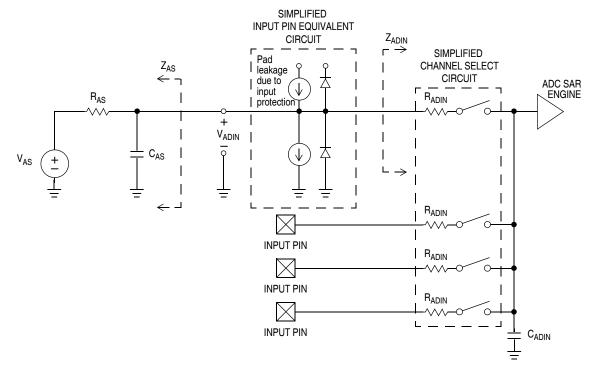


Figure 18. ADC Input Impedance Equivalency Diagram

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
Supply Current ADLPC = 1 ADLSMP = 1 ADCO = 1		т	I _{DDA}	_	133	_	μΑ	
Supply Current ADLPC = 1 ADLSMP = 0 ADCO = 1		т	I _{DDA}	_	218	_	μΑ	
Supply Current ADLPC = 0 ADLSMP = 1 ADCO = 1		т	I _{DDA}	_	327	_	μΑ	
Supply Current ADLPC = 0 ADLSMP = 0 ADCO = 1		D	I _{DDA}	_	0.582	1	mA	
Supply Current	Stop, Reset, Module Off	D	I _{DDA}		0.011	1	μA	

Table 12. 10-Bit ADC Characteristics	s (V _{REFH} = V _{DDA} , V _{REF}	_{FL} = V _{SSA})
--------------------------------------	--	------------------------------------

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment	
ADC Asynchronous Clock Source	High Speed (ADLPC = 0)		f _{ADACK}	2	3.3	5		t _{ADACK} = 1/f _{ADACK}	
	Low Power (ADLPC = 1)	D		1.25	2	3.3	MHz		
Conversion Time (Including sample time)	Short Sample (ADLSMP = 0)	D	t _{ADC}	_	20		ADCK	See SE8	
	Long Sample (ADLSMP = 1)			_	40		cycles	reference manual for	
Sample Time	Short Sample (ADLSMP = 0)	D	t _{ADS}	_	3.5		ADCK cycles	conversion time variances	
	Long Sample (ADLSMP = 1)			_	23.5		Cycles		
Temp Sensor Slope	–40°C– 25°C	D		_	3.266		mV/°C		
	25°C– 125°C	D	m	_	3.638		mv/°C		
Temp Sensor Voltage	25°C	D	V _{TEMP25}	_	1.396		mV		
Characteristics	for 28-pin packages only								
Total	10-bit mode	Р	_		±1	±2.5	LSB ³	Includes	
Unadjusted Error	8-bit mode	Р	E _{TUE}	_	±0.5	±1.0		quantization	
Differential	10-bit mode ²	Р		_	±0.5	±1.0	LSB ³		
Non-Linearity	8-bit mode ³	Р	DNL	_	±0.3	±0.5			
Integral	10-bit mode	Т	INII		±0.5	±1.0	LSB ³		
Non-Linearity	8-bit mode	Т	INL	_	±0.3	±0.5			
Zero-Scale	10-bit mode	Р	E	_	±0.5	±1.5	LSB ³	V _{ADIN} = V _{SSA}	
Error	8-bit mode	Р	E _{ZS}	_	±0.5	±0.5	130		
Full-Scale	10-bit mode	Т	E .	_	±0.5	±1	LSB ³	V – V	
Error	8-bit mode	Т	E _{FS}	_	±0.5	±0.5	130	$V_{ADIN} = V_{DDA}$	
Quantization	10-bit mode	D	EQ	_	_	±0.5	LSB ³		
Error	8-bit mode	U	LQ	_	—	±0.5			
Input Leakage	10-bit mode	D	E _{IL}		±0.2	±2.5	LSB ³	Pad leakage ⁴ *	
Error	8-bit mode			_	±0.1	±1		R _{AS}	
Characteristics	for 16-pin package only								
Total	10-bit mode	Ρ	E _{TUE}	_	±1.5	±3.5	1003	Includes	
Unadjusted Error	8-bit mode	Ρ		_	±0.7	±1.5	LSB ³	quantization	

Table 12. 10-Bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
Differential Non-Linearity	10-bit mode ³	Р	DNL		±0.5	±1.0	LSB ³	
	8-bit mode ³	Р		_	±0.3	±0.5	LSB°	
Integral Non-Linearity	10-bit mode	т	INL	_	±0.5	±1.0	LSB ³	
	8-bit mode	Т		-	±0.3	±0.5	LOD	
Zero-Scale Error	10-bit mode	Р	E _{ZS}	_	±1.5	±2.1	LSB ³	$V_{ADIN} = V_{SSA}$
	8-bit mode	Р		_	±0.5	±0.7		
Full-Scale Error	10-bit mode	Т	E _{FS}	-	±1	±1.5	LSB ³	V _{ADIN} = V _{DDA}
	8-bit mode	Т		_	±0.5	±0.5		
Quantization Error	10-bit mode	D	EQ	_	_	±0.5	LSB ³	
	8-bit mode			-	—	±0.5	LOD	
Input Leakage Error	10-bit mode	D	E _{IL}	_	±0.2	±2.5	LSB ³	Pad leakage ⁴ *
	8-bit mode				±0.1	±1	100	R _{AS}

Table 12. 10-Bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² Monotonicity and No-Missing-Codes guaranteed in 10-bit and 8-bit modes

³ 1 LSB = $(V_{\text{REFH}} - V_{\text{REFL}})/2^N$

⁴ Based on input pad leakage current. Refer to pad electricals.

3.10 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

3.10.1 Control Timing

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	DC	—	10	MHz
2	D	Internal low power oscillator period		700	—	1300	μs
3	D	External reset pulse width ²	t _{extrst}	100	—	_	ns
4	D	Reset low drive ³	t _{rstdrv}	$34 imes t_{cyc}$	—	_	ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	_		ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ⁴	t _{MSH}	100	_		μs
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁵	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
8	D	Pin interrupt pulse width Asynchronous path ² Synchronous path ⁵	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
9	с	Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF) ⁶ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}	_	40 75	_	ns
		Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}	_	11 35		ns

Table 13. Control Timing

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ When any reset is initiated, internal circuitry drives the reset pin (if enabled, RSTPE = 1) low for about 34 cycles of t_{cyc} .

⁴ To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.

⁵ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 6 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40 °C to 125 °C.

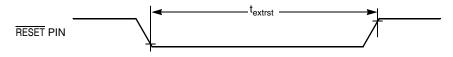


Figure 19. Reset Timing

MC9S08SE8 Series MCU Data Sheet, Rev. 4