

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

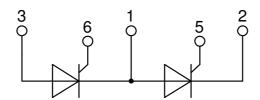
Thyristor Module

=2x 800 V

27 A

 V_{τ} 1.27 V

Phase leg


Part number

MCC26-08io8B

Backside: isolated

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: TO-240AA

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- · Reduced weight
- Advanced power cycling

Terms _Conditions of usage:

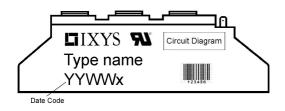
The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.

Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

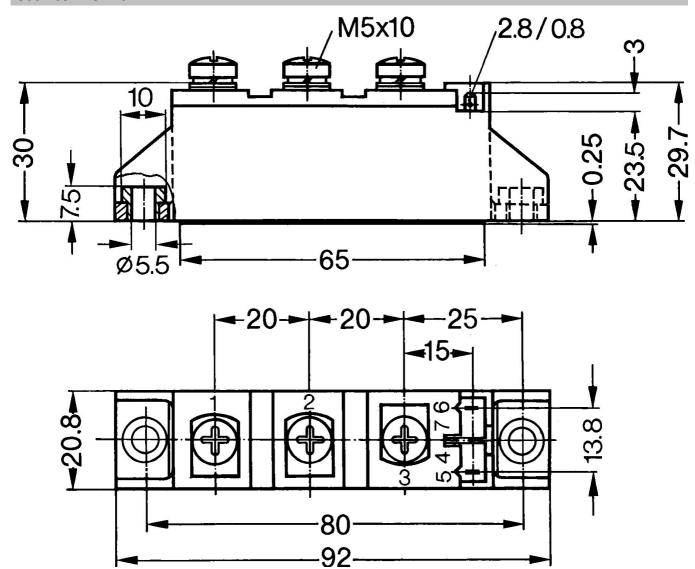
- to perform joint risk and quality assessments;
 the conclusion of quality agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

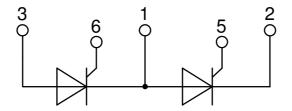
IXYS reserves the right to change limits, conditions and dimensions.


Data according to IEC 60747 and per semiconductor unless otherwise specified

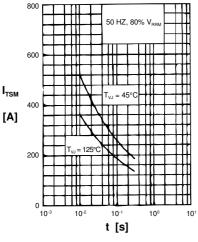
Thyristo				"	Ratings	>	1
Symbol	Definition	Conditions		min.	typ.	max.	Ur
V _{RSM/DSM}	max. non-repetitive reverse/forwa	rd blocking voltage	$T_{VJ} = 25^{\circ}C$			900	i ! !
V _{RRM/DRM}	max. repetitive reverse/forward bl	ocking voltage	$T_{VJ} = 25^{\circ}C$			800	i !
I _{R/D}	reverse current, drain current	$V_{R/D} = 800 \text{ V}$	$T_{VJ} = 25^{\circ}C$			100	μ
		$V_{R/D} = 800 V$	$T_{VJ} = 125$ °C			3	m
V _T	forward voltage drop	I _T = 40 A	$T_{VJ} = 25^{\circ}C$			1.27	i 1 1
		$I_T = 80 \text{ A}$				1.64	! ! ! !
		$I_T = 40 \text{ A}$	T _{VJ} = 125°C			1.27	! !
		$I_{T} = 80 \text{ A}$				1.65	!
I _{TAV}	average forward current	T _C = 85°C	T _{vJ} = 125°C			27	1
T(RMS)	RMS forward current	180° sine				42	
V _{T0}	threshold voltage		T _{v.i} = 125°C			0.85	1
r _T	slope resistance } for power lo	oss calculation only	VO			11	m!
R _{thJC}	thermal resistance junction to cas	e				0.88	K/V
R _{thCH}	thermal resistance case to heatsin				0.20		K/V
P _{tot}	total power dissipation		T _C = 25°C		0.20	115	٧
I _{TSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{V.I} = 45^{\circ}C$			520	<u> </u>
*TSM	mani remana cango camem	t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			560	
		t = 0.0 ms; (50 Hz), sine t = 10 ms; (50 Hz), sine	$T_{VJ} = 125^{\circ}C$			440	1
		t = 8.3 ms; (60 Hz), sine	$V_{R} = 0 V$			475	
124	value for fusing	t = 10 ms; (50 Hz), sine	$V_R = 0 V$ $T_{VJ} = 45^{\circ}C$			1.35	kA²
l²t	value for fusing	. , , , , , , , , , , , , , , , , , , ,	$V_{R} = 0 \text{ V}$			1.33	1
		t = 8,3 ms; (60 Hz), sine					1
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 125$ °C			970	A ²
^	iunation canacitanae	t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$		00	940	A ²
C,	junction capacitance	V _R = 400 V f = 1 MHz	$T_{VJ} = 25^{\circ}C$		22	40	р
P _{GM}	max. gate power dissipation	$t_P = 30 \mu s$	$T_{C} = 125^{\circ}C$			10	į.
_		$t_{P} = 300 \mu s$				5	۷
P _{GAV}	average gate power dissipation					0.5	۷
(di/dt) _{cr}	critical rate of rise of current	**	epetitive, $I_T = 45 A$			150	A/μ
		$t_P = 200 \mu s; di_G/dt = 0.45 A/\mu s; -$					
			on-repet., $I_T = 27 A$			500	i
(dv/dt) _{cr}	critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	$T_{VJ} = 125$ °C			1000	V/μ
		R _{GK} = ∞; method 1 (linear volta					
V_{GT}	gate trigger voltage	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			1.5	į ,
			$T_{VJ} = -40$ °C			1.6	,
I _{GT}	gate trigger current	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			100	m.
			$T_{VJ} = -40$ °C			200	m
V _{GD}	gate non-trigger voltage	$V_D = \frac{2}{3} V_{DRM}$	$T_{VJ} = 125^{\circ}C$			0.2	,
I _{GD}	gate non-trigger current					10	m.
l _L	latching current	t _p = 10 μs	$T_{VJ} = 25^{\circ}C$			450	m.
		$I_G = 0.45 A; di_G/dt = 0.45 A/\mu s$	3				1
I _H	holding current	V _D = 6 V R _{GK} = ∞	$T_{VJ} = 25$ °C			200	m
t _{gd}	gate controlled delay time	$V_D = \frac{1}{2} V_{DRM}$	T _{VJ} = 25°C			2	μ
J-	•	$I_G = 0.45 \text{ A}; di_G/dt = 0.45 \text{ A/}\mu\text{s}$					i '
t _q	turn-off time	$V_{R} = 100 \text{ V}; I_{T} = 20 \text{ A}; V = \frac{2}{3}$			150		μ
• q		$di/dt = 10 \text{ A}/\mu \text{s} \text{ dv/dt} = 20 \text{ V}$.00		μ

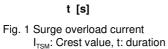
Package	TO-240AA				ı	Ratings	S	
Symbol	Definition	Conditions			min.	typ.	max.	Unit
RMS	RMS current	per terminal					200	Α
T _{VJ}	virtual junction temperature				-40		125	°C
Top	operation temperature				-40		100	°C
T _{stg}	storage temperature				-40		125	°C
Weight						81		g
M _D	mounting torque				2.5		4	Nm
$\mathbf{M}_{_{T}}$	terminal torque				2.5		4	Nm
d _{Spp/App}	creepage distance on surface	striking distance through air	terminal to terminal	13.0	9.7			mm
d _{Spb/Apb}	creepage distance on surface	Striking distance through an	terminal to backside 1		16.0			mm
V _{ISOL}	isolation voltage	t = 1 second			3600			٧
.002	t = 1 minute		50/60 Hz, RMS; lisoL ≤ 1 mA		3000			٧


Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCC26-08io8B	MCC26-08io8B	Box	36	457752


Similar Part	Package	Voltage class
MCMA35P1200TA	TO-240AA-1B	1200
MCMA50P1200TA	TO-240AA-1B	1200

Equiva	alent Circuits for	Simulation	* on die level	T _{VJ} = 125 °C
$I \rightarrow V_0$)— <u>R</u> o	Thyristor		
V _{0 max}	threshold voltage	0.85		V
$R_{0 \text{ max}}$	slope resistance *	9.8		$m\Omega$


Outlines TO-240AA



Thyristor

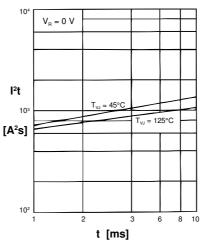


Fig. 2 I^2t versus time (1-10 ms)

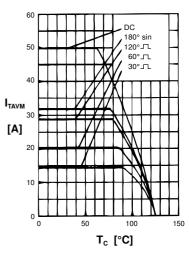


Fig. 3 Max. forward current at case temperature

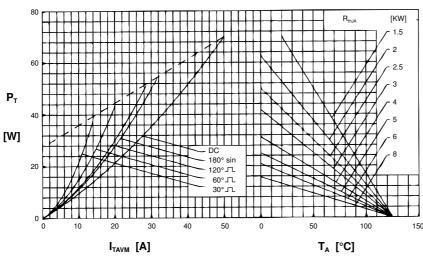


Fig. 4 Power dissipation versus onstate current & ambient temp. (per thyristor)

Fig. 5 Gate trigger charact.

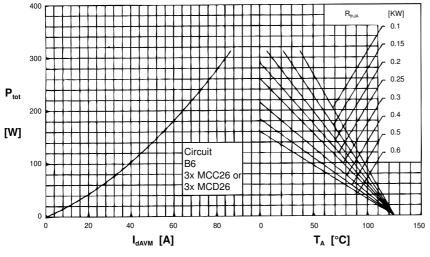


Fig. 6 Three phase rectifier bridge: Power dissipation versus direct output current and ambient temperature

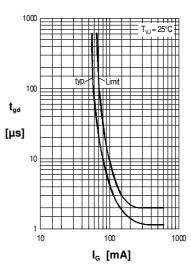


Fig. 7 Gate trigger delay time

Thyristor

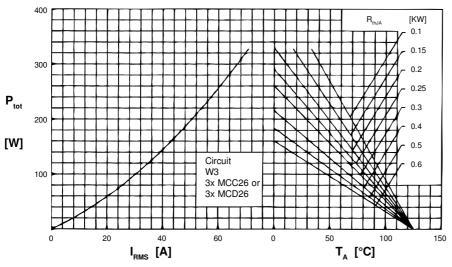


Fig. 8 Three phase AC-controller: Power dissipation vs. RMS output current and ambient temperature

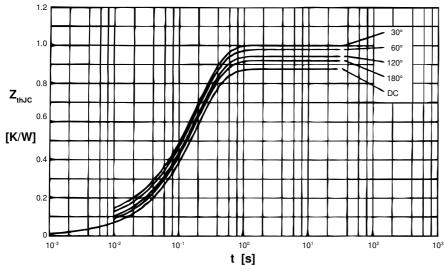


Fig. 9 Transient thermal impedance junction to case (per thyristor)

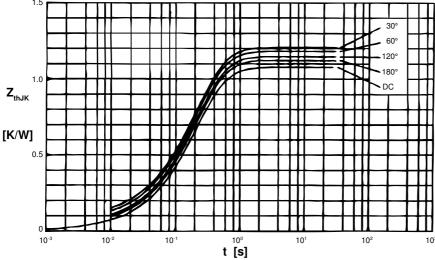


Fig. 10 Transient thermal impedance junction to heatsink (per thyristor)

 R_{thJC} for various conduction angles d:

1100	d	R_{thJC} [K/W]
	DC	0.88
1	80°	0.92
1	120°	0.95
	60°	0.98
	30°	1.01

Constants for Z_{thJC} calculation:

i I	R _{thi} [K/W]	t _, [s]
1	0.019	0.0031
2	0.029	0.0216
3	0.832	0.1910

 R_{thJK} for various conduction angles d:

d	R _{thJK} [K/
DC	1.08
180°	1.12
120°	1.15
60°	1.18
30°	1.21

Constants for Z_{thJK} calculation:

i	R _{thi} [K/W]	t, [s]
1	0.019	0.0031
2	0.029	0.0216
3	0.832	0.1910
4	0.200	0.4500