

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

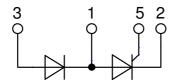
Thyristor \ Diode Module

=2x1200 V

60 A

 V_{T} 1.24 V

Phase leg


Part number

MCD56-12io8B

Backside: isolated

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

- Line rectifying 50/60 Hz
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: TO-240AA

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- · Reduced weight
- Advanced power cycling

Terms _Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.

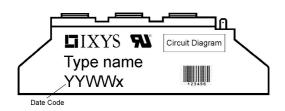
Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

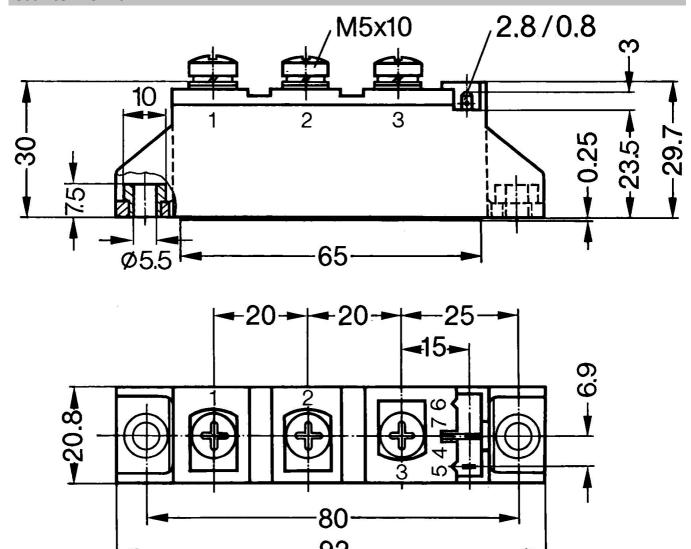
IXYS reserves the right to change limits, conditions and dimensions.

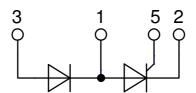
Data according to IEC 60747 and per semiconductor unless otherwise specified


20161222b

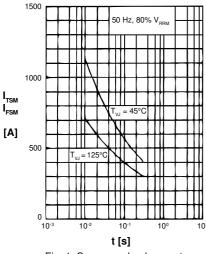
Definition	O a sa alisti a se s					
Definition	Conditions	T 0500	min.	typ.	max.	Un
· · · · · · · · · · · · · · · · · · ·						
·						'
reverse current, drain current						μ
						m
forward voltage drop	·	$T_{VJ} = 25^{\circ}C$			1.26	,
	$I_{T} = 200 \text{ A}$				1.57	'
	$I_T = 100 A$	$T_{VJ} = 125$ °C			1.24	,
	$I_{T} = 200 \text{ A}$				1.62	,
average forward current	T _C = 85°C	T _{vJ} = 125°C			60	
RMS forward current	180° sine				94	
threshold voltage		T _{vJ} = 125°C			0.85	,
slope resistance	oss calculation only				3.7	m۵
thermal resistance junction to cas	e				0.45	K/V
				0.20		K/V
total power dissipation		$T_{\rm C} = 25^{\circ}{\rm C}$			222	٧
,	t = 10 ms: (50 Hz), sine					k/
5	, , , , , , , , , , , , , , , , , , , ,	• •				k/
						k/
	, , , , , , , , , , , , , , , , , , , ,	• •				k
value for fusing						
value for rushing	•					i .
						į .
						į.
i un ati an a ann aite an a	• • •			7.4	7.87	
				/4	40	pl
max. gate power dissipation	·	I _C = 125°C				۷
	t _P = 300 μs				_	٧
average gate power dissipation						٧
critical rate of rise of current		•			150	A/μ
	$t_P = 200 \mu\text{s}; di_G/dt = 0.45 A/\mu\text{s}; -$					1
	$I_{G} = 0.45 A; V = \frac{2}{3} V_{DRM}$	on-repet., $I_T = 60 A$			500	A/µ
critical rate of rise of voltage	$V = \frac{2}{3} V_{DRM}$	$T_{VJ} = 125$ °C			1000	V/µ
	R _{GK} = ∞; method 1 (linear volta	ige rise)				; ! !
gate trigger voltage	V _D = 6 V	$T_{VJ} = 25^{\circ}C$			1.5	١
		$T_{VJ} = -40$ °C			1.6	١
gate trigger current	$V_D = 6 V$	$T_{VJ} = 25^{\circ}C$			100	m/
		$T_{VJ} = -40$ °C			200	m/
gate non-trigger voltage	$V_D = \frac{2}{3} V_{DRM}$				0.2	1
gate non-trigger current	3				10	m/
	t _o = 10 us	T _{v1} = 25°C				m
U	· ·				.50	,
holding current					200	m/
		-				
gate controlled delay little	$V_D = \frac{1}{2} V_{DRM}$ $I_G = 0.45 A; di_G/dt = 0.45 A/\mu s$					μ
	1 U 45 A: (II-/(II - U 45 A/II)	,	1			1
turn-off time	$V_{\rm B} = 100 \text{ V}; \ I_{\rm T} = 150 \text{ A}; \ V = \frac{3}{2}$			150		μ
	max. non-repetitive reverse/forward black reverse current, drain current forward voltage drop average forward current threshold voltage slope resistance thermal resistance junction to case thermal resistance case to heatsing total power dissipation max. forward surge current value for fusing junction capacitance max. gate power dissipation critical rate of rise of current critical rate of rise of voltage gate trigger voltage gate trigger current	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	max. non-repetitive reverse/forward blocking voltage $T_{v_d} = 25^{\circ}C$ 1300 max. repetitive reverse/forward blocking voltage $T_{v_d} = 25^{\circ}C$ 1200 reverse current, drain current $V_{N_{00}} = 1200 \text{ V}$ $T_{v_d} = 25^{\circ}C$ 200 forward voltage drop $I_T = 100 \text{ A}$ $T_{v_d} = 25^{\circ}C$ 126 $I_T = 200 \text{ A}$ $I_T = 100 \text{ A}$ $I_{v_d} = 125^{\circ}C$ 124 All $I_T = 200 \text{ A}$ $I_{v_d} = 125^{\circ}C$ 60 AWS forward current $I_{00} = 85^{\circ}C$ $T_{v_d} = 125^{\circ}C$ 60 AWS forward current $I_{00} = 85^{\circ}C$ $T_{v_d} = 125^{\circ}C$ 60 AWS forward current $I_{00} = 85^{\circ}C$ $T_{v_d} = 125^{\circ}C$ 60 AWS forward surge current $I_{00} = 100^{\circ}C$ $I_{00} = 100^{\circ}C$ 0.85 Internal resistance case to heatsink 0.20 0.20 0.20 Internal resistance case to heatsink 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

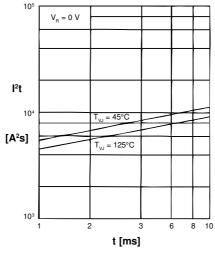
Package TO-240AA			Ratings					
Symbol	Definition	Conditions			min.	typ.	max.	Unit
RMS	RMS current	per terminal					200	Α
T _{VJ}	virtual junction temperature				-40		125	°C
Top	operation temperature				-40		100	°C
T _{stg}	storage temperature				-40		125	°C
Weight						81		g
M _D	mounting torque				2.5		4	Nm
$\mathbf{M}_{_{T}}$	terminal torque				2.5		4	Nm
d _{Spp/App}	creepage distance on surface	striking distance through air	terminal to terminal	13.0	9.7			mm
d _{Spb/Apb}	creepage distance on surface	Striking distance through an	terminal to backside		16.0			mm
V _{ISOL}	isolation voltage	t = 1 second			3600			٧
.002	t = 1 minute		50/60 Hz, RMS; lisoL ≤ 1 mA		3000			٧


Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCD56-12io8B	MCD56-12io8B	Box	36	457701


Similar Part	Package	Voltage class
MCMA65PD1200TB	TO-240AA-1B	1200
MCMA85PD1200TB	TO-240AA-1B	1200

Equiva	alent Circuits for	Simulation	* on die level	T _{VJ} = 125 °C
$I \rightarrow V_0$)— <u>R</u> o	Thyristor		
V _{0 max}	threshold voltage	0.85		V
$R_{0 \text{ max}}$	slope resistance *	2.5		mΩ


Outlines TO-240AA



Thyristor

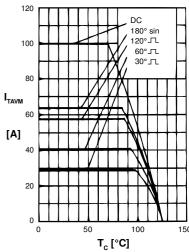
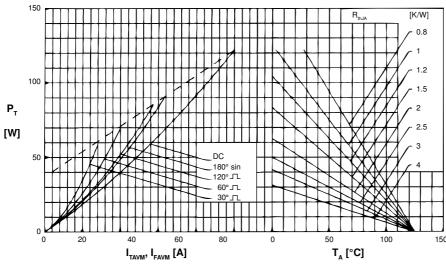



Fig. 1 Surge overload current I_{TSM} , I_{FSM} : Crest value, t: duration

Fig. 2 I2t versus time (1-10 ms)

Fig. 3 Maximum forward current at case temperature

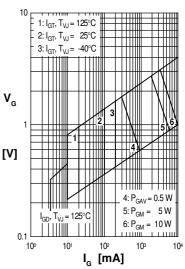
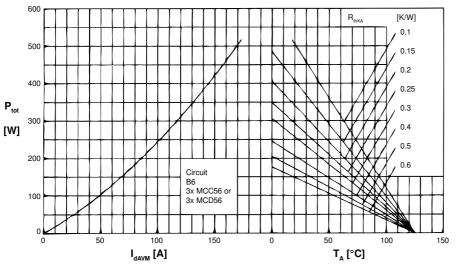



Fig. 4 Power dissipation vs. onstate current and ambient temperature (per thyristor/diode)

Fig. 5 Gate trigger charact.

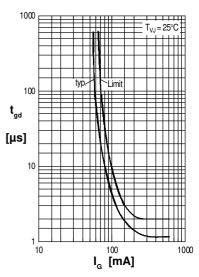


Fig. 6 Three phase rectifier bridge: Power dissipation versus direct output current and ambient temperature

Fig. 7 Gate trigger delay time

Rectifier

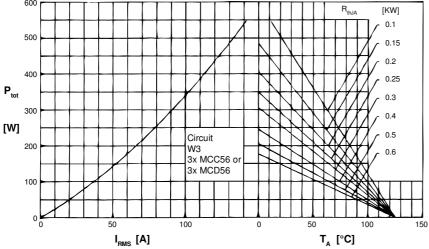


Fig. 8 Three phase AC-controller: Power dissipation vs. RMS output current and ambient temperature

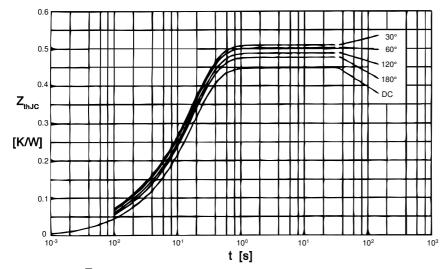


Fig. 9 Transient thermal impedance junction to case (per thyristor)

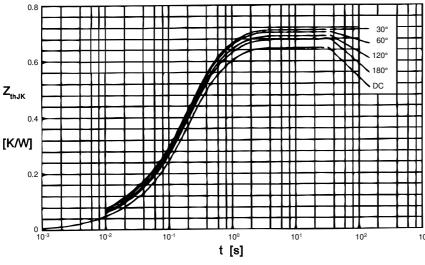


Fig. 10 Transient thermal impedance junction to heatsink (per thyristor)

 R_{thJC} for various conduction angles d:

hJC -	
d	R _{thJC} [K/W
DC	0.450
180°	0.470
120°	0.490
60°	0.505
30°	0.520

Constants for Z_{thJC} calculation:

i l	R _{thi} [K/W]	t, [s]
1	0.014	0.0150
2	0.026	0.0095
3	0.410	0.1750

 R_{thJK} for various conduction angles d:

d	R _{thJK} [K/W
DC	0.650
180°	0.670
120°	0.690
60°	0.705
30°	0.720

Constants for $\mathbf{Z}_{_{\text{thJK}}}$ calculation:

i F	R _{thi} [K/W]	t _i [s]
1	0.014	0.0150
2	0.026	0.0095
3	0.410	0.1750
4	0.200	0.6700