: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Thyristor Modules
 Thyristor/Diode Modules

$\mathrm{V}_{\text {RSM }}$	$\mathrm{V}_{\text {RRM }}$	Type				
$\mathrm{V}_{\text {DSM }}$	$\mathrm{V}_{\text {DRM }}$					
V	V	Version	1 B	8 B	Version	1 B 8 B
900	800	MCC 72-08	io1 B	08 B	MCD 72-08	io1 B/io8 B
1300	1200	MCC 72-12	io1 B	08 B	MCD 72-12	io1 B /io8 B
1500	1400	MCC 72-14	io1 B		MCD 72-1	io1 B /io8 B
1700	1600	MCC 72-16	io1 B	08 B	MCD 72-16	io1 B /io8 B
1900	1800	MCC 72-18	io1 B	08 B	MCD 72-1	io1 B /io8 B

Symbol	Conditions		Maximum Ratings	
$\mathrm{I}_{\text {TRMS }}, \mathrm{I}_{\text {FRMS }}$ $\mathrm{I}_{\text {TAVM, }}, \mathrm{I}_{\text {FAVM }}$	$\mathrm{T}_{\mathrm{vJ}}=\mathrm{T}_{\text {vjM }}$		180 A	
	$\mathrm{T}_{\mathrm{C}}=63^{\circ} \mathrm{C} ; 180^{\circ}$ sine		115	A
	$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C} ; 180^{\circ}$ sine		85 A	
$\mathrm{I}_{\text {TSM }}, \mathrm{I}_{\text {FSM }}$	$\mathrm{T}_{\text {vJ }}=45^{\circ} \mathrm{C}$	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$, sine	1700	A
	$\mathrm{V}_{\mathrm{R}}=0$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$, sine	1800	A
	$\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\text {vıM }}$	$\mathrm{t}=10 \mathrm{~ms}(50 \mathrm{~Hz})$, sine	1540	A
	$\mathrm{V}_{\mathrm{R}}=0$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$, sine	1640	A
$\int i^{2} d t$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=45^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=0 \end{aligned}$	$t=10 \mathrm{~ms}(50 \mathrm{~Hz})$, sine $\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$, sine	$\begin{aligned} & 14450 \\ & 13500 \end{aligned}$	$\begin{aligned} & \mathrm{A}^{2} \mathrm{~S} \\ & \mathrm{~A}^{2} \mathrm{~S} \end{aligned}$
	$\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\text {vjM }}$	$\mathrm{t}=10 \mathrm{~ms} \mathrm{(50} \mathrm{Hz)}$,	11850	$\mathrm{A}^{2} \mathrm{~S}$
	$\mathrm{V}_{\mathrm{R}}=0$	$\mathrm{t}=8.3 \mathrm{~ms}(60 \mathrm{~Hz})$, sine	11300	$A^{2} \mathrm{~s}$
(di/dt) ${ }_{\text {cr }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} \\ & \mathrm{f}=50 \mathrm{~Hz} ; \mathrm{t}_{\mathrm{P}}=200 \mu \mathrm{~s} \end{aligned}$	repetitive, $\mathrm{I}_{T}=250 \mathrm{~A}$	150	A/ $/ \mathrm{s}$
	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\text {DRM }} \\ & \mathrm{I}_{\mathrm{G}}=0.45 \mathrm{~A} \\ & \mathrm{di}_{\mathrm{G}} / \mathrm{dt}=0.45 \mathrm{~A} / \mathrm{\mu s} \end{aligned}$	non repetitive, $\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{\text {TAVM }}$	500	A/ $/$ s
(dv/dt) ${ }_{\text {cr }}$	$\begin{array}{lc} \hline \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJM}} ; & \mathrm{V}_{\mathrm{DR}}=2 / 3 \mathrm{~V}_{\mathrm{DRM}} \\ \mathrm{R}_{\mathrm{GK}}=\infty ; \text { method } 1 \text { (linear voltage rise) } \end{array}$		1000	V/us
$\mathbf{P}_{\text {GM }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{VJMM}} ; \\ & \mathrm{I}_{\mathrm{T}}=\mathrm{I}_{\mathrm{TAVM} ;} ; \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{p}}=30 \mu \mathrm{~s} \\ & \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s} \end{aligned}$	$\begin{array}{r} 10 \\ 5 \end{array}$	WW
$\mathbf{P}_{\text {GAV }}$			0.5	W
$\mathrm{V}_{\text {RGM }}$			10	V
T_{v}			$-40 \ldots+125 \quad{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {vJM }}$			$125{ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$			-40...+125 ${ }^{\circ} \mathrm{C}$	
$\mathrm{V}_{\text {ISOL }}$	50/60 Hz, RMS;$\mathrm{I}_{\mathrm{ISOL}} \leq 1 \mathrm{~mA} \text {; }$	$\begin{aligned} & t=1 \mathrm{~min} \\ & t=1 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 3000 \\ & 3600 \end{aligned}$	VV
$\mathrm{M}_{\text {d }}$	Mounting torque (M5)		2.5-4.0/22-35 Nm/lb.in.	
	Terminal connection torque (M5)		2.5-4.0/22-35 Nm/lb.in.	
Weight	Typical including screws		90	g

Data according to IEC 60747 and refer to a single thyristor/diode unless otherwise stated.

```
\(\mathrm{I}_{\text {trms }}=2 \times 180 \mathrm{~A}\)
\(\mathrm{I}_{\text {TAVM }}=2 \times 115 \mathrm{~A}\)
\(V_{\text {RRM }}=800-1800 \mathrm{~V}\)
```


MCC
Version 1 B

MCC
Version 8 B

MCD
Version 8 B

Features

- International standard package, JEDEC TO-240 AA
- Direct copper bonded $\mathrm{Al}_{2} \mathrm{O}_{3}$-ceramic base plate
- Planar passivated chips
- Isolation voltage 3600 V~
- UL registered, E 72873
- Gate-cathode twin pins for version 1B

Applications

- DC motor control
- Softstart AC motor controller
- Light, heat and temperature control

Advantages

- Space and weight savings
- Simple mounting with two screws
- Improved temperature and power cycling
- Reduced protection circuits

Symbol

| t_{q} | $\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{V}, \mathrm{m} ;} ; \mathrm{I}_{\mathrm{T}}=150 \mathrm{~A}, \mathrm{t}_{\mathrm{P}}=200 \mu \mathrm{~s} ;-\mathrm{d} / \mathrm{dt}=10 \mathrm{~A} / \mu \mathrm{s}$ | typ. 185 | $\mu \mathrm{~s}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~V}_{\mathrm{R}}=100 \mathrm{~V} ; \mathrm{dv} / \mathrm{dt}=20 \mathrm{~V} / \mu \mathrm{s} ; \mathrm{V}_{\mathrm{D}}=2 / 3 \mathrm{~V}_{\text {DRM }}$ | | | |

$\begin{aligned} & \mathbf{Q}_{\mathrm{S}} \\ & \mathbf{I}_{\mathrm{RM}} \end{aligned}$	$\mathrm{T}_{\mathrm{VJ}}=\mathrm{T}_{\mathrm{V} \text { M }} ; \mathrm{I}_{\mathrm{T}} / \mathrm{I}_{\mathrm{F}}=50 \mathrm{~A},-\mathrm{di} / \mathrm{dt}=6 \mathrm{~A} / \mu \mathrm{s}$	170 45	$\begin{gathered} \mu \mathrm{C} \\ \mathrm{~A} \end{gathered}$
$\mathrm{R}_{\mathrm{thJc}}$	per thyristor/diode; DC current per module other values	0.3 0.15	$\begin{aligned} & \text { K/W } \\ & \text { K/W } \end{aligned}$
$\mathrm{R}_{\text {thJK }}$	per thyristor/diode; DC current \int see Fig. 8/9 per module	$\begin{array}{r} 0.5 \\ 0.25 \end{array}$	$\begin{aligned} & \text { K/W } \\ & \text { K/W } \end{aligned}$
$\mathrm{d}_{\text {s }}$	Creepage distance on surface	12.7	mm
d_{A}	Strike distance through air	9.6	mm
a	Maximum allowable acceleration	50	$\mathrm{m} / \mathrm{s}^{2}$

Optional accessories for module-type MCC 72 version 1 B
Keyed gate/cathode twin plugs with wire length $=350 \mathrm{~mm}$, gate $=$ yellow, cathode $=$ red
Type ZY 200L (L = Left for pin pair 4/5) UL 758, style 1385,
Type ZY 200R ($\mathrm{R}=$ right for pin pair 6/7) $\}$ CSA class 5851, guide 460-1-1

Fig. 1 Gate trigger characteristics

Fig. 2 Gate trigger delay time

MCD Version 8 B

Fig. 3 Surge overload current

Fig. 4a Maximum forward current at case temperature

Fig. 5 Power dissipation versus onstate current and ambient temperature (per thyristor or diode)

Fig. 6 Three phase rectifier bridge: Power dissipation versus direct output current and ambient temperature

IXYS reserves the right to change limits, test conditions and dimensions

Fig. 7 Three phase AC-controller: Power dissipation versus RMS output current and ambient temperature

Fig. 8 Transient thermal impedance junction to case (per thyristor or diode)
$R_{\text {thJc }}$ for various conduction angles d :

d	$\mathrm{R}_{\text {thJc }}(\mathrm{K} / \mathrm{W})$
DC	0.3
180°	0.31
120°	0.33
60°	0.35
30°	0.37

Constants for $Z_{\text {thJc }}$ calculation:

i	$\mathrm{R}_{\mathrm{tti}}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.008	0.0019
2	0.054	0.047
3	0.238	0.3

Fig. 9 Transient thermal impedance junction to heatsink (per thyristor or diode)
$\mathrm{R}_{\mathrm{t} \mathrm{JJK}}$ for various conduction angles d :

d	$\mathrm{R}_{\mathrm{thJK}}(\mathrm{K} / \mathrm{W})$
DC	0.5
180°	0.51
120°	0.53
60°	0.55
30°	0.57

Constants for $Z_{\text {thJk }}$ calculation:

i	$\mathrm{R}_{\mathrm{tti}}(\mathrm{K} / \mathrm{W})$	$\mathrm{t}_{\mathrm{i}}(\mathrm{s})$
1	0.008	0.0019
2	0.054	0.047
3	0.238	0.3
4	0.2	1.25

IXYS reserves the right to change limits, test conditions and dimensions

