Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # MCDP28x0 DisplayPort1.2a to HDMI2.0 Level Shifter/Protocol Converter [LSPCON] **Datasheet** Rev B #### MegaChips' Proprietary Information MegaChips reserves the right to make any change herein at any time without prior notice. MegaChips does not assume any responsibility or liability arising out of application or use of any product or service described herein except as explicitly agreed upon. #### **Features** - DisplayPort® (DP) ver. 1.2a receiver - Link rate HBR2/HBR/RBR - 1, 2, or 4 lanes configuration - AUX CH 1 Mbps, HPD out - Supports eDP ASSR scrambler operation - · HDMI ver. 2.0 transmitter - Max data rate up to 6.0 Gbps/ch - Deep color up to 16 bits per color - 3D video timings, CEC, HPD in - Supports High Dynamic Range (HDR) - Supports scrambling for the higher data rate - Level shifter operation (up to 3.4Gbps/ch) - AC-coupled HDMI1.4b to DC-coupled HDMI1.4b - PHY analog repeater (re-driver or re-timer) - 3.3 V DDC/AUX CH signaling support with auto detect - 3.3 V DDC to 5V DDC buffering - I2C-over-AUX to 5V DDC translation - DP HPD_OUT matched to HDMI HPD_IN - Protocol converter operation (up to 6.0 Gbps/ch) - DP SST-to-HDMI format conversion - Video and audio forwarding - Pixel encoding format conversion from YCbCr444 to YCbCr420 - Horizontal expansion of VESA CVT to CEA-861 timings - Meta data handing - Level shifter Protocol converter mode switching - Via sideband communication (AUX CH/ DDC) - Max video resolution and color depth - 4Kp60Hz, RGB/YCbCr444, 8bpc - 4Kp60Hz, YCbCr420, up to 16bpc - 4Kp30Hz, RGB/YCbCr444, up to 16bpc - YCbCr420 support - YCbCr444-to-420 conversion, up to 16 bpc - YCbCr420 pass through, up to 16 bpc - · Stereoscopic 3D forwarding - Conversion from frame sequential over DP to stacked top-bottom 3D over HDMI - All other 3D formats forwarded as is - Audio forwarding - 2-ch, 768 kHz 24bps HBR audio - Up to 8-ch, 192 kHz, 24bps LPCM audio, AC3, DTS - Secure communication - Intel secure communication protocol compliant with LSPCON spec - HDCP content protection - Embedded HDCP keys - HDCP2.2 transmitter - HDCP1.x repeater - Metadata handling - HDMI TX DVI/HDMI mode setting (DPCD register) - YCbCr444-420 conversion (DPCD register) - IEC60958 BYTE3 channel status overwrite - CEA861F INFOFRAME generation - CEA861-3 HDR and Mastering InfoFrame - · SCDC read request handling - Polling enabled for HDMI sinks not supporting read request - AUX to I2C bridge for EDID/MCCS pass through - · CEC tunneling over AUX CH - · Device configuration options - SPI flash for firmware binary image storage required - AUX CH, I2C host interface (optional) - EMI reduction support - Spread spectrum for DP input - Scrambler for DP input and HDMI2.0a output - Low power operation - 412 mW in protocol converter mode - 100 mW in Level shifter mode - 0.1 mW in connected standby mode - · ESD specification - +/-6.5 KV HBM, 500 V CDM - Package - 64 LFBGA (7 x 7 mm) - Power supply voltages - 3.3 V I/O; 1.2 V core #### **Applications** - · PC notebook/ tablet motherboard - · DP/USB Type-C docking station, dongle Figure 1. MCDP28x0 internal block diagram # **Contents** | 1. | Desc | escription | | | | | | | |----|------|--|------|--|--|--|--|--| | 2. | Appl | lication overview | 9 | | | | | | | | 2.1 | Motherboard-down topology | 9 | | | | | | | | 2.2 | Adaptor topology | | | | | | | | 3. | BGA | A footprint and pin lists | . 11 | | | | | | | | 3.1 | Ball grid array diagram | 11 | | | | | | | | 3.2 | Signal mapping sorted by ball (pin) number | . 12 | | | | | | | 4. | Conr | nections | . 14 | | | | | | | | 4.1 | Pin list | . 14 | | | | | | | | 4.2 | Bootstrap configuration | . 18 | | | | | | | | 4.3 | RESETN connection | . 19 | | | | | | | 5. | Pack | kage specifications | . 20 | | | | | | | | 5.1 | Package drawing | . 20 | | | | | | | | 5.2 | LFBGA 7 x 7 dimensions | . 21 | | | | | | | | 5.3 | Marking field template and descriptors | . 21 | | | | | | | | 5.4 | Classification reflow profile | . 22 | | | | | | | 6. | Elec | trical specifications | . 23 | | | | | | | | 6.1 | Absolute maximum ratings | . 23 | | | | | | | | 6.2 | Power Connections | | | | | | | | | 6.3 | DC characteristics | | | | | | | | | 6.4 | AC characteristics | . 26 | | | | | | | | | 6.4.1 DisplayPort receiver | 27 | | | | | | | | | 6.4.2 HDMI transmitter I/O specifications | 28 | | | | | | | | | 6.4.3 I2C interface timing | 29 | | | | | | | | | 6.4.4 SPI interface timing | 30 | | | | | | | 7. | Orde | ering information | . 31 | | | | | | | 8. | Revi | ision history | . 32 | | | | | | # **List of Tables** | Table 1. | Pin list | . 12 | |-----------|--------------------------------------|------| | Table 2. | DisplayPort receiver pins | . 14 | | Table 3. | HDMI output pins | . 15 | | Table 4. | System interface pins | . 16 | | Table 5. | Power and ground pins | . 18 | | Table 6. | Bootstrap configuration | . 18 | | Table 7. | Field descriptors | 22 | | Table 8. | Absolute maximum ratings | 23 | | Table 9. | DC characteristics | 25 | | Table 10. | IO DC characteristics | 25 | | Table 11. | Maximum speed of operation | 26 | | Table 12. | DisplayPort receiver characteristics | 27 | | Table 13. | HDMI transmitter I/O specifications | 28 | | Table 14. | HDMI transmitter AC characteristics | 28 | | Table 15. | I2C interface timing | 29 | | Table 16. | SPI interface timing, VDD = 3.3 V | 30 | | Table 17. | Order codes | 31 | | Table 18. | Document revision history | 32 | # **List of Figures** | Figure 1. | MCDP28x0 internal block diagram | . 3 | |-----------|------------------------------------|-----| | Figure 2. | MCDP2800 motherboard-down use case | | | Figure 3. | MCDP2850 adaptor (dongle) use case | | | Figure 4. | MCDP28x0 BGA diagram | | | Figure 5. | RESETN Connection to MCDP28x0 | 19 | | Figure 6. | MCDP28x0 package drawing | 20 | | Figure 7. | MCDP28x0 package dimensions | | | Figure 8. | Marking template | 22 | | Figure 9. | I2C timing | 29 | ### 1. Description The MCDP28x0 is a power-optimized DisplayPort1.2a-to-HDMI 2.0 converter device targeted for desktop/mobile PC motherboard-down applications and for DP or USB type-C adaptor (dongle, docking station) applications. This device functions as a level shifter as well as an active protocol converter. In level shifter mode, the device functions as a PHY repeater with optional jitter removal capability. This operating mode provides a low-power means of using an AC-coupled TMDS signal from a dual mode DP (DP++) source to be repeated to the HDMI output. The maximum TMDS character clock frequency in this mode is limited to 340 Mchar/s (per HDMI1.4b specification). In Protocol Converter (PCON) mode, MCDP28x0 functions as a DP branch device receiving AC coupled DisplayPort stream and converting it to HDMI output. The maximum TMDS character clock frequency supported in this mode is up to 600 Mchar/s (as per the HDMI2.0a specification). The MCDP28x0 operates with two power supply voltages: 1.2 V and 3.3 V. It consumes: - 100 mW in PHY analog repeater mode - · 412 mW in protocol converter mode - 0.1 mW in connected standby mode (1.2 V power rail disabled) The MCDP28x0 has a DisplayPort1.2a dual-mode receiver and HDMI 2.0a transmitter. The upstream main link can receive DP input at HBR2 rate over 4 lanes and AC-coupled TMDS signal up to 340Mchar/s. It supports DP SST stream on its main link and Manchester-coded AUX signaling or native 3.3 I2C signaling as the side band channel with the DP++ source. The downstream HDMI TX port is HDMI 2.0 specification compliant. The MCDP28x0 is capable of supporting Ultra High-Definition video formats, resolutions as high as 4096 x 2160@60 Hz. It supports RGB/YCbCr video color formats with a color depth of 16 bpc (or 48 bits per pixel) as long as it fits within the DP1.2 and HDMI2.0a link rate. In addition, this device also supports pixel encoding conversion from YCbCr444 to YCbCr420 and YcbCr420 pass-through from a DP input to an HDMI output. High Dynamic Range (HDR) with deep color up to 12bpc at 4Kp60Hz is supported through the conversion of YCbCr444 CVT timing over DP link with horizontal expansion to YCbCr420 CEA timing on the HDMI TX output. This device offers secure reception and transmission of high bandwidth digital audio and video content with HDCP 1.x content protection for the upstream DP interface and HDCP2.2 for the downstream HDMI interface. It also operates as an HDCP1.x repeater between the source and the sink. In addition, it conforms to the secure communication protocol specified in the Intel "LSPCON Security Requirements" Architecture Specification" document. The MCDP28x0 comes with embedded HDCP keys that are stored in encrypted form. The MCDP28x0 uses an external crystal of 27 MHz as a reference clock for its operation and it has a reset input which provides the chip reset during system power up. The device has an on-chip microcontroller with SPI, UART, and I2C interfaces for system level communication and debug. It requires an external SPI flash memory for storing device configuration firmware. The firmware update is done through the DP AUX channel or through UART interface. An 8 Mbit SPI flash memory is recommended for storing the firmware with a backup option as fail-safe during in-system-programming. #### Application overview Two important target applications of MCDP28x0 are: - Mobile PC motherboard application. This is referred as motherboard-down topology and the part number that supports this topology is MCDP2800. - Accessory application (dongle, docking station etc.). This is referred as adaptor topology and the part number for this topology is MCDP2850. #### 2.1 Motherboard-down topology In a Motherboard-down topology, the MCDP2800 resides next to the source (CPU/GPU) device on a same PCB with relatively short copper tracks connecting directly to the source. These tracks are typically micro stripes with controlled impedance of $100~\Omega$. In this configuration, the source device is aware of the presence and capabilities of the MCDP2800. The source communicates with MCDP2800 through AUX/DDC interface via I2C-over-AUX or native I2C (3.3V) messaging. In this topology, typically the MCDP2800 operates as a re-driving or re-timing analog repeater for AC-coupled TMDS input for speeds below 3.4Gbps and as a DisplayPort to HDMI protocol converter for speeds above 3.4 Gbps up to 6.0 Gbps. The analog repeater mode saves the active power consumption during low frequency operation. MCDP2800 however is capable of operating as DP to HDMI protocol converter for the entire operating range up to 6 Gbps. The motherboard-down topology supports transmitting both HDCP1.x and HDCP2.2 protected content over the HDMI output. Motherboard Source SoC MCDP2800 HDMI Cable HDMI Sink Figure 2. MCDP2800 motherboard-down use case #### 2.2 Adaptor topology In an adaptor topology, the MCDP2850 is part of the source side adaptor or docking station that plugs into the PC/NB via a DP++ connector. In this case, a typical source sends out a DP signal to the adaptor and the adaptor converts it into HDMI 2.0 output for the entire operating frequency range. However, a source which is aware of the presence and capabilities of the MCDP2850 can choose to send an AC- coupled TMDS signal at lower speeds (below 3.4 Gbps) and a DP signal at higher speeds (above 3.4 Gbps) similar to a motherboard-down topology. In the adaptor application, the MCDP2850 dynamically decides whether to use I2C-over-AUX or native I2C messaging at the time of connectivity with the source. MCDP2850 only supports HDCP1.x repeater/transmitter functionality; no HDCP2.2 transmitter function allowed in this topology. Note: In an adaptor topology, signal degradation is higher compared to in a motherboard-down topology due to longer traces and multiple connectors in the path. Motherboard Source SoC Dongle MCDP2850 HDMI Cable HDMI Sink Figure 3. MCDP2850 adaptor (dongle) use case # 3. BGA footprint and pin lists # 3.1 Ball grid array diagram The ball grid array (BGA) diagrams give the allocation of signals to the balls of the package, shown from the top looking down using the PCB footprint. Some signal names in BGA diagrams have been abbreviated. Refer to the pin list for full signal names sorted by pin number. Figure 4. MCDP28x0 BGA diagram # 3.2 Signal mapping sorted by ball (pin) number Table 1. Pin list | Pin number | Net name | | | | | | |------------|----------------|--|--|--|--|--| | A1 | DPRX_L3N | | | | | | | A2 | DPRX_L3P | | | | | | | A3 | DPRX_L2N | | | | | | | A4 | DPRX_L2P | | | | | | | A5 | DPRX_L1N | | | | | | | A6 | DPRX_L1P | | | | | | | A7 | DPRX_L0N | | | | | | | A8 | DPRX_L0P | | | | | | | B1 | DPRX_HPD_OUT | | | | | | | B2 | VDD33_RX | | | | | | | В3 | GND | | | | | | | B4 | VDD12_RX | | | | | | | B5 | VDD12_RX | | | | | | | B6 | GND | | | | | | | B7 | VDD12_PLL | | | | | | | B8 | RESETN | | | | | | | C1 | SPI_CSN | | | | | | | C2 | SPI_DI | | | | | | | C3 | GPIO1 | | | | | | | C4 | VDD33_RX | | | | | | | C5 | VDD33_AUX | | | | | | | C6 | R_EXT | | | | | | | C7 | DPRX_AUXP | | | | | | | C8 | DPRX_AUXN | | | | | | | D1 | SPI_DO | | | | | | | D2 | SPI_CLK | | | | | | | D3 | VDD33_IO | | | | | | | D4 | GND | | | | | | | D5 | GND | | | | | | | D6 | VDD12_DIG | | | | | | | D7 | UART_TX | | | | | | | D8 | TEST | | | | | | | E1 | HDMITX_DDC_SCL | | | | | | | E2 | SPI_WP | | | | | | Table 1. Pin list (continued) | Pin number | Net name | | | | | | |------------|----------------|--|--|--|--|--| | E3 | VDD33_IO | | | | | | | E4 | GND | | | | | | | E5 | GND | | | | | | | E6 | I2C_SDA | | | | | | | E7 | UART_RX | | | | | | | E8 | XTAL | | | | | | | F1 | HDMITX_DDC_SDA | | | | | | | F2 | HDMI_CEC | | | | | | | F3 | CONFIG1 | | | | | | | F4 | VDD12_OSC | | | | | | | F5 | VDD12_DIG | | | | | | | F6 | I2C_SCL | | | | | | | F7 | C_EXT | | | | | | | F8 | TCLK | | | | | | | G1 | HDMITX_HPD_IN | | | | | | | G2 | VDD33_TX | | | | | | | G3 | GND | | | | | | | G4 | VDD33_TX | | | | | | | G5 | VDD12_TX | | | | | | | G6 | GND | | | | | | | G7 | VDD12_TX | | | | | | | G8 | VDD12_ON | | | | | | | H1 | HDMITX_CLKN | | | | | | | H2 | HDMITX_CLKP | | | | | | | H3 | HDMITX_CH0N | | | | | | | H4 | HDMITX_CH0P | | | | | | | H5 | HDMITX_CH1N | | | | | | | H6 | HDMITX_CH1P | | | | | | | H7 | HDMITX_CH2N | | | | | | | H8 | HDMITX_CH2P | | | | | | #### 4. Connections #### 4.1 Pin list I/O Legend: I = Input; O = Output; P = Power; G = Ground; IO = Bi-direction; AI = Analog input Table 2. DisplayPort receiver pins | Pin | Assignment | I/O | VDD
Domain | Description | | |-----|------------|-----|--|--|--| | A1 | DPRX_L3N | I | 1.2 V | DisplayPort receiver main link Lane 3 negative analog input. AC-coupled internal pull up to VDD12_RX through 50 Ω resistor. | | | A2 | DPRX_L3P | I | 1.2 V | DisplayPort receiver main link Lane 3 positive analog input. AC-coupled internal pull up to VDD12_RX through 50 Ω resistor. | | | A3 | DPRX_L2N | I | 1.2 V | DisplayPort receiver main link Lane 2 negative analog input. AC-coupled internal pull up to VDD12_RX through 50 Ω resistor. | | | A4 | DPRX_L2P | I | 1.2 V | DisplayPort receiver main link Lane 2 positive analog input. AC-coupled internal pull up to VDD12_RX through 50 Ω resistor. | | | A5 | DPRX_L1N | I | DisplayPort receiver main link Lane 1 negative and input. AC-coupled internal pull up to VDD12_RX through Ω resistor. | | | | A6 | DPRX_L1P | ı | 1.2 V | DisplayPort receiver main link Lane 1 positive analoginput. AC-coupled internal pull up to VDD12_RX through 5 Ω resistor. | | | A7 | DPRX_L0N | I | 1.2 V | DisplayPort receiver main link Lane 0 negative analog input. AC-coupled internal pull up to VDD12_RX through 50 Ω resistor. | | | A8 | DPRX_L0P | I | 1.2 V | DisplayPort receiver main link Lane 0 positive analog input. AC-coupled internal pull up to VDD12_RX through 50 Ω resistor. | | | Pin | Assignment | I/O | VDD
Domain | Description | |-----|--------------|-----|---------------|--| | C7 | DPRX_AUXP | Ю | 3.3 V | DisplayPort receiver auxiliary channel positive analog input/output. Common mode voltage = 3.3 V AC-coupled internal pull up to VDD33_AUX through 50 Ω resistor. Also functions as DDC_SCL. | | C8 | DPRX_AUXN | Ю | 3.3V | DisplayPort receiver auxiliary channel negative analog input/output. Common mode voltage = 3.3 V AC-coupled internal pull up to VDD33_AUX through 50 Ω resistor. Also functions as DDC_SDA. | | B1 | DPRX_HPD_OUT | 0 | 3.3 V | To the upstream HPD signal pin (DP source), to be externally pulled down (100K ohm recommended) as per DP1.2a spec. | | C6 | R_EXT | Ю | 1.2 V | Termination calibration reference resistor; 249 Ω 1% resistor should be connected from this pin to VDD12_RX (1.2 V analog power supply). | | F3 | CONFIG1 | Ю | 3.3V | General purpose IO. Connects to DP upstream connector pin 13 in Adaptor topology. Optional in Motherboard-down topology. Default POR state is INPUT use weak pull-down when not used. | #### Table 3. HDMI output pins | Pin | Assignment | I/O | VDD
Domain | Description | |-----|-------------|-----|---------------|--| | H1 | HDMITX_CLKN | 0 | 3.3 V | HDMI transmitter CLOCK_N to TX connector | | H2 | HDMITX_CLKP | 0 | 3.3 V | HDMI transmitter CLOCK_P to TX connector | | H3 | HDMITX_CH0N | 0 | 3.3 V | HDMI transmitter DATA0_N to TX connector | | H4 | HDMITX_CH0P | 0 | 3.3 V | HDMI transmitter DATA0_P to TX connector | | H5 | HDMITX_CH1N | 0 | 3.3 V | HDMI transmitter DATA1_N to TX connector | | H6 | HDMITX_CH1P | 0 | 3.3 V | HDMI transmitter DATA1_P to TX connector | | H7 | HDMITX_CH2N | 0 | 3.3 V | HDMI transmitter DATA2_N to TX connector | | H8 | HDMITX_CH2P | 0 | 3.3 V | HDMI transmitter DATA2_P to TX connector | | Pin | Assignment | I/O | VDD
Domain | Description | |-----|----------------|-----|-------------------|--| | E1 | HDMITX_DDC_SCL | 0 | 3.3 V, 5 V
Tol | HDMI TX DDC I2C master SCL. 3.3 V logic level, 5 V tolerant. Open drain, external 2.2 K pull up to +5 V. | | F1 | HDMITX_DDC_SDA | Ю | 3.3 V, 5 V
Tol | HDMI TX DDC I2C master SDA. 3.3 V logic level, 5 V tolerant. Open drain, external 2.2 K pull up to +5 V. | | F2 | HDMI_CEC | Ю | 3.3 V | CEC input. 3.3 V open drain IO. Connect to HDMI CEC pin, to be externally pulled up to 3.3 V (27K Ohm recommended) as per HDMI1.4b spec. | | G1 | HDMITX_HPD_IN | I | 3.3 V, 5 V
Tol | 3.3 V logic level, 5 V tolerant input from HDMI connector. To be externally pulled down via resistor. (47K Ohm recommended) | Table 4. System interface pins | Pin | Assignment | I/O | VDD
Domain | Reset State | Description | |-----|------------|-----|---------------|-------------|--| | B8 | RESETN | I | 3.3 V | Input | Power-ON chip reset (active low) input signal Connects to 3.3V VDD through 2.2K +/-10% resistor | | E8 | XTAL | Ю | 1.2 V | NA | Connect to 27 MHz crystal oscillator with 22 pF to VDD12_OSC | | F8 | TCLK | Ю | 1.2 V | NA | Connect to 27 MHz crystal oscillator with 22 pF to VDD12_OSC | | F7 | C_EXT | 0 | 3.3V | NA | Capacitor for filtering internal 2.5V LDOR. Connect to GND through 2.2uF capacitor. | | G8 | VDD12_ON | 0 | 3.3 V | Output | 1.2 V power control signal to control external 1.2 V power as shown in Figure 4. Reset State definition assumes 3.3 V Rail is ramped up to full voltage. | | Pin | Assignment | I/O | VDD
Domain | Reset State | Description | |-----|------------|-----|---------------|-----------------------|---| | D8 | TEST | Ю | 3.3 V | NA | Test select. Tie to GND for mission mode | | E6 | I2C_SDA | Ю | 3.3 V | Input, Internal | Host I2C interface data line. External pull-up required for I2C operation. Leave NC when not used. | | F6 | I2C_SCL | 1 | 3.3 V | Input, Internal
PU | Host I2C interface clock line. External pull-up required for I2C operation. Leave NC when not used. | | C3 | GPIO1 | Ю | 3.3 V | Input, Internal
PU | General purpose input/output. Applicable for CONFIG2 if needed. Default POR state is INPUT; use weak pull-down when not used. | | C1 | SPI_CSN | 0 | 3.3 V | Input, Internal
PU | Serial peripheral interface chip select | | C2 | SPI_DI | I | 3.3 V | Input, Internal
PD | Serial peripheral interface data input | | D1 | SPI_DO | 0 | 3.3 V | Input, Internal
PD | Serial peripheral interface data output | | D2 | SPI_CLK | 0 | 3.3 V | Input, Internal
PD | Serial peripheral interface clock | | E2 | SPI_WP | 0 | 3.3 V | Input, Internal
PD | Serial peripheral interface write protect | | D7 | UART_TX | 0 | 3.3 V | Input, Internal
PU | Universal asynchronous serial Tx output. Leave NC when not used. | | Pin | Assignment | I/O | VDD
Domain | Reset State | Description | |-----|------------|-----|---------------|-----------------------|---| | E7 | UART_RX | 1 | 3.3 V | Input, Internal
PU | Universal asynchronous serial Rx input. Leave NC when not used. | Table 5. Power and ground pins | Pin | Assignment | Voltage Level | Description | | |-----------------------------------|------------|---------------|-------------------------------|--| | B2, C4 | VDD33_RX | L3.3 V | DisplayPort RX analog power | | | B4, B5 | VDD12_RX | 1.2 V | DisplayPort RX analog power | | | C5 | VDD33_AUX | 3.3 V | DisplayPort AUX analog power | | | B7 | VDD12_PLL | 1.2 V | PLL analog power | | | F4 | VDD12_OSC | 1,2 V | Oscillator circuit power | | | G2, G4 | VDD33_TX | 3.3 V | HDMI TX analog power | | | G5, G7 | VDD12_TX | 1.2 V | HDMI TX analog power | | | D6, F5 | VDD12_DIG | 1.2 V | Core and 1.2V IO power | | | D3, E3 | VDD33_IO | 3.3 V | 3.3V IO power | | | B3, B6, D4, D5, E4,
E5, G3, G6 | GND | GND | Power return for all supplies | | # 4.2 Bootstrap configuration Other than the normal operating mode (mission mode), the MCDP28x0 is configured in testing and debugging mode during factory testing and chip bring-up. For this purpose, the chip is configured during the boot operation using several bootstrap configurations. DC levels on these bootstrap pins are latched during the de-asserting edge of power-on reset (RESETN goes HIGH). The levels specified below must be adhered to for the normal function of the device. Table 6. Bootstrap configuration | Bootstrap signal name | Internal PU/PD | Pin assignment | Function | |-----------------------|---------------------------------|----------------|------------------------------------| | Bootstrap 0 | ootstrap_0 PULL UP UART_TX (D7) | | 0: Reserved for ATE test | | Dootstrap_o | | | 1: Normal operation (mission mode) | | Bootstrap 1 | PULL DN | SPI WP (E2) | 0: Normal operation (mission mode) | | | | |---------------|---------------------|----------------|---|--|--|--| | Bootstrap_1 | T OLL BIV | Of 1_W1 (L2) | 1: OCM debug mode | | | | | Bootstrap 2 | | | 0: (Default) Internal ROM is enabled and mapped to top 32 K of OCM memory map. OCM boots from IROM. Normal mode (mission mode). | | | | | Bootstrap_2 | T OLL BIV | SI I_OLIX (DZ) | 1: Internal ROM is disabled. External ROM includes the address range reserved for IROM. OCM boots from EXTROM. Debug mode. | | | | | Bootstrap 3 | Bootstrap 3 PULL DN | | 0: Default. Reserved (mission mode) | | | | | Bootstrap_o | T OLL BIV | SPI_DO (D1) | 1: Reserved for testing | | | | | Bootstrap 4 | PULL UP | SPI_CSN (C1) | 0: Select external CLK on XTAL pin (used in ATE). | | | | | - 500ιδιιαρ_4 | T OLL OI | 011_0014 (01) | 1: (Default) Select crystal and internal oscillator. Normal operation (mission mode). | | | | Note: When the pin corresponding to a specific bootstrap is left NC, the pin takes the value of the assigned by the internal PULLUP (Level 1) or PULLDN (Level 0). The internal resistor used is around 50 k Ω . To select a non-default value on a bootstrap, an external PULLUP or PULLDN resistor tied to the opposite direction that overcomes the internal PULLUP or PULLDN needs to be used. #### 4.3 RESETN connection The RESETN pin must be pulled up to 3.3 V via a 2.2 kohm +/- 10% resistor as shown below. The chip also supports an active low, external reset pulse to RESETN allowing a system host controller to reset the system. The recommended way to drive RESETN is through an open-drain output. Alternately, if an open-drain output is not available, the series resistor shown in the figure below is required. Figure 5. RESETN Connection to MCDP28x0 # 5. Package specifications Package type: LFBGA (7 x 7 x 1.4 mm, 64 F8 x 8 Pitch 0.8 Ball 0.4) # 5.1 Package drawing Figure 6. MCDP28x0 package drawing #### 5.2 LFBGA 7 x 7 dimensions Figure 7. MCDP28x0 package dimensions | | DIMENSIONS | | | | | | | |------|----------------------------|------|------|------|-------|------|-------| | | DATABOOK DRAWING (mm) (mm) | | | | | | | | REF. | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | NOTES | | А | | | 1.4 | | | 1.24 | (1) | | A1 | 0.25 | | | 0.25 | 0.30 | 0.35 | | | A2 | | 0.29 | | 0.24 | 0.28 | 0.32 | | | A4 | | | 0.60 | 0.57 | 0.585 | 0.60 | | | b | 0.35 | 0.40 | 0.45 | 0.35 | 0.40 | 0.45 | (2) | | D | 6.95 | 7.00 | 7.05 | 6.95 | 7.00 | 7.05 | | | D1 | | 5.60 | | | 5.60 | | | | E | 6.95 | 7.00 | 7.05 | 6.95 | 7.00 | 7.05 | | | E1 | | 5.60 | | | 5.60 | | | | е | | 0.80 | | | 0.80 | | | | Z | | 0.70 | | | 0.70 | | | | ddd | | | 0.08 | | | 0.08 | | | eee | | | 0.09 | | | 0.09 | (4) | | fff | | | 0.05 | | | 0.05 | (5) | #### NOTES: - (1) LFBGA stands for Low profile Fine Pitch Ball Grid Array. - Thin profile: $1.00mm < A \le 1.20mm$ / Fine pitch: e < 1.00mm pitch. - The total profile height (Dim A) is measured from the seating plane to the top of the component - The maximum total package height is calculated by the following methodology: - A Max = A1 Typ + A2 Typ + A4 Typ + $\sqrt{(A1^2 + A2^2 + A4^2 \text{ tolerance values})}$ - (2) The typical ball diameter before mounting is 0.40mm. - (3) LFBGA with 0.40mm pitch is not yet registered into JEDEC Publications. - (4) The tolerance of position that controls the location of the pattern of balls with respect to datums A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. - (5) The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely in the respective zone eee above The axis of each ball must lie simultaneously in both tolerance zones. - (6) The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized markings, or other feature of package body or integral heatslug. - A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional. #### 5.3 Marking field template and descriptors The MCDP28x0 marking template is shown below. Figure 8. Marking template Field descriptors are shown below. **Table 7.Field descriptors** | Field | Description | Marking | |-------|------------------------------------|--| | Α | MegaChips logo | MegaChips | | В | Product code | One of the codes below: MCDP2800BB MCDP2850BB MCDP2800BC MCDP2850BC | | С | 2-character diffusion plant code | VQ | | D | 3-digit wafer start date | "YWW" | | Е | 3-character FE sequence code | "ABC" | | F | 2-character assembly plant code | 99 | | G | 3-character BE sequence code | "XYZ" | | Н | Optional marking |

 | | I | 3-character country of origin code | MYS | | J | 2-digit test plant code | 8U | | К | 1-digit assembly year | "Y" | | L | 2-digit assembly week | "WW" | | M | Ball A1 identifier | a DOT | ^{1.} Marked ES for Engineering Samples, used for development purposes. # 5.4 Classification reflow profile Please refer to the DisplayPort Application Note: Classification reflow profile for SMD devices (C0353-APN-06) for reflow diagram and details. # 6. Electrical specifications #### 6.1 Absolute maximum ratings Applied conditions greater than those listed under "Absolute maximum ratings" may cause permanent damage to the device. The device should never exceed absolute maximum conditions since it may affect device reliability. **Table 8. Absolute maximum ratings** | Parameter | Symbol | Min | Тур | Max | Units | |---|----------------------|------|-----|---------|-------| | 3.3 V supply voltages (1,2) | V _{VDD_3.3} | -0.3 | 3.3 | 3.96 | V | | 1.2 V supply voltages (1.2) | V _{VDD_1.2} | -0.3 | 1.2 | 1.44 | V | | Input voltage tolerance for 3.3 V, 5 V tolerant I/O pins | V _{IN5tol} | -0.3 | | 5.5 | V | | Input voltage tolerance for 3.3 V I/O pins | V _{IN3V3} | -0.3 | | 3.63 | V | | ESD – Human Body Model (HBM) [JESD22-A114 spec] For all pins | V _{ESD} | | | +/- 2.0 | kV | | ESD – Human Body Model (HBM) [IEC61000-4 spec]
For DP and HDMI connector-facing pins | V _{ESD} | - | - | +/- 6.5 | kV | | ESD – Charged Device Model (CDM) | V _{ESD} | - | - | +/- 500 | V | | Latch-up (3,4) | I _{LA} | - | - | +/- 100 | mA | | Ambient operating temperature | T _A | 0 | - | 70 | °C | | Storage temperature | T _{STG} | -40 | - | 150 | °C | | Operating junction temperature | T _J | 0 | 75 | 125 | °C | | Thermal resistance (Junction to Ambient) ⁽⁵⁾ | θ_{JA} | - | - | 49.0 | °C/W | | Thermal resistance (Junction to Case) ⁽⁵⁾ | θ_{JC} | - | - | 20.1 | °C/W | | Peak IR reflow soldering temperature | T _{SOL} | - | - | 260 | °C | Note (1): All voltages are measured with respect to GND. Note (2): Absolute maximum voltage ranges are for transient voltage excursions. Note (3): For connector facing pins CONFIG1 and DPRX_HPD_OUT, a series resistor of 100 ohms is recommended. Refer to the MCDP28x0 Layout Guideline appnote. Note (4): JEDEC Class1. Note (5): These are simulated results under the following conditions: Four layer JEDEC PCB, no heat spreader, Air flow = 0 m/s. #### 6.2 Power Connections #### 6.3 DC characteristics **Table 9. DC characteristics** | Parameter | Symbol | Min | Тур | Max | Units | |---|----------------------|------|-----|-----------|-------| | 3.3 V supply voltages (analog and digital) | V _{VDD_3.3} | 3.14 | 3.3 | 3.47 | V | | 1.2 V supply voltages (analog and digital) | V _{VDD_1.2} | 1.14 | 1.2 | 1.26 | V | | Power | | | | | | | Protocol converter Mode Measurement condition: Nominal corner, 25°C, Nominal power supply 4k x 2k / 60 Hz 4L HBR2 to HDMI test pattern: ON-OFF dot Moire attributes-based rendering | | | 412 | 460 | mW | | Analog PHY repeater mode | | | 100 | 120 | mW | | Sleep State | | | 18 | 20 | mW | | Connected standby mode | | | 0.1 | 0.2 | mW | | Supply current | | | | | | | Measurement conditions: Nominal corner, 25°C, Nominal power supply 4k x 2k @60 MHz 4L HBR to HDMI2.0a VDD (analog and digital) 3.3V VDD (analog and digital) 1.2V | | | | 30
300 | mA | Note: Ripple amplitude for power supplies should be 30 mV or lower with max ripple frequency of up to 30 MHz. Table 10. IO DC characteristics | Parameter | Symbol | Min | Тур | Max | Units | | | |--|-------------------|------|-----|--------|-------|--|--| | Inputs 3.3 V IO signals, 5 V tolerant open drain type | | | | | | | | | High voltage | V _{IH} | 2.0 | | 5.5 | V | | | | Low voltage | V _{IL} | -0.3 | | 0.8 | V | | | | Input Hysteresis voltage | V _{HYST} | 300 | | | mV | | | | High current (V _{IN} = 3.3 V) | I _{IH} | | | +/- 10 | μΑ | | | | Low current (V _{IN} = 0.8 V) | I _{IL} | | | +/- 10 | μΑ | | | | Input capacitance | C _{IN} | | 5 | | pF | | | | Outputs 3.3 V IO signals, 5 V tolerant open drain type | | | | | | | |