Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ### **Freescale Semiconductor** Data Sheet: Technical Data Document Number: MCF51AC256 Rev.7, 9/2011 # MCF51AC256 Series ColdFire Microcontroller Covers: MCF51AC256A MCF51AC256B MCF51AC128A MCF51AC128C The MCF51AC256 series are members of the ColdFire[®] family of 32-bit variable-length reduced instruction set (RISC) microcontroller. This document provides an overview of the MCF51AC256 series, focusing on its highly integrated and diverse feature set. The MCF51AC256 series are based on the V1 ColdFire core and operates at processor core speeds up to 50.33 MHz. As part of Freescale's Controller Continuum[®], it is an ideal upgrade for designs based on the MC9S08AC128 series of 8-bit microcontrollers. The MCF51AC256 features the following functional units: - V1 ColdFire core with background debug module - Up to 256 KB of flash memory - Up to 32 KB of static RAM (SRAM) - Up to two analog comparators (ACMP) - Analog-to-digital converter (ADC) with up to 24 channels - Controller-area network (CAN) - Cyclic redundancy check (CRC) - Inter-integrated circuit (IIC) - Keyboard interrupt (KBI) - Multipurpose clock generator (MCG) - Rapid general-purpose input/output (RGPIO) # **MCF51AC256** - Two serial communications interfaces (SCI) - Up to two serial peripheral interfaces (SPI) - Two flexible timer modules (FTM) - Timer pulse-width modulator (TPM) This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2008-2011. All rights reserved. # **Table of Contents** | 1 | MCF! | 51AC256 Family Configurations | |------|--------|--| | | 1.1 | Device Comparison3 | | | 1.2 | Block Diagram4 | | | 1.3 | Features | | | | 1.3.1 Feature List | | | 1.4 | Part Numbers | | | 1.5 | Pinouts and Packaging | | 2 | Elect | rical Characteristics | | | 2.1 | Parameter Classification | | | 2.2 | Absolute Maximum Ratings | | | 2.3 | Thermal Characteristics | | | 2.4 | Electrostatic Discharge (ESD) Protection Characteristics
19 | | | 2.5 | DC Characteristics | | | 2.6 | Supply Current Characteristics | | | 2.7 | Analog Comparator (ACMP) Electricals | | | 2.8 | ADC Characteristics | | | 2.9 | External Oscillator (XOSC) Characteristics | | | 2.10 | MCG Specifications32 | | | 2.11 | AC Characteristics | | | | 2.11.1 Control Timing | | | | 2.11.2 Timer (TPM/FTM) Module Timing | | | | 2.11.3 MSCAN | | | 2.12 | SPI Characteristics | | | | Flash Specifications | | | 2.14 | EMC Performance39 | | | | 2.14.1 Radiated Emissions39 | | 3 | | nanical Outline Drawings | | 4 | Revis | sion History | | | | | | Lis | st of | Figures | | | | .MCF51AC256 Series Block Diagram 5 | | | | .MCF51AC256 Series ColdFire Microcontroller | | | guio 2 | 80-Pin LQFP | | Fi | aura 3 | .MCF51AC256 Series ColdFire Microcontroller | | | guio o | 64-Pin QFP/LQFP | | Fi | nure 4 | .MCF51AC256 Series ColdFire Microcontroller | | | guio 4 | 44-Pin LQFP | | Fi | aure 5 | Typical I_{OH} vs. V_{DD} - V_{OH} at V_{DD} = 3 V | | , | guioo | (Low Drive, PTxDSn = 0) | | Fi | aure 6 | Typical I_{OH} vs. $V_{DD}-V_{OH}$ at $V_{DD}=3$ V | | . " | 94.00 | (High Drive, PTxDSn = 1) | | Fi | aure 7 | Typical I_{OH} vs. V_{DD} - V_{OH} at V_{DD} = 5 V | | - "; | J C . | (Low Drive, PTxDSn = 0) | | Figure 8. Typical I _{OH} vs. V _{DD} –V _{OH} at V _{DD} = 5 V
(High Drive, PTxDSn = 1) | |---| | Figure 9. Typical Run IDD vs. System Clock Freq. | | for FEI and FBE Modes | | Figure 10.ADC Input Impedance Equivalency Diagram 29 | | Figure 11.Reset Timing | | Figure 12.IRQ/KBIPx Timing | | Figure 13.Timer External Clock | | Figure 14.Timer Input Capture Pulse | | Figure 15.SPI Master Timing (CPHA = 0) | | Figure 16.SPI Master Timing (CPHA =1) | | Figure 17.SPI Slave Timing (CPHA = 0) | | Figure 18.SPI Slave Timing (CPHA = 1) | | List of Tables | | Table 1. MCF51AC256 Series Device Comparison | | Table 2. MCF51AC256 Series Functional Units 6 | | Table 3. Orderable Part Number Summary 10 | | Table 4. Pin Availability by Package Pin-Count | | Table 5. Parameter Classifications | | Table 6. Absolute Maximum Ratings | | Table 7. Thermal Characteristics | | Table 8. ESD and Latch-up Test Conditions 20 | | Table 9. ESD and Latch-Up Protection Characteristics 20 | | Table 10.DC Characteristics | | Table 11. Supply Current Characteristics | | Table 12. Analog Comparator Electrical Specifications 27 | | Table 13.5 Volt 12-bit ADC Operating Conditions 28 | | Table 14.5 Volt 12-bit ADC Characteristics | | $(V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA}) \dots 29$ | | Table 15.Oscillator Electrical Specifications | | (Temperature Range = -40 to 105 °C Ambient) 31 | | Table 16.MCG Frequency Specifications | | (Temperature Range = -40 to 105 °C Ambient) 32 | | Table 17.Control Timing | | Table 18.TPM/FTM Input Timing | | Table 19.MSCAN Wake-Up Pulse Characteristics | | Table 20.SPI Timing | | Table 21.Flash Characteristics | | Table 22.Package Information | | Table 23. Revision History | | | # 1.1 Device Comparison The MCF51AC256 series is summarized in Table 1. Table 1. MCF51AC256 Series Device Comparison | Feature | | AC256A | МС | F51AC2 | 56B | MCF51 | AC128A | MCF51AC128C | | 8C | |---|-----|--------|--------|--------|--------|--------|--------|-----------------------|--------|--------| | | | 64-pin | 80-pin | 64-pin | 44-pin | 80-pin | 64-pin | 80-pin | 64-pin | 44-pin | | Flash memory size (Kbytes) | | • | 256 | • | | | | 128 | | | | RAM size (Kbytes) | | | 32 | | | | | 32 or 16 ¹ | | | | V1 ColdFire core with BDM (background debug module) | | | | | ١ | ⁄es | | | | | | ACMP1 (analog comparator) | | | | | ١ | ⁄es | | | | | | ACMP2 (analog comparator) | Y | es | Ye | es | No | | Ye | es | | No | | ADC (analog-to-digital converter) channels (12-bit) | 24 | 20 | 24 | 20 | 9 | 24 | 20 | 24 | 20 | 9 | | CAN (controller area network) | Y | es | | No | | Ye | es | | No | | | COP (computer operating properly) | | | | | ١ | ⁄es | | • | | | | CRC (cyclic redundancy check) | | | | | Υ | ⁄es | | | | | | RTI | Yes | | | | | | | | | | | DBG (debug) | Yes | | | | | | | | | | | IIC1 (inter-integrated circuit) | | | | | Υ | ⁄es | | | | | | IRQ (interrupt request input) | | | | | ١ | ⁄es | | | | | | INTC (interrupt controller) | | | | | ١ | ⁄es | | | | | | KBI (keyboard interrupts) | | | | | ١ | ⁄es | | | | | | LVD (low-voltage detector) | Yes | | | | | | | | | | | MCG (multipurpose clock generator) | Yes | | | | | | | | | | | OSC (crystal oscillator) | | | | | ١ | ⁄es | | | | | | Port I/O ² | 69 | 54 | 69 | 54 | 36 | 69 | 54 | 69 | 54 | 36 | | RGPIO (rapid general-purpose I/O) | | 1 | 6 | | 12 | | 1 | 6 | | 12 | | SCI1, SCI2 (serial communications interfaces) | Yes | | | | | | | | | | | SPI1 (serial peripheral interface) | | | | | ١ | ⁄es | | | | | | SPI2 (serial peripheral interface) | Yes | No | Yes | N | lo | Yes | No | Yes | N | 0 | | FTM1 (flexible timer module) channels | | 6 | 3 | | 4 | | . (| 6 | | 4 | | FTM2 channels | 6 | 2 | 6 | 2 | 2 | 6 | 2 | 6 | 2 | 2 | Table 1. MCF51AC256 Series Device Comparison (continued) | Feature | MCF51AC256A | | MCF51AC256B | | MCF51AC128A | | MCF51AC128C | | | | |---|-------------|--------|-------------|--------|-------------|--------|-------------|--------|--------|--------| | reature | 80-pin | 64-pin | 80-pin | 64-pin | 44-pin | 80-pin | 64-pin | 80-pin | 64-pin | 44-pin | | TPM3 (timer pulse-width modulator) channels | | | | | | 2 | | | | | | VBUS (debug visibility bus) | Yes | No | Yes | N | lo | Yes | No | Yes | N | 0 | The members of MCF51AC128A with CAN support have 32 KB RAM. The other members have 16 KB RAM. # 1.2 Block Diagram Figure 1 shows the connections between the MCF51AC256 series pins and modules. $^{^{2}\,}$ Up to 16 pins on Ports E and F are shared with the ColdFire Rapid GPIO module. Figure 1. MCF51AC256 Series Block Diagram ### 1.3 Features Table 2 describes the functional units of the MCF51AC256 series. #### Table 2. MCF51AC256 Series Functional Units | Functional Unit | Function | |--|--| | CF1 Core (V1 ColdFire core) | Executes programs and interrupt handlers | | BDM (background debug module) | Provides single pin debugging interface (part of the V1 ColdFire core) | | DBG (debug) | Provides debugging and emulation capabilities (part of the V1 ColdFire core) | | VBUS (debug visibility bus) | Allows for real-time program traces (part of the V1 ColdFire core) | | SIM (system integration module) | Controls resets and chip level interfaces between modules | | Flash (flash memory) | Provides storage for program code, constants and variables | | RAM (random-access memory) | Provides storage for program variables | | RGPIO (rapid general-purpose input/output) | Allows for I/O port access at CPU clock speeds | | VREG (voltage regulator) | Controls power management across the device | | COP (computer operating properly) | Monitors a countdown timer and generates a reset if the timer is not regularly reset by the software | | LVD (low-voltage detect) | Monitors internal and external supply voltage levels, and generates a reset or interrupt when the voltages are too low | | CF1_INTC (interrupt controller) | Controls and prioritizes all device interrupts | | ADC (analog-to-digital converter) | Measures analog voltages at up to 12 bits of resolution | | FTM1, FTM2 (flexible timer/pulse-width modulators) | Provides a variety of timing-based features | | TPM3 (timer/pulse-width modulator) | Provides a variety of timing-based features | | CRC (cyclic redundancy check) | Accelerates computation of CRC values for ranges of memory | | ACMP1, ACMP2 (analog comparators) | Compares two analog inputs | | IIC (inter-integrated circuit) | Supports standard IIC communications protocol | | KBI (keyboard interrupt) | Provides pin interrupt capabilities | | MCG (multipurpose clock generator) | Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources | | OSC (crystal oscillator) | Allows a crystal or ceramic resonator to be used as the system clock source or reference clock for the PLL or FLL | | LPO (low-power oscillator) | Provides a second clock source for COP and RTI. | | CAN (controller area network) | Supports standard CAN communications protocol | | SCI1, SCI2 (serial communications interfaces) | Serial communications UARTs capable of supporting RS-232 and LIN protocols | | SPI1 (8-bit serial peripheral interfaces) | Provides 8-bit 4-pin synchronous serial interface | | SPI2 (16-bit serial peripheral interfaces) | Provides 16-bit 4-pin synchronous serial interface with FIFO | #### MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 #### 1.3.1 Feature List - 32-bit Version 1 ColdFire® central processor unit (CPU) - Up to 50.33 MHz at 2.7 V 5.5 V - Provide 0.94 Dhrystone 2.1 DMIPS per MHz performance when running from internal RAM (0.76 DMIPS per MHz when running from flash) - Implements instruction set revision C (ISA_C) - On-chip memory - Up to 256 KB flash memory read/program/erase over full operating voltage and temperature - Up to 32 KB static random access memory (SRAM) - Security circuitry to prevent unauthorized access to SRAM and flash contents - Power-Saving Modes - Three low-power stop plus wait modes - Peripheral clock enable register can disable clocks to unused modules, reducing currents; allows clocks to remain enabled to specific peripherals in stop3 mode - System protection features - Watchdog computer operating properly (COP) reset with options to run from independent LPO clock or bus clock - Low-voltage detection with reset or interrupt - Illegal opcode and illegal address detection with programmable reset or exception response - Flash block protection - Debug support - Single-wire background debug interface - Real-time debug support, with 6 hardware breakpoints (4 PC, 1 address pair and 1 data) that can be configured into a 1- or 2-level trigger - On-chip trace buffer provides programmable start/stop recording conditions plus support for continuous or PC-profiling modes - Support for real-time program (and optional partial data) trace using the debug visibility bus - V1 ColdFire interrupt controller (CF1 INTC) - Support of 40 peripheral I/O interrupt requests plus seven software (one per level) interrupt requests - Fixed association between interrupt request source and level plus priority, up to two requests can be remapped to the highest maskable level + priority - Unique vector number for each interrupt source - Support for service routine interrupt acknowledge (software IACK) read cycles for improved system performance - Multipurpose clock generator (MCG) - Oscillator (XOSC); loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz - LPO clock as an optional independent clock source for COP and RTI - FLL/PLL controlled by internal or external reference - Trimmable internal reference allows 0.2% resolution and 2% deviation - Analog-to-digital converter (ADC) - 24 analog inputs with 12 bits resolution - Output formatted in 12-, 10- or 8-bit right-justified format - Single or continuous conversion (automatic return to idle after single conversion) - Operation in low-power modes for lower noise operation - Asynchronous clock source for lower noise operation - Automatic compare with interrupt for less-than, or greater-than or equal-to, programmable value - On-chip temperature sensor - Flexible timer/pulse-width modulators (FTM) - 16-bit Free-running counter or a counter with initial and final value. The counting can be up and unsigned, up and signed, or up-down and unsigned - Up to 6 channels, and each channel can be configured for input capture, output compare or edge-aligned PWM mode, all channels can be configured for center-aligned PWM mode - Channels can operate as pairs with equal outputs, pairs with complimentary outputs or independent channels (with independent outputs) - Each pair of channels can be combined to generate a PWM signal (with independent control of both edges of PWM signal) - Deadtime insertion is available for each complementary pair - The load of the FTM registers which have write buffer can be synchronized; write protection for critical registers - Generation of the triggers to ADC (hardware trigger) - A fault input for global fault control - Backwards compatible with TPM - Timer/pulse width modulator (TPM) - 16-bit free-running or modulo up/down count operation - Two channels, each channel may be input capture, output compare, or edge-aligned PWM - One interrupt per channel plus terminal count interrupt - Cyclic redundancy check (CRC) generator - High speed hardware CRC generator circuit using 16-bit shift register - CRC16-CCITT compliancy with $x^{16} + x^{12} + x^5 + 1$ polynomial - Error detection for all single, double, odd, and most multi-bit errors - Programmable initial seed value - Analog comparators (ACMP) - Full rail to rail supply operation - Selectable interrupt on rising edge, falling edge, or either rising or falling edges of comparator output - Option to compare to fixed internal bandgap reference voltage - Option to allow comparator output to be visible on a pin, ACMPxO - Inter-integrated circuit (IIC) - Compatible with IIC bus standard - Multi-master operation - Software programmable for one of 64 different serial clock frequencies - Interrupt driven byte-by-byte data transfer - Arbitration lost interrupt with automatic mode switching from master to slave - Calling address identification interrupt - Bus busy detection - 10-bit address extension - Controller area network (CAN) - Implementation of the CAN protocol Version 2.0A/B - Standard and extended data frames - Zero to eight bytes data length - Programmable bit rate up to 1 Mbps - Support for remote frames - Five receive buffers with FIFO storage scheme - Three transmit buffers with internal prioritization using a "local priority" concept - Flexible maskable identifier filter supports two full-size (32-bit) extended identifier filters, four 16-bit filters, or eight 8-bit filters - Programmable wakeup functionality with integrated low-pass filter - Programmable loopback mode supports self-test operation - Programmable listen-only mode for monitoring of CAN bus - Programmable bus-off recovery functionality - Separate signalling and interrupt capabilities for all CAN receiver and transmitter error states (warning, error passive, bus-off) - Internal timer for time-stamping of received and transmitted messages - Serial communications interfaces (SCI) - Full-duplex, standard non-return-to-zero (NRZ) format - Double-buffered transmitter and receiver with separate enables - Programmable baud rates (13-bit modulo divider) - Interrupt-driven or polled operation - Hardware parity generation and checking - Programmable 8-bit or 9-bit character length - Receiver wakeup by idle-line or address-mark - Optional 13-bit break character generation / 11-bit break character detection - Selectable transmitter output polarity - Serial peripheral interfaces (SPI) - Master or slave mode operation - Full-duplex or single-wire bidirectional option - Programmable transmit bit rate MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 - Double-buffered transmit and receive - Serial clock phase and polarity options - Slave select output - Selectable MSB-first or LSB-first shifting - 16-bit and FIFO operations in SPI2 - Input/Output - 69 GPIOs - 8 keyboard interrupt pins with selectable polarity - Hysteresis and configurable pull-up device on all input pins; Configurable slew rate and drive strength on all output pins - 16-bits Rapid GPIO pins connected to the processor's local 32-bit platform bus with set, clear, and faster toggle functionality #### 1.4 Part Numbers **Table 3. Orderable Part Number Summary** | Freescale Part Number | Description | Flash / SRAM
(Kbytes) | Package | Temperature | |-----------------------|---|--------------------------|---------|----------------| | MCF51AC256AVFUE | MCF51AC256 ColdFire Microcontroller with CAN | 256 / 32 | 64 QFP | –40°C to 105°C | | MCF51AC256BVFUE | MCF51AC256 ColdFire Microcontroller without CAN | 256 / 32 | 64 QFP | -40°C to 105°C | | MCF51AC256AVLKE | MCF51AC256 ColdFire Microcontroller with CAN | 256 / 32 | 80 LQFP | -40°C to 105°C | | MCF51AC256BVLKE | MCF51AC256 ColdFire Microcontroller without CAN | 256 / 32 | 80 LQFP | -40°C to 105°C | | MCF51AC256AVPUE | MCF51AC256 ColdFire Microcontroller with CAN | 256 / 32 | 64 LQFP | -40°C to 105°C | | MCF51AC256BVPUE | MCF51AC256 ColdFire Microcontroller without CAN | 256 / 32 | 64 LQFP | -40°C to 105°C | | MCF51AC128AVFUE | MCF51AC128 ColdFire Microcontroller with CAN | 128 / 32 | 64 QFP | -40°C to 105°C | | MCF51AC128CVFUE | MCF51AC128 ColdFire Microcontroller without CAN | 128 / 16 | 64 QFP | -40°C to 105°C | | MCF51AC128AVLKE | MCF51AC128 ColdFire Microcontroller with CAN | 128 / 32 | 80 LQFP | -40°C to 105°C | | MCF51AC128CVLKE | MCF51AC128 ColdFire Microcontroller without CAN | 128 / 16 | 80 LQFP | -40°C to 105°C | | MCF51AC128AVPUE | MCF51AC128 ColdFire Microcontroller with CAN | 128 / 32 | 64 LQFP | -40°C to 105°C | | MCF51AC128CVPUE | MCF51AC128 ColdFire Microcontroller without CAN | 128 / 16 | 64 LQFP | -40°C to 105°C | | MCF51AC256ACFUE | MCF51AC256 ColdFire Microcontroller with CAN | 256 / 32 | 64 QFP | –40°C to 85°C | | MCF51AC256BCFUE | MCF51AC256 ColdFire Microcontroller without CAN | 256 / 32 | 64 QFP | –40°C to 85°C | | MCF51AC256ACLKE | MCF51AC256 ColdFire Microcontroller with CAN | 256 / 32 | 80 LQFP | –40°C to 85°C | | MCF51AC256BCLKE | MCF51AC256 ColdFire Microcontroller without CAN | 256 / 32 | 80 LQFP | -40°C to 85°C | MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 ### **Table 3. Orderable Part Number Summary** | MCF51AC256ACPUE | MCF51AC256 ColdFire Microcontroller with CAN | 256 / 32 | 64 LQFP | –40°C to 85°C | |-----------------|---|----------|---------|----------------| | MCF51AC256BCPUE | MCF51AC256 ColdFire Microcontroller without CAN | 256 / 32 | 64 LQFP | –40°C to 85°C | | MCF51AC256BCFGE | MCF51AC256 ColdFire Microcontroller without CAN | 256/32 | 44 LQFP | –40°C to 85°C | | MCF51AC128ACFUE | MCF51AC128 ColdFire Microcontroller with CAN | 128 / 32 | 64 QFP | –40°C to 85°C | | MCF51AC128CCFUE | MCF51AC128 ColdFire Microcontroller without CAN | 128 / 16 | 64 QFP | –40°C to 85°C | | MCF51AC128ACLKE | MCF51AC128 ColdFire Microcontroller with CAN | 128 / 32 | 80 LQFP | –40°C to 85°C | | MCF51AC128CCLKE | MCF51AC128 ColdFire Microcontroller without CAN | 128 / 16 | 80 LQFP | –40°C to 85°CC | | MCF51AC128ACPUE | MCF51AC128 ColdFire Microcontroller with CAN | 128 / 32 | 64 LQFP | –40°C to 85°C | | MCF51AC128CCPUE | MCF51AC128 ColdFire Microcontroller without CAN | 128 / 16 | 64 LQFP | –40°C to 85°C | | MCF51AC128CCFGE | MCF51AC128 ColdFire Microcontroller without CAN | 128 / 16 | 44 LQFP | –40°C to 85°C | ### 1.5 Pinouts and Packaging Figure 2 shows the pinout of the 80-pin LQFP. Figure 2. MCF51AC256 Series ColdFire Microcontroller 80-Pin LQFP Figure 3 shows the pinout of the 64-pin LQFP and QFP. Figure 3. MCF51AC256 Series ColdFire Microcontroller 64-Pin QFP/LQFP Figure 4 shows the pinout of the 44-pin LQFP. Figure 4. MCF51AC256 Series ColdFire Microcontroller 44-Pin LQFP Table 4 shows the package pin assignments. Table 4. Pin Availability by Package Pin-Count | Pir | n Num | ber | Lowest < Priority> Highest | | | | | | |-----|-------|-----|----------------------------|---------------------|---------|-------|--|--| | 80 | 64 | 44 | Port Pin | Alt 1 | Alt 2 | Alt 3 | | | | 1 | 1 | 1 | PTC4 | SS2 | | | | | | 2 | 2 | 2 | IRQ | TPMCLK ¹ | | | | | | 3 | 3 | 3 | RESET | | | | | | | 4 | 4 | 4 | PTF0 | RGPIO8 | FTM1CH2 | | | | | 5 | 5 | 5 | PTF1 | RGPIO9 | FTM1CH3 | | | | | 6 | 6 | _ | PTF2 | RGPIO10 | FTM1CH4 | | | | | 7 | 7 | _ | PTF3 | RGPIO11 | FTM1CH5 | | | | #### MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Table 4. Pin Availability by Package Pin-Count (continued) | Pin Number | | | Lowe | est < Pric | ority> Highest | | | |------------|----|----|-------------------|--------------------|----------------|--------|--| | 80 | 64 | 44 | Port Pin | Alt 1 | Alt 2 | Alt 3 | | | 8 | 8 | 6 | PTF4 | RGPIO12 | FTM2CH0 | | | | 9 | 9 | _ | PTC6 | FTM2FLT | | | | | 10 | 10 | _ | PTF7 | RGPIO15 | | | | | 11 | 11 | 7 | PTF5 | RGPIO13 | FTM2CH1 | | | | 12 | 12 | _ | PTF6 | RGPIO14 | FTM1FLT | | | | 13 | _ | _ | PTJ0 | PST0 | | | | | 14 | | _ | PTJ1 | PST1 | | | | | 15 | | _ | PTJ2 | PST2 | | | | | 16 | | _ | PTJ3 | PST3 | | | | | 17 | 13 | 8 | PTE0 | RGPIO0 | TxD1 | | | | 18 | 14 | 9 | PTE1 | RGPIO1 | RxD1 | | | | 19 | 15 | 10 | PTE2 | RGPIO2 | FTM1CH0 | | | | 20 | 16 | 11 | PTE3 | RGPIO3 | FTM1CH1 | | | | 21 | 17 | 12 | PTE4 | RGPIO4 | SS1 | | | | 22 | 18 | 13 | PTE5 | RGPIO5 | MISO1 | | | | 23 | 19 | 14 | PTE6 | RGPIO6 | MOSI1 | | | | 24 | 20 | 15 | PTE7 | RGPI07 | SPSCK1 | | | | 25 | 21 | 16 | V_{SS} | | | | | | 26 | 22 | 17 | V_{DD} | | | | | | 27 | _ | _ | PTJ4 | DDATA0 | | | | | 28 | _ | _ | PTJ5 | DDATA1 | | | | | 29 | _ | _ | PTJ6 | DDATA2 | | | | | 30 | _ | _ | PTJ7 | DDATA3 | | | | | 31 | 23 | 18 | PTG0 | KBI1P0 | | | | | 32 | 24 | 19 | PTG1 | KBI1P1 | | | | | 33 | 25 | 20 | PTG2 | KBI1P2 | | | | | 34 | 26 | 21 | PTA0 | TxCAN ² | | | | | 35 | 27 | 22 | PTA1 | RxCAN ³ | | | | | 36 | 28 | _ | PTA2 | | | | | | 37 | 29 | _ | PTA3 | ACMP2O | | | | | 38 | 30 | _ | PTA4 | ACMP2- | | | | | 39 | 31 | _ | PTA5 | ACMP2+ | | | | | 40 | 32 | _ | PTA6 | AD1P16 | | | | | 41 | 33 | _ | PTA7 | AD1P17 | | | | | 42 | _ | _ | PTH0 | FTM2CH2 | AD1P20 | | | | 43 | _ | _ | PTH1 | FTM2CH3 | PSTCLK0 | AD1P21 | | | 44 | _ | _ | PTH2 | FTM2CH4 | PSTCLK1 | AD1P22 | | | 45 | _ | _ | PTH3 | FTM2CH5 | BKPT | AD1P23 | | | 46 | 34 | 23 | PTB0 | TPM3CH0 | AD1P0 | | | | 47 | 35 | 24 | PTB1 | TPM3CH1 | AD1P1 | | | | 48 | 36 | 25 | PTB2 | AD1P2 | | | | MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Table 4. Pin Availability by Package Pin-Count (continued) | Pir | Num | ber | Low | est < Pric | ority> H | ighest | |-----|-----|-----|-------------------|----------------|----------|--------| | 80 | 64 | 44 | Port Pin | Port Pin Alt 1 | | Alt 3 | | 49 | 37 | 26 | PTB3 | AD1P3 | | | | 50 | 38 | _ | PTB4 | AD1P4 | | | | 51 | 39 | _ | PTB5 | AD1P5 | | | | 52 | 40 | _ | PTB6 | AD1P6 | | | | 53 | 41 | _ | PTB7 | AD1P7 | | | | 54 | 42 | 27 | PTD0 | AD1P8 | ACMP1+ | | | 55 | 43 | 28 | PTD1 | AD1P9 | ACMP1- | | | 56 | 44 | 29 | V_{DDA} | | | | | 57 | 45 | 30 | V_{SSA} | | | | | 58 | 46 | 31 | PTD2 | KBI1P5 | AD1P10 | ACMP10 | | 59 | 47 | 32 | PTD3 | KBI1P6 | AD1P11 | | | 60 | 48 | 33 | PTG3 | KBI1P3 | AD1P18 | | | 61 | 49 | _ | PTG4 | KBI1P4 | AD1P19 | | | 62 | 50 | _ | PTD4 | FTM2CLK | AD1P12 | | | 63 | 51 | _ | PTD5 | AD1P13 | | | | 64 | 52 | _ | PTD6 | FTM1CLK | AD1P14 | | | 65 | 53 | _ | PTD7 | KBI1P7 | AD1P15 | | | 66 | 54 | 34 | V _{REFH} | | | | | 67 | 55 | 35 | V _{REFL} | | | | | 68 | 56 | 36 | BKGD | MS | | | | 69 | 57 | 37 | PTG5 | XTAL | | | | 70 | 58 | 38 | PTG6 | EXTAL | | | | 71 | 59 | 39 | V _{SS} | | | | | 72 | _ | _ | V_{DD} | | | | | 73 | 60 | 40 | PTC0 | SCL1 | | | | 74 | 61 | 41 | PTC1 | SDA1 | | | | 75 | _ | _ | PTH4 | SPCK2 | | | | 76 | _ | _ | PTH5 | MOSI2 | | | | 77 | _ | _ | PTH6 | MISO2 | | | | 78 | 62 | 42 | PTC2 | MCLK | | | | 79 | 63 | 43 | PTC3 | TxD2 | | | | 80 | 64 | 44 | PTC5 | RxD2 | | | TPMCLK, FTM1CLK, and FTM2CLK options are configured via software; out of reset, FTM1CLK, FTM2CLK, and TPMCLK are available to FTM1, FTM2, and TPM3 respectively. ² TxCAN is available in the member that supports CAN. ³ RxCAN is available in the member that supports CAN. This section contains electrical specification tables and reference timing diagrams for the MCF51AC256 microcontroller, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed. The parameters specified in this data sheet supersede any values found in the module specifications. #### 2.1 **Parameter Classification** The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate: **Table 5. Parameter Classifications** | Р | Those parameters are guaranteed during production testing on each individual device. | |---|--| | С | Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. | | Т | Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. | | D | Those parameters are derived mainly from simulations. | #### NOTE The classification is shown in the column labeled "C" in the parameter tables where appropriate. #### 2.2 **Absolute Maximum Ratings** Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 6 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}). MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 Freescale Semiconductor 17 **Table 6. Absolute Maximum Ratings** | Rating | Symbol | Value | Unit | |--|------------------|--------------------------|------| | Supply voltage | V_{DD} | -0.3 to 5.8 | ٧ | | Input voltage | V _{In} | -0.3 to $V_{DD} + 0.3$ | V | | Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³ | I _D | ±25 | mA | | Maximum current into V _{DD} | I _{DD} | 120 | mA | | Storage temperature | T _{stg} | -55 to 150 | °C | Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values. #### 2.3 Thermal Characteristics This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small. **Table 7. Thermal Characteristics** | Rating | | Symbol | Value | Unit | |--|------------------|-------------------|----------------|------| | Operating temperature range (packaged) | | T _A | -40 to 105 | °C | | Maximum junction temperature | | T _J | 150 | °C | | Thermal resistance 1,2,3,4 | | | | | | 80-pin LQFP 64-pin LQFP | 1s
2s2p
1s | | 51
38
59 | | | 64-pin QFP | 2s2p | $\theta_{\sf JA}$ | 41
50 | °C/W | | 44-pin LQFP | 1s
2s2p | | 36 | | | | 1s
2s2p | | 67
45 | | MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 $^{^{2}\,}$ All functional non-supply pins are internally clamped to $\rm V_{SS}$ and $\rm V_{DD}.$ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption. - Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance - ² Junction to Ambient Natural Convection - ³ 1s Single layer board, one signal layer - ⁴ 2s2p Four layer board, 2 signal and 2 power layers The average chip-junction temperature (T_I) in ${}^{\circ}C$ can be obtained from: $$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$ Eqn. 1 where: $T_A = Ambient temperature, °C$ θ_{IA} = Package thermal resistance, junction-to-ambient, °C/W $$P_D = P_{int} + P_{I/O}$$ $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power $P_{I/O}$ = Power dissipation on input and output pins — user determined For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is: $$P_D = K \div (T_A + 273^{\circ}C)$$ Eqn. 2 Solving Equation 1 and Equation 2 for K gives: $$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$ Eqn. 3 where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A . # 2.4 Electrostatic Discharge (ESD) Protection Characteristics Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage. All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E. A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. **Table 8. ESD and Latch-up Test Conditions** | Model | Description | Symbol | Value | Unit | |---------------|-----------------------------|--------|-------|------| | Human body | Series resistance | R1 | 1500 | Ω | | | Storage capacitance | С | 100 | pF | | | Number of pulse per pin | _ | 3 | | | Charge device | Series resistance | R1 | 0 | Ω | | model | Storage capacitance | С | 0 | pF | | | Number of pulse per pin | _ | 3 | _ | | Latch-up | Minimum input voltage limit | _ | -2.5 | ٧ | | | Maximum input voltage limit | _ | 7.5 | V | **Table 9. ESD and Latch-Up Protection Characteristics** | Num | Rating | Symbol | Min | Max | Unit | |-----|--|------------------|-------|-----|------| | 1 | Human body model (HBM) | V_{HBM} | ±2000 | _ | V | | 2 | Charge device model (CDM) | V _{CDM} | ±500 | _ | V | | 3 | Latch-up current at T _A = 85 °C | I _{LAT} | ±100 | _ | mA | ## 2.5 DC Characteristics This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes. **Table 10. DC Characteristics** | Num | С | Parameter | Symbol | Min | Typical ¹ | Max | Unit | |-----|---|---|-----------------|-----------------------|----------------------|-----|------| | 1 | _ | Operating voltage | | 2.7 | _ | 5.5 | ٧ | | | | Output high voltage — Low drive (PTxDSn = 0) | | | | | | | | | 5 V, $I_{Load} = -4 \text{ mA}$ | | V _{DD} – 1.5 | _ | _ | | | | | 3 V, $I_{Load} = -2 \text{ mA}$ | | V _{DD} – 1.5 | _ | _ | | | | | 5 V, $I_{Load} = -2 \text{ mA}$ | | $V_{DD} - 0.8$ | | _ | | | 2 | Р | 3 V, $I_{Load} = -1 \text{ mA}$ | V _{OH} | $V_{DD} - 0.8$ | _ | _ | V | | _ | | Output high voltage — High drive (PTxDSn = 1) | VOH | | | |] | | | | 5 V, $I_{Load} = -15 \text{ mA}$ | | V _{DD} – 1.5 | | _ | | | | | 3 V, $I_{Load} = -8 \text{ mA}$ | | V _{DD} – 1.5 | _ | _ | | | | | 5 V, $I_{Load} = -8 \text{ mA}$ | | $V_{DD} - 0.8$ | _ | _ | | | | | 3 V, $I_{Load} = -4 \text{ mA}$ | | $V_{DD} - 0.8$ | _ | _ | | ### Table 10. DC Characteristics (continued) | Num | С | Parameter | Symbol | Min | Typical ¹ | Max | Unit | |-----|---|--|--------------------|----------------------|----------------------|--------------------------|------| | 3 | Р | Output low voltage — Low Drive (PTxDSn = 0) $5 \text{ V, } I_{\text{Load}} = 4 \text{ mA}$ $3 \text{ V, } I_{\text{Load}} = 2 \text{ mA}$ $5 \text{ V, } I_{\text{Load}} = 2 \text{ mA}$ $3 \text{ V, } I_{\text{Load}} = 1 \text{ mA}$ Output low voltage — High Drive (PTxDSn = 1) $5 \text{ V, } I_{\text{Load}} = 15 \text{ mA}$ $3 \text{ V, } I_{\text{Load}} = 8 \text{ mA}$ $5 \text{ V, } I_{\text{Load}} = 8 \text{ mA}$ $5 \text{ V, } I_{\text{Load}} = 8 \text{ mA}$ $3 \text{ V, } I_{\text{Load}} = 4 \text{ mA}$ | | _ | _ | 1.5
1.5
0.8
0.8 | V | | Ü | • | | | _ | _ | 1.5
1.5
0.8
0.8 | v | | 4 | С | | V I _{OHT} | _ | _ | 100
60 | mA | | 5 | С | Output low current — Max total I _{OL} for all ports 5 | | _ | _ | 100
60 | mA | | 6 | Р | Input high voltage; all digital inputs | V _{IH} | $0.65 \times V_{DD}$ | _ | _ | V | | 7 | Р | Input low voltage; all digital inputs | V _{IL} | _ | _ | $0.35 \times V_{DD}$ | V | | 8 | D | Input hysteresis; all digital inputs | V _{hys} | $0.06 \times V_{DD}$ | _ | _ | mV | | 9 | Р | Input leakage current; input only pins ² | II _{In} I | _ | 0.1 | 1 | μΑ | | 10 | Р | High impedance (off-state) leakage current ² | II _{OZ} I | _ | 0.1 | 1 | μΑ | | 11 | Р | Internal pullup resistors ³ | R _{PU} | 20 | 45 | 65 | kΩ | | 12 | Р | Internal pulldown resistors ⁴ | R _{PD} | 20 | 45 | 65 | kΩ | | 13 | С | Input capacitance; all non-supply pins | C _{In} | _ | _ | 8 | pF | | 14 | Р | POR rearm voltage | V _{POR} | 0.9 | 1.4 | 2.0 | V | | 15 | D | POR rearm time | t _{POR} | 10 | _ | _ | μS | | 16 | Р | Low-voltage detection threshold — high range ${\rm V_{DD}\ fallir} \\ {\rm V_{DD}\ fallir} \\ {\rm V_{DD}\ risin}$ | | 4.2
4.27 | 4.35
4.4 | 4.5
4.6 | V | | 17 | Р | Low-voltage detection threshold — low range $V_{DD} \text{ fallir} \\ V_{DD} \text{ risin}$ | | 2.48
2.5 | 2.68
2.7 | 2.7
2.72 | V | | 18 | Р | Low-voltage warning threshold — high range $V_{DD} \text{ fallir} \\ V_{DD} \text{ risin}$ | | 4.2
4.27 | 4.4
4.45 | 4.5
4.6 | V | | 19 | Р | Low-voltage warning threshold low range $V_{DD} \text{ fallir} \\ V_{DD} \text{ risin}$ | | 2.48
2.5 | 2.68
2.7 | 2.7
2.72 | V | | 20 | Т | Low-voltage inhibit reset/recover hysteresis 5 | V | _ | 100
60 | _ | mV | | 21 | D | RAM retention voltage | V _{RAM} | _ | 0.6 | 1.0 | V | #### MCF51AC256 ColdFire Microcontroller Data Sheet, Rev.7 #### **Table 10. DC Characteristics (continued)** | Num | С | Parameter | Symbol | Min | Typical ¹ | Max | Unit | |-----|---|--|-----------------|--------|----------------------|-----------|------| | | | DC injection current ^{5 6 7 8} (single pin limit) $V_{IN} > V_{DD}$ $V_{IN} < V_{SS}$ | | 0
0 | _ | 2
-0.2 | mA | | 22 | D | DC injection current (Total MCU limit, includes sum of all stressed pins) $ \frac{V_{IN}>V_{DD}}{V_{IN}< V_{SS}} $ | I _{IC} | 0
0 | | 25
-5 | mA | Typical values are based on characterization data at 25°C unless otherwise stated. - $^{6}\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD} . - Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. - 8 The $\overline{\text{RESET}}$ pin does not have a clamp diode to V_{DD} . Do not drive this pin above V_{DD} . Figure 5. Typical I_{OH} vs. V_{DD}-V_{OH} at V_{DD} = 3 V (Low Drive, PTxDSn = 0) ² Measured with $V_{In} = V_{DD}$ or V_{SS} . $^{^{3}}$ Measured with $V_{In} = V_{SS}$. ⁴ Measured with $V_{In} = V_{DD}$. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption). Figure 6. Typical I_{OH} vs. $V_{DD}-V_{OH}$ at $V_{DD}=3$ V (High Drive, PTxDSn = 1) Figure 7. Typical I_{OH} vs. $V_{DD}-V_{OH}$ at $V_{DD}=5$ V (Low Drive, PTxDSn = 0) Figure 8. Typical I_{OH} vs. V_{DD} – V_{OH} at V_{DD} = 5 V (High Drive, PTxDSn = 1) # 2.6 Supply Current Characteristics **Table 11. Supply Current Characteristics** | Num | С | Parameter | | Symbol | V _{DD} (V) | Typical ¹ | Max ² | Unit | | | |-----|---|---|----------------|----------------------------------|---------------------|----------------------|------------------|-------------|---|--| | | | | 2 MHz
4 MHz | | 5 | 2.27 | _ | | | | | 1 | | | | MHZ | 3.3 | 2.24 | | | | | | | | | | 4 1411- | | 5 | 3.67 | _ | | | | | Т | Run supply current measured at | 4 IVITIZ | | 3.3 | 3.64 | _ | | | | | | ' | FEI mode, all modules off, system clock at: | 8 MHz | | 5 | 6.55 | | | | | | | | | O IVITIZ | | 3.3 | 6.54 | | | | | | | | | 16 MHz | | 5 | 11.90 | _ | | | | | | | | TO IVII IZ | | 3.3 | 11.85 | | | | | | | | | 2 MHz | | 5 | 3.28 | _ | | | | | | | Z IVII IZ | | 3.3 | 3.26 | | | | | | | | | | 4 MHz | | 5 | 4.33 | | | | | | 2 | Т | Run supply current measured at FEI mode, all modules on, system clock at: | 4 IVITIZ | | 3.3 | 4.32 | | 1 | | | | 2 | ' | | 8 MHz | | 5 | 8.17 | | | | | | | | | O IVITIZ | 3.3
5
8I _{DD} 3.3 | 3.3 | 8.05 | | -
-
- | | | | | | | 16 MHz | | 5 | 14.8 | _ | | | | | | | | | | 14.74 | | mA | | | | | | | | 2 MHz | | 5 | 3.28 | | IIIA | | | | | | | | | | | 3.3 | 3.26 | | | | | | Dura accomply accompany was a accompany of | 4 MHz | | | | 5 | 4.69 | | | | 3 | Т | Run supply current measured at FBE mode, all modules off | | | 3.3 | 4.67 | | | | | | | | (RANGE = 1, HGO = 0), system | 8 MHz | Q MH ₇ | 0 MU-7 | | 5 | 7.48 | _ | | | | | clock at: | | | 3.3 | 7.46 | _ | | | | | | | | 16 MHz | 10 MH | | 5 | 13.10 | | | | | | | | | | 3.3 | 13.07 | _ | | | | | | | | 2 MHz | | 5 | 3.64 | _ | | | | | | | | Z IVII 1Z | | 3.3 | 3.63 | | | | | | | | | 4 MHz | | 5 | 5.38 | _ | | | | | 4 | Т | Run supply current measured at FBE mode, all modules on | ₩ IVII IZ | | 3.3 | 5.35 | _ | | | | | | | (RANGE = 1, HGO = 0), system | 8 MHz | | 5 | 8.65 | _ | | | | | | | clock at: | | | 3.3 | 8.64 | _ | | | | | | | | 16 MHz | | 5 | 15.55 | _ | | | | | | | | I O IVII IZ | | 3.3 | 15.40 | | | | |