

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Freescale Semiconductor Data Sheet

Document Number: MCF5213EC Rev. 3, 05/2007

MCF5213

MCF5213 ColdFire Microcontroller Supports MCF5213, MCF5212, & MCF5211

The MCF5213 is a member of the ColdFire[®] family of reduced instruction set computing (RISC) microprocessors.

This document provides an overview of the 32-bit MCF5213 microcontroller, focusing on its highly integrated and diverse feature set.

This 32-bit device is based on the Version 2 ColdFire core operating at a frequency up to 80 MHz, offering high performance and low power consumption. On-chip memories connected tightly to the processor core include up to 256 Kbytes of flash memory and 32 Kbytes of static random access memory (SRAM). On-chip modules include:

- V2 ColdFire core delivering 76 MIPS (Dhrystone 2.1) at 80 MHz running from internal flash memory with Multiply Accumulate (MAC) Unit and hardware divider
- FlexCAN controller area network (CAN) module
- Three universal asynchronous/synchronous receiver/transmitters (UARTs)
- Inter-integrated circuit (I2CTM) bus controller
- Queued serial peripheral interface (QSPI) module
- Eight-channel 12-bit fast analog-to-digital converter (ADC)
- Four-channel direct memory access (DMA) controller
- Four 32-bit input capture/output compare timers with DMA support (DTIM)
- Four-channel general-purpose timer (GPT) capable of input capture/output compare, pulse width modulation (PWM), and pulse accumulation
- Eight-channel/Four-channel, 8-bit/16-bit pulse width modulation timer
- Two 16-bit periodic interrupt timers (PITs)
- · Programmable software watchdog timer
- Interrupt controller capable of handling 57 sources
- Clock module with 8 MHz on-chip relaxation oscillator and integrated phase-locked loop (PLL)
- Test access/debug port (JTAG, BDM)

LQFP-64 10 mm x 10 mm

QFN-64 9 mm x 9 mm

LQFP-100 14 mm x 14 mm

This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice.

© Freescale Semiconductor, Inc., 2007. All rights reserved.

Table of Contents

1	MCF:	5213 Family Configurations3	Figure 8. Equivalent Circuit for A/D Loading	. 37
	1.1	Block Diagram4	Figure 9.QSPI Timing	. 38
	1.2	Features	Figure 10.Test Clock Input Timing	. 39
	1.3	Reset Signals	Figure 11.Boundary Scan (JTAG) Timing	. 40
	1.4	PLL and Clock Signals	Figure 12.Test Access Port Timing	. 40
	1.5	Mode Selection	Figure 13.TRST Timing	. 40
	1.6	External Interrupt Signals	Figure 14.Real-Time Trace AC Timing	. 41
	1.7	Queued Serial Peripheral Interface (QSPI)21	Figure 15.BDM Serial Port AC Timing	. 42
	1.8	I ² C I/O Signals		
	1.9	UART Module Signals22	List of Tables	
	1.10	DMA Timer Signals22	Table 1. MCF5213 Family Configurations	
		ADC Signals	Table 2. Orderable Part Number Summary	
		General Purpose Timer Signals	Table 3. Pin Functions by Primary and Alternate Purpose	
		Pulse Width Modulator Signals	Table 4. Reset Signals	. 20
		Debug Support Signals23	Table 5. PLL and Clock Signals	. 20
		EzPort Signal Descriptions	Table 6. Mode Selection Signals	
		Power and Ground Pins	Table 7. Clocking Modes	. 20
2		rical Characteristics25	Table 8. External Interrupt Signals	. 21
	2.1	Maximum Ratings	Table 9. Queued Serial Peripheral Interface (QSPI) Signals	. 21
	2.2	Current Consumption	Table 10.I ² C I/O Signals	. 21
	2.3	Thermal Characteristics	Table 11.UART Module Signals	
	2.4	Flash Memory Characteristics	Table 12.DMA Timer Signals	
	2.5	ESD Protection	Table 13.ADC Signals	
	2.6	DC Electrical Specifications	Table 14.GPT Signals	
	2.7	Clock Source Electrical Specifications	Table 15.PWM Signals	
	2.8	General Purpose I/O Timing	Table 16.Debug Support Signals	
	2.9	Reset Timing	Table 17.EzPort Signal Descriptions	
		I ² C Input/Output Timing Specifications	Table 18. Power and Ground Pins	
		Analog-to-Digital Converter (ADC) Parameters	Table 19. Absolute Maximum Ratings	
		Equivalent Circuit for ADC Inputs37	Table 20. Current Consumption in Low-Power Mode	
		DMA Timers Timing Specifications	Table 21. Typical Active Current Consumption Specifications.	
		QSPI Electrical Specifications	Table 22. Thermal Characteristics	
			Table 23.SGFM Flash Program and Erase Characteristics	
		JTAG and Boundary Scan Timing	Table 24.SGFM Flash Module Life Characteristics	
0		Debug AC Timing Specifications	Table 25.ESD Protection Characteristics,	
3		nanical Outline Drawings	Table 26.DC Electrical Specifications	
	3.1	64-pin LQFP Package	Table 27.PLL Electrical Specifications	
	3.2	64 QFN Package	Table 28.GPIO Timing	
	3.3	81 MAPBGA Package50	Table 29.Reset and Configuration Override Timing	
	3.4	100-pin LQFP Package52	Table 30.1 ² C Input Timing Specifications between I2C_SCL	. 34
4	Revis	sion History	and I2C_SDA	25
Li	st of	Figures		. 33
		•	Table 31.I ² C Output Timing Specifications between I2C_SCL	25
_ F:	gure 1	.MCF5213 Block Diagram	and I2C_SDA	
	gure 2	100 LQFF FIII ASSIGNMENTS	Table 32.ADC Parameters	
F	gure 3	8.81 MAPBGA Pin Assignments	Table 33. Timer Module AC Timing Specifications	
		.64 LQFP and 64 QFN Pin Assignments	Table 34.QSPI Modules AC Timing Specifications	
		GPIO Timing	Table 35.JTAG and Boundary Scan Timing	
		RSTI and Configuration Override Timing	Table 36 Debug AC Timing Specification	
	uure /	. E. G. INDUI/COUDUL TIMINOS	Table o/ .nevision distory	. 54

Table 1. MCF5213 Family Configurations

Module	5211	5212	5213
ColdFire Version 2 Core with MAC (Multiply-Accumulate Unit)	•	•	•
System Clock		66, 80 MHz	
Performance (Dhrystone 2.1 MIPS)	63	up t	o 76
Flash / Static RAM (SRAM)	128/16 Kbytes	256/32	Kbytes
Interrupt Controller (INTC)	•	•	•
Fast Analog-to-Digital Converter (ADC)	•	•	•
FlexCAN 2.0B Module	See note ¹	_	•
Four-channel Direct-Memory Access (DMA)	•	•	•
Watchdog Timer Module (WDT)	•	•	•
Programmable Interval Timer Module (PIT)	2	2	2
Four-Channel General-Purpose Timer	3	3	3
32-bit DMA Timers	4	4	4
QSPI	•	•	•
UARTs	3	3	3
I ² C	•	•	•
PWM	8	8	8
General Purpose I/O Module (GPIO)	•	•	•
Chip Configuration and Reset Controller Module	•	•	•
Background Debug Mode (BDM)	•	•	•
JTAG - IEEE 1149.1 Test Access Port ²	•	•	•
Package	64 LQFP 64 QFN 81 MAPBGA	64 LQFP 81 MAPBGA	81 MAPBGA 100 LQFP

¹ FlexCAN is available on the MCF5211 only in the 64 QFN package.

Figure 1 shows a top-level block diagram of the MCF5213. Package options for this family are described later in this document.

The full debug/trace interface is available only on the 100-pin packages. A reduced debug interface is bonded on smaller packages.

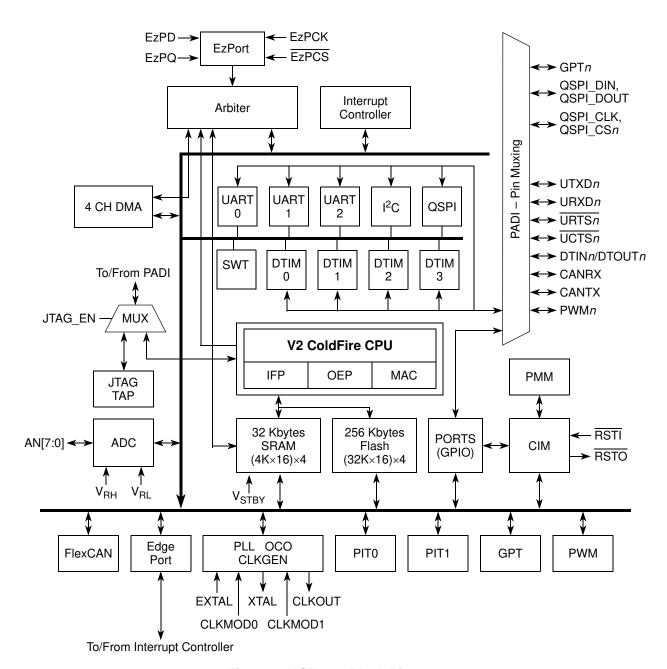


Figure 1. MCF5213 Block Diagram

1.1 Features

This document contains information on a new product under development. Freescale reserves the right to change or discontinue this product without notice. Specifications and information herein are subject to change without notice.

1.1.1 Feature Overview

The MCF5213 family includes the following features:

- Version 2 ColdFire variable-length RISC processor core
 - Static operation
 - 32-bit address and data paths on-chip
 - Up to 80 MHz processor core frequency
 - Sixteen general-purpose, 32-bit data and address registers
 - Implements ColdFire ISA_A with extensions to support the user stack pointer register and four new instructions for improved bit processing (ISA_A+)
 - Multiply-Accumulate (MAC) unit with 32-bit accumulator to support $16 \times 16 \rightarrow 32$ or $32 \times 32 \rightarrow 32$ operations
 - Illegal instruction decode that allows for 68-Kbyte emulation support
- System debug support
 - Real-time trace for determining dynamic execution path
 - Background debug mode (BDM) for in-circuit debugging (DEBUG_B+)
 - Real-time debug support, with six hardware breakpoints (4 PC, 1 address and 1 data) configurable into a 1- or 2-level trigger
- On-chip memories
 - 32-Kbyte dual-ported SRAM on CPU internal bus, supporting core and DMA access with standby power supply support
 - 256 Kbytes of interleaved flash memory supporting 2-1-1-1 accesses
- Power management
 - Fully static operation with processor sleep and whole chip stop modes
 - Rapid response to interrupts from the low-power sleep mode (wake-up feature)
 - Clock enable/disable for each peripheral when not used
- FlexCAN 2.0B module
 - Based on and includes all existing features of the Freescale TouCAN module
 - Full implementation of the CAN protocol specification version 2.0B
 - Standard data and remote frames (up to 109 bits long)
 - Extended data and remote frames (up to 127 bits long)
 - Zero to eight bytes data length
 - Programmable bit rate up to 1 Mbit/sec
 - Flexible message buffers (MBs), totalling up to 16 message buffers of 0–8 byte data length each, configurable as Rx or Tx, all supporting standard and extended messages
 - Unused MB space can be used as general purpose RAM space
 - Listen-only mode capability
 - Content-related addressing
 - No read/write semaphores
 - Three programmable mask registers: global for MBs 0-13, special for MB14, and special for MB15
 - Programmable transmit-first scheme: lowest ID or lowest buffer number
 - Time stamp based on 16-bit free-running timer
 - Global network time, synchronized by a specific message
 - Maskable interrupts
- Three universal asynchronous/synchronous receiver transmitters (UARTs)
 - 16-bit divider for clock generation
 - Interrupt control logic with maskable interrupts
 - DMA support
 - Data formats can be 5, 6, 7 or 8 bits with even, odd, or no parity
 - Up to two stop bits in 1/16 increments

MCF5213 ColdFire Microcontroller, Rev. 3

- Error-detection capabilities
- Modem support includes request-to-send (RTS) and clear-to-send (CTS) lines for two UARTs
- Transmit and receive FIFO buffers
- I²C module
 - Interchip bus interface for EEPROMs, LCD controllers, A/D converters, and keypads
 - Fully compatible with industry-standard I²C bus
 - Master and slave modes support multiple masters
 - Automatic interrupt generation with programmable level
- Queued serial peripheral interface (QSPI)
 - Full-duplex, three-wire synchronous transfers
 - Up to four chip selects available
 - Master mode operation only
 - Programmable bit rates up to half the CPU clock frequency
 - Up to 16 pre-programmed transfers
- Fast analog-to-digital converter (ADC)
 - Eight analog input channels
 - 12-bit resolution
 - Minimum 1.125 μs conversion time
 - Simultaneous sampling of two channels for motor control applications
 - Single-scan or continuous operation
 - Optional interrupts on conversion complete, zero crossing (sign change), or under/over low/high limit
 - Unused analog channels can be used as digital I/O
- Four 32-bit timers with DMA support
 - 12.5 ns resolution at 80 MHz
 - Programmable sources for clock input, including an external clock option
 - Programmable prescaler
 - Input capture capability with programmable trigger edge on input pin
 - Output compare with programmable mode for the output pin
 - Free run and restart modes
 - Maskable interrupts on input capture or output compare
 - DMA trigger capability on input capture or output compare
- Four-channel general purpose timer
 - 16-bit architecture
 - Programmable prescaler
 - Output pulse-widths variable from microseconds to seconds
 - Single 16-bit input pulse accumulator
 - Toggle-on-overflow feature for pulse-width modulator (PWM) generation
 - One dual-mode pulse accumulation channel
- Pulse-width modulation timer
 - Operates as eight channels with 8-bit resolution or four channels with 16-bit resolution
 - Programmable period and duty cycle
 - Programmable enable/disable for each channel
 - Software selectable polarity for each channel
 - Period and duty cycle are double buffered. Change takes effect when the end of the current period is reached (PWM counter reaches zero) or when the channel is disabled.

- Programmable center or left aligned outputs on individual channels
- Four clock sources (A, B, SA, and SB) provide for a wide range of frequencies
- Emergency shutdown
- Two periodic interrupt timers (PITs)
 - 16-bit counter
 - Selectable as free running or count down
- Software watchdog timer
 - 32-bit counter
 - Low-power mode support
- Clock generation features
 - One to 48 MHz crystal, 8 MHz on-chip relaxation oscillator, or external oscillator reference options
 - Trimmed relaxation oscillator
 - Two to 10 MHz reference frequency for normal PLL mode with a pre-divider programmable from 1 to 8
 - System can be clocked from PLL or directly from crystal oscillator or relaxation oscillator
 - Low power modes supported
 - 2^n (n $\leq 0 \leq 15$) low-power divider for extremely low frequency operation
- Interrupt controller
 - Uniquely programmable vectors for all interrupt sources
 - Fully programmable level and priority for all peripheral interrupt sources
 - Seven external interrupt signals with fixed level and priority
 - Unique vector number for each interrupt source
 - Ability to mask any individual interrupt source or all interrupt sources (global mask-all)
 - Support for hardware and software interrupt acknowledge (IACK) cycles
 - Combinatorial path to provide wake-up from low-power modes
- · DMA controller
 - Four fully programmable channels
 - Dual-address transfer support with 8-, 16-, and 32-bit data capability, along with support for 16-byte (4×32-bit) burst transfers
 - Source/destination address pointers that can increment or remain constant
 - 24-bit byte transfer counter per channel
 - Auto-alignment transfers supported for efficient block movement
 - Bursting and cycle steal support
 - Software-programmable DMA requesters for the UARTs (3) and 32-bit timers (4)
- Reset
 - Separate reset in and reset out signals
 - Seven sources of reset:
 - Power-on reset (POR)
 - External
 - Software
 - Watchdog
 - Loss of clock
 - Loss of lock
 - Low-voltage detection (LVD)
 - Status flag indication of source of last reset
- Chip integration module (CIM)

- System configuration during reset
- Selects one of six clock modes
- Configures output pad drive strength
- Unique part identification number and part revision number
- General purpose I/O interface
 - Up to 56 bits of general purpose I/O
 - Bit manipulation supported via set/clear functions
 - Programmable drive strengths
 - Unused peripheral pins may be used as extra GPIO
- JTAG support for system level board testing

1.1.2 V2 Core Overview

The version 2 ColdFire processor core is comprised of two separate pipelines decoupled by an instruction buffer. The two-stage instruction fetch pipeline (IFP) is responsible for instruction-address generation and instruction fetch. The instruction buffer is a first-in-first-out (FIFO) buffer that holds prefetched instructions awaiting execution in the operand execution pipeline (OEP). The OEP includes two pipeline stages. The first stage decodes instructions and selects operands (DSOC); the second stage (AGEX) performs instruction execution and calculates operand effective addresses, if needed.

The V2 core implements the ColdFire instruction set architecture revision A+ with added support for a separate user stack pointer register and four new instructions to assist in bit processing. Additionally, the MCF5213 core includes the multiply-accumulate (MAC) unit for improved signal processing capabilities. The MAC implements a three-stage arithmetic pipeline, optimized for 16×16 bit operations, with support for one 32-bit accumulator. Supported operands include 16- and 32-bit signed and unsigned integers, signed fractional operands, and a complete set of instructions to process these data types. The MAC provides support for execution of DSP operations within the context of a single processor at a minimal hardware cost.

1.1.3 Integrated Debug Module

The ColdFire processor core debug interface is provided to support system debugging with low-cost debug and emulator development tools. Through a standard debug interface, access to debug information and real-time tracing capability is provided on 100-lead packages. This allows the processor and system to be debugged at full speed without the need for costly in-circuit emulators.

The on-chip breakpoint resources include a total of nine programmable 32-bit registers: an address and an address mask register, a data and a data mask register, four PC registers, and one PC mask register. These registers can be accessed through the dedicated debug serial communication channel or from the processor's supervisor mode programming model. The breakpoint registers can be configured to generate triggers by combining the address, data, and PC conditions in a variety of single- or dual-level definitions. The trigger event can be programmed to generate a processor halt or initiate a debug interrupt exception. The MCF5213 implements revision B+ of the ColdFire Debug Architecture.

The MCF5213's interrupt servicing options during emulator mode allow real-time critical interrupt service routines to be serviced while processing a debug interrupt event. This ensures the system continues to operate even during debugging.

To support program trace, the V2 debug module provides processor status (PST[3:0]) and debug data (DDATA[3:0]) ports. These buses and the PSTCLK output provide execution status, captured operand data, and branch target addresses defining processor activity at the CPU's clock rate. The MCF5213 includes a new debug signal, ALLPST. This signal is the logical AND of the processor status (PST[3:0]) signals and is useful for detecting when the processor is in a halted state (PST[3:0]) = 1111).

The full debug/trace interface is available only on the 100-pin packages. However, every product features the dedicated debug serial communication channel (DSI, DSO, DSCLK) and the ALLPST signal.

1.1.4 **JTAG**

The MCF5213 supports circuit board test strategies based on the Test Technology Committee of IEEE and the Joint Test Action Group (JTAG). The test logic includes a test access port (TAP) consisting of a 16-state controller, an instruction register, and three test registers (a 1-bit bypass register, a 256-bit boundary-scan register, and a 32-bit ID register). The boundary scan register links the device's pins into one shift register. Test logic, implemented using static logic design, is independent of the device system logic.

The MCF5213 implementation can:

- Perform boundary-scan operations to test circuit board electrical continuity
- Sample MCF5213 system pins during operation and transparently shift out the result in the boundary scan register
- Bypass the MCF5213 for a given circuit board test by effectively reducing the boundary-scan register to a single bit
- Disable the output drive to pins during circuit-board testing
- Drive output pins to stable levels

1.1.5 **On-Chip Memories**

1.1.5.1 SRAM

The dual-ported SRAM module provides a general-purpose 32-Kbyte memory block that the ColdFire core can access in a single cycle. The location of the memory block can be set to any 32-Kbyte boundary within the 4-Gbyte address space. This memory is ideal for storing critical code or data structures and for use as the system stack. Because the SRAM module is physically connected to the processor's high-speed local bus, it can quickly service core-initiated accesses or memory-referencing commands from the debug module.

The SRAM module is also accessible by the DMA. The dual-ported nature of the SRAM makes it ideal for implementing applications with double-buffer schemes, where the processor and a DMA device operate in alternate regions of the SRAM to maximize system performance.

1.1.5.2 Flash Memory

The ColdFire flash module (CFM) is a non-volatile memory (NVM) module that connects to the processor's high-speed local bus. The CFM is constructed with four banks of 32-Kbyte×16-bit flash memory arrays to generate 256 Kbytes of 32-bit flash memory. These electrically erasable and programmable arrays serve as non-volatile program and data memory. The flash memory is ideal for program and data storage for single-chip applications, allowing for field reprogramming without requiring an external high voltage source. The CFM interfaces to the ColdFire core through an optimized read-only memory controller that supports interleaved accesses from the 2-cycle flash memory arrays. A backdoor mapping of the flash memory is used for all program, erase, and verify operations, as well as providing a read datapath for the DMA. Flash memory may also be programmed via the EzPort, which is a serial flash memory programming interface that allows the flash memory to be read, erased and programmed by an external controller in a format compatible with most SPI bus flash memory chips.

1.1.6 Power Management

The MCF5213 incorporates several low-power modes of operation entered under program control and exited by several external trigger events. An integrated power-on reset (POR) circuit monitors the input supply and forces an MCU reset as the supply voltage rises. The low voltage detector (LVD) monitors the supply voltage and is configurable to force a reset or interrupt condition if it falls below the LVD trip point. The RAM standby switch provides power to RAM when the supply voltage to the chip falls below the standby battery voltage.

MCF5213 ColdFire Microcontroller, Rev. 3 Freescale Semiconductor 9

1.1.7 FlexCAN

The FlexCAN module is a communication controller implementing version 2.0 of the CAN protocol parts A and B. The CAN protocol can be used as an industrial control serial data bus, meeting the specific requirements of reliable operation in a harsh EMI environment with high bandwidth. This instantiation of FlexCAN has 16 message buffers.

1.1.8 **UARTs**

The MCF5213 has three full-duplex UARTs that function independently. The three UARTs can be clocked by the system bus clock, eliminating the need for an external clock source. On smaller packages, the third UART is multiplexed with other digital I/O functions.

1.1.9 I²C Bus

The I²C bus is a two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange and minimizes the interconnection between devices. This bus is suitable for applications requiring occasional communications over a short distance between many devices.

1.1.10 QSPI

The queued serial peripheral interface (QSPI) provides a synchronous serial peripheral interface with queued transfer capability. It allows up to 16 transfers to be queued at once, minimizing the need for CPU intervention between transfers.

1.1.11 Fast ADC

The fast ADC consists of an eight-channel input select multiplexer and two independent sample and hold (S/H) circuits feeding separate 12-bit ADCs. The two separate converters store their results in accessible buffers for further processing.

The ADC can be configured to perform a single scan and halt, a scan when triggered, or a programmed scan sequence repeatedly until manually stopped.

The ADC can be configured for sequential or simultaneous conversion. When configured for sequential conversions, up to eight channels can be sampled and stored in any order specified by the channel list register. Both ADCs may be required during a scan, depending on the inputs to be sampled.

During a simultaneous conversion, both S/H circuits are used to capture two different channels at the same time. This configuration requires that a single channel may not be sampled by both S/H circuits simultaneously.

Optional interrupts can be generated at the end of the scan sequence if a channel is out of range (measures below the low threshold limit or above the high threshold limit set in the limit registers) or at several different zero crossing conditions.

1.1.12 DMA Timers (DTIM0-DTIM3)

There are four independent, DMA transfer capable 32-bit timers (DTIM0, DTIM1, DTIM2, and DTIM3) on the MCF5213. Each module incorporates a 32-bit timer with a separate register set for configuration and control. The timers can be configured to operate from the system clock or from an external clock source using one of the DTINn signals. If the system clock is selected, it can be divided by 16 or 1. The input clock is further divided by a user-programmable 8-bit prescaler that clocks the actual timer counter register (TCRn). Each of these timers can be configured for input capture or reference (output) compare mode. Timer events may optionally cause interrupt requests or DMA transfers.

1.1.13 General Purpose Timer (GPT)

The general purpose timer (GPT) is a four-channel timer module consisting of a 16-bit programmable counter driven by a seven-stage programmable prescaler. Each of the four channels can be configured for input capture or output compare. Additionally, channel three, can be configured as a pulse accumulator.

A timer overflow function allows software to extend the timing capability of the system beyond the 16-bit range of the counter. The input capture and output compare functions allow simultaneous input waveform measurements and output waveform generation. The input capture function can capture the time of a selected transition edge. The output compare function can generate output waveforms and timer software delays. The 16-bit pulse accumulator can operate as a simple event counter or a gated time accumulator.

1.1.14 Periodic Interrupt Timers (PIT0 and PIT1)

The two periodic interrupt timers (PIT0 and PIT1) are 16-bit timers that provide interrupts at regular intervals with minimal processor intervention. Each timer can count down from the value written in its PIT modulus register or it can be a free-running down-counter.

1.1.15 Pulse-Width Modulation (PWM) Timers

The MCF5213 has an 8-channel, 8-bit PWM timer. Each channel has a programmable period and duty cycle as well as a dedicated counter. Each of the modulators can create independent continuous waveforms with software-selectable duty rates from 0% to 100%. The PWM outputs have programmable polarity, and can be programmed as left aligned outputs or center aligned outputs. For higher period and duty cycle resolution, each pair of adjacent channels ([7:6], [5:4], [3:2], and [1:0]) can be concatenated to form a single 16-bit channel. The module can, therefore, be configured to support 8/0, 6/1, 4/2, 2/3, or 0/4 8-/16-bit channels.

1.1.16 Software Watchdog Timer

The watchdog timer is a 32-bit timer that facilitates recovery from runaway code. The watchdog counter is a free-running down-counter that generates a reset on underflow. To prevent a reset, software must periodically restart the countdown.

1.1.17 Phase-Locked Loop (PLL)

The clock module contains a crystal oscillator, 8 MHz on-chip relaxation oscillator (OCO), phase-locked loop (PLL), reduced frequency divider (RFD), low-power divider status/control registers, and control logic. To improve noise immunity, the PLL, crystal oscillator, and relaxation oscillator have their own power supply inputs: VDDPLL and VSSPLL. All other circuits are powered by the normal supply pins, VDD and VSS.

1.1.18 Interrupt Controller (INTC)

The MCF5213 has a single interrupt controller that supports up to 63 interrupt sources. There are 56 programmable sources, 49 of which are assigned to unique peripheral interrupt requests. The remaining seven sources are unassigned and may be used for software interrupt requests.

1.1.19 DMA Controller

The direct memory access (DMA) controller provides an efficient way to move blocks of data with minimal processor intervention. It has four channels that allow byte, word, longword, or 16-byte burst line transfers. These transfers are triggered by software explicitly setting a DCRn[START] bit or by the occurrence of certain UART or DMA timer events.

1.1.20 Reset

The reset controller determines the source of reset, asserts the appropriate reset signals to the system, and keeps track of what caused the last reset. There are seven sources of reset:

- External reset input
- Power-on reset (POR)
- · Watchdog timer
- Phase locked-loop (PLL) loss of lock
- PLL loss of clock
- Software
- Low-voltage detector (LVD)

Control of the LVD and its associated reset and interrupt are managed by the reset controller. Other registers provide status flags indicating the last source of reset and a control bit for software assertion of the \overline{RSTO} pin.

1.1.21 GPIO

Nearly all pins on the MCF5213 have general purpose I/O capability and are grouped into 8-bit ports. Some ports do not use all eight bits. Each port has registers that configure, monitor, and control the port pins.

1.1.22 Part Numbers and Packaging

This product is RoHS-compliant. Refer to the product page at freescale.com or contact your sales office for up-to-date RoHS information.

Table 2. Orderable Part Number Summary

Freescale Part Number	Description	Speed	Package	Temperature
MCF5211CAE66	MCF5211 ColdFire Microcontroller	66 MHz	64 LQFP	-40 to +85 °C
MCF5211CEP66	MCF5211 ColdFire Microcontroller, FlexCAN	66 MHz	64 QFN	-40 to +85 °C
MCF5211LCEP66	MCF5211 ColdFire Microcontroller	66 MHz	64 QFN	-40 to +85 °C
MCF5211LCVM66	MCF5211 ColdFire Microcontroller	66 MHz	81 MAPBGA	-40 to +85 °C
MCF5211LCVM80	MCF5211 ColdFire Microcontroller	80 MHz	81 MAPBGA	-40 to +85 °C
MCF5212CAE66	MCF5212 ColdFire Microcontroller	66 MHz	64 LQFP	-40 to +85 °C
MCF5212LCVM66	MCF5212 ColdFire Microcontroller	66 MHz	81 MAPBGA	-40 to +85 °C
MCF5212LCVM80	MCF5212 ColdFire Microcontroller	80 MHz	81 MAPBGA	-40 to +85 °C
MCF5213CAF66	MCF5213 ColdFire Microcontroller, FlexCAN	66 MHz	100 LQFP	-40 to +85 °C
MCF5213CAF80	MCF5213 ColdFire Microcontroller, FlexCAN	80 MHz	100 LQFP	-40 to +85 °C
MCF5213LCVM66	MCF5213 ColdFire Microcontroller, FlexCAN	66 MHz	81 MAPBGA	-40 to +85 °C
MCF5213LCVM80	MCF5213 ColdFire Microcontroller, FlexCAN	80 MHz	81 MAPBGA	-40 to +85 °C

Figure 2 shows the pinout configuration for the 100 LQFP.

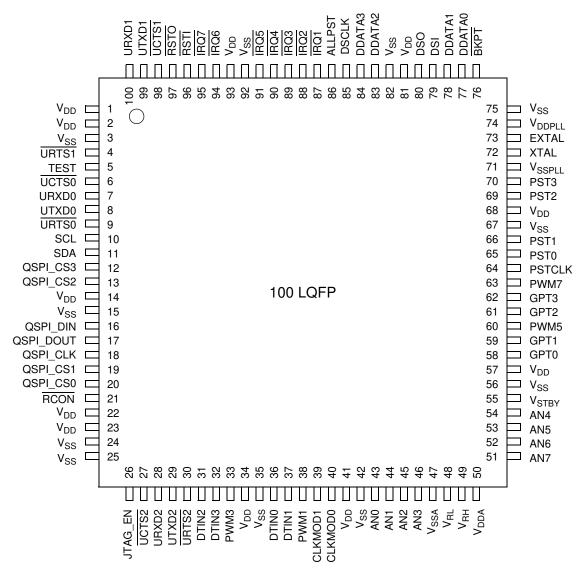


Figure 2. 100 LQFP Pin Assignments

Figure 3 shows the pinout configuration for the 81 MAPBGA.

	1	2	3	4	5	6	7	8	9
Α	V_{SS}	UTXD1	RSTI	ĪRQ5	ĪRQ3	ALLPST	TDO	TMS	V_{SS}
В	URTS1	URXD1	RSTO	ĪRQ6	ĪRQ2	TRST	TDI	V _{DD} PLL	EXTAL
С	UCTS0	TEST	UCTS1	ĪRQ7	ĪRQ4	ĪRQ1	TCLK	V _{SS} PLL	XTAL
D	URXD0	UTXD0	URTS0	V_{SS}	V_{DD}	V_{SS}	PWM7	GPT3	GPT2
Ε	SCL	SDA	V_{DD}	V_{DD}	V_{DD}	V_{DD}	V _{DD}	PWM5	GPT1
F	QSPI_CS3	QSPI_CS2	QSPI_DIN	V_{SS}	V_{DD}	V_{SS}	GPT0	V_{STBY}	AN4
G	QSPI_DOUT	QSPI_CLK	RCON	DTIN1	CLKMOD0	AN2	AN3	AN5	AN6
Н	QSPI_CS0	QSPI_CS1	DTIN3	DTIN0	CLKMOD1	AN1	V _{SSA}	V_{DDA}	AN7
J	V_{SS}	JTAG_EN	DTIN2	PWM3	PWM1	AN0	V_{RL}	V_{RH}	V_{SSA}

Figure 3. 81 MAPBGA Pin Assignments

Figure 4 shows the pinout configuration for the 64 LQFP and 64 QFN.

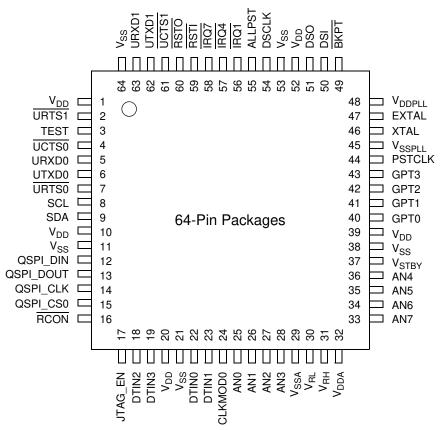


Figure 4. 64 LQFP and 64 QFN Pin Assignments

Table 3 shows the pin functions by primary and alternate purpose, and illustrates which packages contain each pin.

Table 3. Pin Functions by Primary and Alternate Purpose

Pin Group	Primary Function	Secondary Function	Tertiary Function	Quaternary Function	Drive Strength / Control ¹	Slew Rate / Control ¹	Pull-up / Pull-down ²	Pin on 100 LQFP	Pin on 81 MAPBGA	Pin on 64 LQFP/QFN
ADC	AN7	_	_	GPIO	Low	FAST	_	51	H9	33
	AN6	_	_	GPIO	Low	FAST	_	52	G9	34
	AN5	_	_	GPIO	Low	FAST	_	53	G8	35
	AN4	_	_	GPIO	Low	FAST	_	54	F9	36
	AN3	_	_	GPIO	Low	FAST	_	46	G7	28
	AN2	_	_	GPIO	Low	FAST	_	45	G6	27
	AN1	_	_	GPIO	Low	FAST	_	44	H6	26
	AN0	_	_	GPIO	Low	FAST	_	43	J6	25
	SYNCA ³	_	_	_	N/A	N/A	_	_	_	_
	SYNCB ³	_	_	_	N/A	N/A	_	_	_	_
	VDDA	_	_	_	N/A	N/A	_	50	H8	32
	VSSA	_	_	_	N/A	N/A	_	47	H7, J9	29
	VRH	_	_	_	N/A	N/A	_	49	J8	31
	VRL	_	_	_	N/A	N/A	_	48	J7	30
Clock	EXTAL	_	_	_	N/A	N/A	_	73	B9	47
Generation	XTAL	_	_	_	N/A	N/A	_	72	C9	46
	VDDPLL	_	_	_	N/A	N/A	_	74	B8	48
	VSSPLL	_	_	_	N/A	N/A	_	71	C8	45
Debug Data	ALLPST	_	_	_	High	FAST	_	86	A6	55
	DDATA[3:0]	_	_	GPIO	High	FAST	_	84,83,78,77	_	_
	PST[3:0]	_	_	GPIO	High	FAST	_	70,69,66,65	_	_
I ² C	SCL	CANTX ⁴	UTXD2	GPIO	PDSR[0]	PSRR[0]	pull-up ⁵	10	E1	8
	SDA	CANRX ³	URXD2	GPIO	PDSR[0]	PSRR[0]	pull-up ⁵	11	E2	9

Table 3. Pin Functions by Primary and Alternate Purpose (continued)

Pin Group	Primary Function	Secondary Function	Tertiary Function	Quaternary Function	Drive Strength / Control ¹	Slew Rate / Control ¹	Pull-up / Pull-down ²	Pin on 100 LQFP	Pin on 81 MAPBGA	Pin on 64 LQFP/QFN
Interrupts	ĪRQ7	_	_	GPIO	Low	FAST	pull-up	95	C4	58
	ĪRQ6	_	_	GPIO	Low	FAST	pull-up	94	B4	_
	ĪRQ5	_	_	GPIO	Low	FAST	pull-up	91	A4	_
	ĪRQ4	_	_	GPIO	Low	FAST	pull-up	90	C5	57
	ĪRQ3		_	GPIO	Low	FAST	pull-up	89	A 5	_
	ĪRQ2	_	_	GPIO	Low	FAST	pull-up	88	B5	_
	ĪRQ1	SYNCA	PWM1	GPIO	High	FAST	pull-up ⁵	87	C6	56
JTAG/BDM	JTAG_EN	_	_	_	N/A	N/A	pull-down	26	J2	17
	TCLK/ PSTCLK	CLKOUT	_	_	High	FAST	pull-up ⁶	64	C7	44
	TDI/DSI	_	_	_	N/A	N/A	pull-up ⁶	79	B7	50
	TDO/DSO	_	_	_	High	FAST	_	80	A7	51
	TMS /BKPT	_	_	_	N/A	N/A	pull-up ⁶	76	A8	49
	TRST /DSCLK	_	_	_	N/A	N/A	pull-up ⁶	85	B6	54
Mode	CLKMOD0	_	_	_	N/A	N/A	pull-down ⁷	40	G5	24
Selection ⁷	CLKMOD1	_	_	_	N/A	N/A	pull-down ⁷	39	H5	_
	RCON/ EZPCS	_	_	_	N/A	N/A	pull-up	21	G3	16
PWM	PWM7	_	_	GPIO	PDSR[31]	PSRR[31]	_	63	D7	_
	PWM5	_	_	GPIO	PDSR[30]	PSRR[30]	_	60	E8	_
	PWM3	_	_	GPIO	PDSR[29]	PSRR[29]	_	33	J4	_
	PWM1	_	_	GPIO	PDSR[28]	PSRR[28]	_	38	J5	_

18

MCF5213 ColdFire Microcontroller, Rev. 3

Pin Group	Primary Function	Secondary Function	Tertiary Function	Quaternary Function	Drive Strength / Control ¹	Slew Rate / Control ¹	Pull-up / Pull-down ²	Pin on 100 LQFP	Pin on 81 MAPBGA	Pin on 64 LQFP/QFN
QSPI	QSPI_DIN/ EZPD	CANRX ⁴	URXD1	GPIO	PDSR[2]	PSRR[2]	_	16	F3	12
	QSPI_DOUT/ EZPQ	CANTX ⁴	UTXD1	GPIO	PDSR[1]	PSRR[1]	_	17	G1	13
	QSPI_CLK/ EZPCK	SCL	URTS1	GPIO	PDSR[3]	PSRR[3]	pull-up ⁸	18	G2	14
	QSPI_CS3	SYNCA	SYNCB	GPIO	PDSR[7]	PSRR[7]	_	12	F1	_
	QSPI_CS2	_	_	GPIO	PDSR[6]	PSRR[6]	_	13	F2	_
	QSPI_CS1	_	_	GPIO	PDSR[5]	PSRR[5]	_	19	H2	_
	QSPI_CS0	SDA	UCTS1	GPIO	PDSR[4]	PSRR[4]	pull-up ⁸	20	H1	15
Reset ⁹	RSTI	_	_	_	N/A	N/A	pull-up ⁹	96	А3	59
	RSTO	_	_	_	high	FAST	_	97	В3	60
Test	TEST	_	_	_	N/A	N/A	pull-down	5	C2	3
Timers, 16-bit	GPT3	_	PWM7	GPIO	PDSR[23]	PSRR[23]	pull-up ¹⁰	62	D8	43
	GPT2	_	PWM5	GPIO	PDSR[22]	PSRR[22]	pull-up ¹⁰	61	D9	42
	GPT1	_	PWM3	GPIO	PDSR[21]	PSRR[21]	pull-up ¹⁰	59	E9	41
	GPT0	_	PWM1	GPIO	PDSR[20]	PSRR[20]	pull-up ¹⁰	58	F7	40
Timers, 32-bit	DTIN3	DTOUT3	PWM6	GPIO	PDSR[19]	PSRR[19]	_	32	НЗ	19
	DTIN2	DTOUT2	PWM4	GPIO	PDSR[18]	PSRR[18]	_	31	J3	18
	DTIN1	DTOUT1	PWM2	GPIO	PDSR[17]	PSRR[17]	_	37	G4	23
	DTIN0	DTOUT0	PWM0	GPIO	PDSR[16]	PSRR[16]	_	36	H4	22
UART 0	UCTS0	CANRX	_	GPIO	PDSR[11]	PSRR[11]	_	6	C1	4
	URTS0	CANTX	_	GPIO	PDSR[10]	PSRR[10]	_	9	D3	7
	URXD0	_	_	GPIO	PDSR[9]	PSRR[9]	_	7	D1	5
	UTXD0	_	_	GPIO	PDSR[8]	PSRR[8]	_	8	D2	6

Table 3. Pin Functions by Primary and Alternate Purpose (continued)

Table 3. Pin Functions by Primary and Alternate Purpose (continued)

Pin Group	Primary Function	Secondary Function	Tertiary Function	Quaternary Function	Drive Strength / Control ¹	Slew Rate / Control ¹	Pull-up / Pull-down ²	Pin on 100 LQFP	Pin on 81 MAPBGA	Pin on 64 LQFP/QFN
UART 1	UCTS1	SYNCA	URXD2	GPIO	PDSR[15]	PSRR[15]	_	98	C3	61
	URTS1	SYNCB	UTXD2	GPIO	PDSR[14]	PSRR[14]	_	4	B1	2
	URXD1	_	_	GPIO	PDSR[13]	PSRR[13]	_	100	B2	63
	UTXD1	_	_	GPIO	PDSR[12]	PSRR[12]	_	99	A2	62
UART 2	UCTS2	_		GPIO	PDSR[27]	PSRR[27]	_	27	_	_
	URTS2	_	_	GPIO	PDSR[26]	PSRR[26]	_	30	_	_
	URXD2	_	_	GPIO	PDSR[25]	PSRR[25]	_	28	_	_
	UTXD2	_	_	GPIO	PDSR[24]	PSRR[24]	_	29	_	_
FlexCAN	CANRX ^{4,11}				N/A	N/A	_	_	_	_
	CANTX ^{4,11}				N/A	N/A	_	_	_	_
VSTBY	VSTBY	_	_	_	N/A	N/A	_	55	F8	37
VDD	VDD	_	_	_	N/A	N/A	_	1,2,14,22, 23,34,41, 57,68,81,93	D5,E3–E7, F5	1,10,20,39,5 2
VSS	VSS	_	_	_	N/A	N/A	_	3,15,24,25,3 5,42,56, 67,75,82,92	A1,A9,D4,D 6,F4,F6,J1	11,21,38, 53,64

¹ The PDSR and PSSR registers are described in the General Purpose I/O chapter. All programmable signals default to 2 mA drive and FAST slew rate in normal (single-chip) mode.

All signals have a pull-up in GPIO mode.

These signals are multiplexed on other pins.

These signals are multiplexed on other pins.

The multiplexed CANTX and CANRX signals are not available on the MCF5211 or MCF5212.

For primary and GPIO functions only.

Only when JTAG mode is enabled.

CLKMOD0 and CLKMOD1 have internal pull-down resistors; however, the use of external resistors is very strongly recommended.

For secondary and GPIO functions only.

RSTI has an internal pull-up resistor; however, the use of an external resistor is very strongly recommended.

For GPIO function. Primary Function has pull-up control within the GPT module.

CANTX and CANRX are secondary functions only.

1.2 Reset Signals

Table 4 describes signals used to reset the chip or as a reset indication.

Table 4. Reset Signals

Signal Name	Abbreviation	Function	I/O
Reset In		Primary reset input to the device. Asserting RSTI for at least 8 CPU clock cycles immediately resets the CPU and peripherals.	I
Reset Out	RSTO	Driven low for 1024 CPU clocks after the reset source has deasserted.	0

1.3 PLL and Clock Signals

Table 5 describes signals used to support the on-chip clock generation circuitry.

Table 5. PLL and Clock Signals

Signal Name	Abbreviation	Function	I/O
External Clock In	EXTAL	Crystal oscillator or external clock input except when the on-chip relaxation oscillator is used.	I
Crystal	XTAL	Crystal oscillator output except when CLKMOD1=1, then sampled as part of the clock mode selection mechanism.	0
Clock Out	CLKOUT	This output signal reflects the internal system clock.	0

1.4 Mode Selection

Table 6 describes signals used in mode selection; Table 7 describes the particular clocking modes.

Table 6. Mode Selection Signals

Signal Name	Abbreviation	Function	I/O
Clock Mode Selection	CLKMOD[1:0]	Selects the clock boot mode.	I
Reset Configuration	RCON	The Serial Flash Programming mode is entered by asserting the RCON pin (with the TEST pin negated) as the chip comes out of reset. During this mode, the EzPort has access to the flash memory which can be programmed from an external device.	
Test	TEST	Reserved for factory testing only and in normal modes of operation should be connected to VSS to prevent unintentional activation of test functions.	I

Table 7. Clocking Modes

CLKMOD[1:0]	XTAL	Configure the clock mode.
00	0	PLL disabled, clock driven by external oscillator
00	1	PLL disabled, clock driven by on-chip oscillator
01	N/A	PLL disabled, clock driven by crystal
10	0	PLL in normal mode, clock driven by external oscillator
10	1	PLL in normal mode, clock driven by on-chip oscillator
11	N/A	PLL in normal mode, clock driven by crystal

MCF5213 ColdFire Microcontroller, Rev. 3

1.5 External Interrupt Signals

Table 8 describes the external interrupt signals.

Table 8. External Interrupt Signals

Signal Name	Abbreviation	Function	I/O
External Interrupts	ĪRQ[7:1]	External interrupt sources.	I

1.6 Queued Serial Peripheral Interface (QSPI)

Table 9 describes the QSPI signals.

Table 9. Queued Serial Peripheral Interface (QSPI) Signals

Signal Name	Abbreviation	Function	I/O
QSPI Synchronous Serial Output	QSPI_DOUT	Provides the serial data from the QSPI and can be programmed to be driven on the rising or falling edge of QSPI_CLK.	0
QSPI Synchronous Serial Data Input	QSPI_DIN	Provides the serial data to the QSPI and can be programmed to be sampled on the rising or falling edge of QSPI_CLK.	1
QSPI Serial Clock	QSPI_CLK	Provides the serial clock from the QSPI. The polarity and phase of QSPI_CLK are programmable.	0
Synchronous Peripheral Chip Selects	QSPI_CS[3:0]	QSPI peripheral chip select; can be programmed to be active high or low.	0

1.7 I²C I/O Signals

Table 10 describes the I²C serial interface module signals.

Table 10. I²C I/O Signals

Signal Name	Abbreviation	Function	1/0
Serial Clock		Open-drain clock signal for the for the I ² C interface. When the bus is In master mode, this clock is driven by the I ² C module; when the bus is in slave mode, this clock becomes the clock input.	I/O
Serial Data	SDA	Open-drain signal that serves as the data input/output for the I ² C interface.	I/O

1.8 UART Module Signals

Table 11 describes the UART module signals.

Table 11. UART Module Signals

Signal Name	Abbreviation	Function	I/O
Transmit Serial Data Output	UTXDn	Transmitter serial data outputs for the UART modules. The output is held high (mark condition) when the transmitter is disabled, idle, or in the local loopback mode. Data is shifted out, LSB first, on this pin at the falling edge of the serial clock source.	0
Receive Serial Data Input	URXDn	Receiver serial data inputs for the UART modules. Data is received on this pin LSB first. When the UART clock is stopped for power-down mode, any transition on this pin restarts the clock.	I
Clear-to-Send	<u>UCTS</u> n	Indication to the UART modules that they can begin data transmission.	I
Request-to-Send	<u>URTS</u> n	Automatic request-to-send outputs from the UART modules. This signal can also be configured to be asserted and negated as a function of the RxFIFO level.	0

1.9 DMA Timer Signals

Table 12 describes the signals of the four DMA timer modules.

Table 12. DMA Timer Signals

Signal Name	Abbreviation	Function	I/O
DMA Timer Input	DTIN	Event input to the DMA timer modules.	_
DMA Timer Output	DTOUT	Programmable output from the DMA timer modules.	0

1.10 ADC Signals

Table 13 describes the signals of the Analog-to-Digital Converter.

Table 13. ADC Signals

Signal Name	Abbreviation	Function	I/O
Analog Inputs	AN[7:0]	Inputs to the analog-to-digital converter.	I
Analog Reference	V _{RH}	Reference voltage high and low inputs.	I
	V _{RL}		I
Analog Supply	V_{DDA}	Isolate the ADC circuitry from power supply noise.	_
	V _{SSA}		_
ADC Sync Inputs	SYNCA / SYNCB	These signals can initiate an analog-to-digital conversion process.	I

1.11 General Purpose Timer Signals

Table 14 describes the general purpose timer signals.

Table 14. GPT Signals

Signal Name	Abbreviation	Function	I/O
General Purpose Timer Input/Output	GPT[3:0]	Inputs to or outputs from the general purpose timer module.	I/O

1.12 Pulse Width Modulator Signals

Table 15 describes the PWM signals.

Table 15. PWM Signals

Signal Name	Abbreviation	Function	I/O
PWM Output Channels	PWM[7:0]	Pulse width modulated output for PWM channels.	0

1.13 Debug Support Signals

These signals are used as the interface to the on-chip JTAG controller and the BDM logic.

Table 16. Debug Support Signals

Signal Name	Abbreviation	Function	I/O
JTAG Enable	JTAG_EN	Select between debug module and JTAG signals at reset.	I
Test Reset	TRST	This active-low signal is used to initialize the JTAG logic asynchronously.	I
Test Clock	TCLK	Used to synchronize the JTAG logic.	I
Test Mode Select	TMS	Used to sequence the JTAG state machine. TMS is sampled on the rising edge of TCLK.	Ι
Test Data Input	TDI	Serial input for test instructions and data. TDI is sampled on the rising edge of TCLK.	Ι
Test Data Output	TDO	Serial output for test instructions and data. TDO is tri-stateable and is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCLK.	0
Development Serial Clock	DSCLK	Development Serial Clock - Internally synchronized input. (The logic level on DSCLK is validated if it has the same value on two consecutive rising bus clock edges.) Clocks the serial communication port to the debug module during packet transfers. Maximum frequency is PSTCLK/5. At the synchronized rising edge of DSCLK, the data input on DSI is sampled and DSO changes state.	-
Breakpoint	ВКРТ	Breakpoint - Input used to request a manual breakpoint. Assertion of BKPT puts the processor into a halted state after the current instruction completes. Halt status is reflected on processor status/debug data signals (PST[3:0] and PSTDDATA[7:0]) as the value 0xF. If CSR[BKD] is set (disabling normal BKPT functionality), asserting BKPT generates a debug interrupt exception in the processor.	-

Table 16. Debug Support Signals (continued)

Signal Name	Abbreviation	Function	I/O
Development Serial Input	DSI	Development Serial Input - Internally synchronized input that provides data input for the serial communication port to the debug module, after the DSCLK has been seen as high (logic 1).	I
Development Serial Output	DSO	Development Serial Output - Provides serial output communication for debug module responses. DSO is registered internally. The output is delayed from the validation of DSCLK high.	0
Debug Data	DDATA[3:0]	Display captured processor data and breakpoint status. The CLKOUT signal can be used by the development system to know when to sample DDATA[3:0].	0
Processor Status Clock	PSTCLK	Processor Status Clock - Delayed version of the processor clock. Its rising edge appears in the center of valid PST and DDATA output. PSTCLK indicates when the development system should sample PST and DDATA values. If real-time trace is not used, setting CSR[PCD] keeps PSTCLK, and PST and DDATA outputs from toggling without disabling triggers. Non-quiescent operation can be reenabled by clearing CSR[PCD], although the external development systems must resynchronize with the PST and DDATA outputs. PSTCLK starts clocking only when the first non-zero PST value (0xC, 0xD, or 0xF) occurs during system reset exception processing.	0
Processor Status Outputs	PST[3:0]	Indicate core status. Debug mode timing is synchronous with the processor clock; status is unrelated to the current bus transfer. The CLKOUT signal can be used by the development system to know when to sample PST[3:0].	0
All Processor Status Outputs	ALLPST	Logical AND of PST[3:0]. The CLKOUT signal can be used by the development system to know when to sample ALLPST.	0

1.14 EzPort Signal Descriptions

Table contains a list of EzPort external signals.

Table 17. EzPort Signal Descriptions

Signal Name	Abbreviation	Function	I/O
EzPort Clock	EZPCK	Shift clock for EzPort transfers.	I
EzPort Chip Select	EZPCS	Chip select for signalling the start and end of serial transfers.	I
EzPort Serial Data In	EZPD	EZPD is sampled on the rising edge of EZPCK.	I
EzPort Serial Data Out	EZPQ	EZPQ transitions on the falling edge of EZPCK.	0

25

1.15 Power and Ground Pins

The pins described in Table 18 provide system power and ground to the chip. Multiple pins are provided for adequate current capability. All power supply pins must have adequate bypass capacitance for high-frequency noise suppression.

Table 18. Power and Ground Pins

Signal Name	Abbreviation	Function
PLL Analog Supply		Dedicated power supply signals to isolate the sensitive PLL analog circuitry from the normal levels of noise present on the digital power supply.
Positive Supply	VDD	These pins supply positive power to the core logic.
Ground	VSS	This pin is the negative supply (ground) to the chip.

2 Electrical Characteristics

This section contains electrical specification tables and reference timing diagrams for the MCF5213 microcontroller unit, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

MCF5213 ColdFire Microcontroller, Rev. 3