

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Freescale Semiconductor

Data Sheet: Technical Data

Document Number: MCF5275EC Rev. 4, 02/2009

MCF5275 Integrated Microprocessor Family Hardware Specification

by: Microcontroller Solutions Group

The MCF5275 family is a highly integrated implementation of the ColdFire[®] family of reduced instruction set computing (RISC) microprocessors. This document describes pertinent features and functions characteristics of the MCF5275 family. The MCF5275 family includes the MCF5275, MCF5275L, MCF5274 and MCF5274L microprocessors. The differences between these parts are summarized in Table 1. This document is written from the perspective of the MCF5275 and unless otherwise noted, the information applies also to the MCF5275L, MCF5274 and MCF5274L.

The MCF5275 family delivers a new level of performance and integration on the popular version 2 ColdFire core with up to 159 (Dhrystone 2.1) MIPS @ 166MHz. These highly integrated microprocessors build upon the widely used peripheral mix on the popular MCF5272 ColdFire microprocessor (10/100 Mbps Ethernet MAC and USB device) by adding a second 10/100 Mbps Ethernet MAC (MCF5274 and MCF5275) and hardware encryption (MCF5275L and MCF5275).

Contents

1	MCF5275 Family Configurations	. 2
2	Block Diagram	. 3
3	Features	. 3
4	Signal Descriptions	. 4
5	Design Recommendations	. 9
6	Mechanicals/Pinouts	14
7	Ordering Information	18
8	Electrical Characteristics	18
9	Documentation	43
10	Revision History	43

MCF5275 Family Configurations

In addition, the MCF5275 family features an enhanced multiply accumulate unit (EMAC), large on-chip memory (64 Kbytes SRAM, 16 Kbytes configurable cache), and a 16-bit DDR SDRAM memory controller.

These devices are ideal for cost-sensitive applications requiring significant control processing for file management, connectivity, data buffering, and user interface, as well as signal processing in a variety of key markets such as security, imaging, networking, gaming, and medical. This leading package of integration and high performance allows fast time to market through easy code reuse and extensive third party tool support.

To locate any published errata or updates for this document, refer to the ColdFire products website at http://www.freescale.com/coldfire.

1 MCF5275 Family Configurations

Table 1. MCF5275 Family Configurations

Module	MCF5274L	MCF5275L	MCF5274	MCF5275
ColdFire Version 2 Core with EMAC (Enhanced Multiply-Accumulate Unit)	•	•	•	•
System Clock		up to 10	66 MHz	
Performance (Dhrystone 2.1 MIPS)		up to	159	
Instruction/Data Cache		16 Kbytes (d	configurable)	
Static RAM (SRAM)		64 K	bytes	
Interrupt Controllers (INTC)	2	2	2	2
Edge Port Module (EPORT)	•	•	•	•
External Interface Module (EIM)	•	•	•	•
4-channel Direct-Memory Access (DMA)	•	•	•	•
DDR SDRAM Controller	•	•	•	•
Fast Ethernet Controller (FEC)	1	1	2	2
Watchdog Timer Module (WDT)	•	•	•	•
4-channel Programmable Interval Timer Module (PIT)	•	•	•	•
32-bit DMA Timers	4	4	4	4
USB	•	•	•	•
QSPI	•	•	•	•
UART(s)	3	3	3	3
I ² C	•	•	•	•
PWM	4	4	4	4
General Purpose I/O Module (GPIO)	•	•	•	•
CIM = Chip Configuration Module + Reset Controller Module	•	•	•	•
Debug BDM	•	•	•	•
JTAG - IEEE 1149.1 Test Access Port	•	•	•	•
Hardware Encryption	_	•	_	•
Package	196 M	APBGA	256 M	APBGA

2 Block Diagram

The superset device in the MCF5275 family comes in a 256 Mold Array Plastic Ball Grid Array (MAPBGA) package. Figure 1 shows a top-level block diagram of the MCF5275, the superset device.

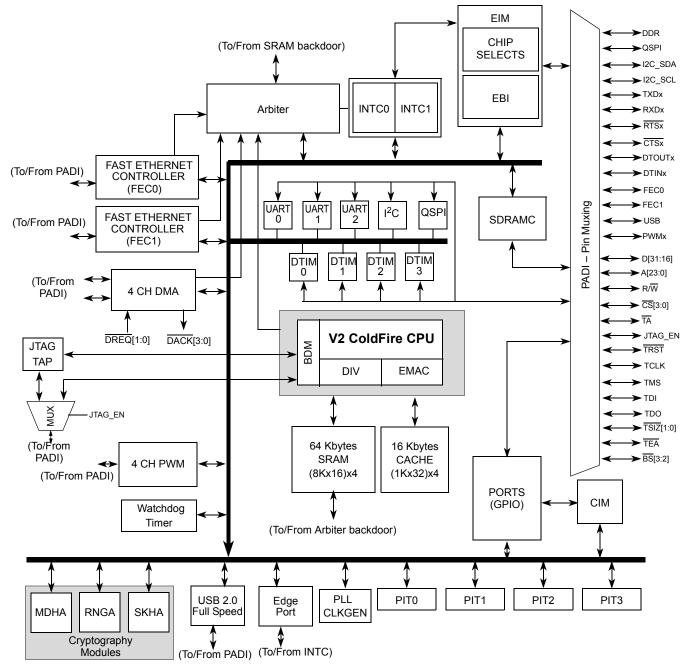


Figure 1. MCF5275 Block Diagram

3 Features

For a detailed feature list see the MCF5275 Reference Manual (MCF5275RM).

MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 4

Signal Descriptions

4 Signal Descriptions

This section describes signals that connect off chip, including a table of signal properties. For a more detailed discussion of the MCF5275 signals, consult the *MCF5275 Reference Manual* (MCF5275RM).

Table 2 lists the signals for the MCF5275 in functional group order. The "Dir" column is the direction for the primary function of the pin. Refer to Section 6, "Mechanicals/Pinouts," for package diagrams.

NOTE

In this table and throughout this document a single signal within a group is designated without square brackets (i.e., A24), while designations for multiple signals within a group use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon.

NOTE

The primary functionality of a pin is not necessarily its default functionality. Pins that are muxed with GPIO will default to their GPIO functionality.

Table 2. MCF5274 and MCF5275 Signal Information and Muxing

Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA
		ı	Reset			
RESET	_	_	_	I	N15	K12
RSTOUT	_		_	0	N14	L12
			Clock			
EXTAL	_	_	_	I	L16	M14
XTAL	_	_	_	0	M16	N14
CLKOUT	_	_	_	0	T12	P9
		Mode	Selection			
CLKMOD[1:0]	_	_	_	I	N13, P13	M11, N11
RCON	_	_	_	I	P8	M6
	Ex	ternal Memor	y Interface a	nd Po	rts	
A[23:21]	PADDR[7:5]	CS[6:4]	_	0	A11, B11, C11	A8, B8, C8
A[20:0]	_	_	_	0	A12, B12, C12, A13, B13, C13, A14, B14, C14, B15, C15, B16, C16, D14, D15, E14:16, F14:16	D11, C12, B13,

Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)

Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA
D[31:16]	_	_	_	0	M1, N1, N2, N3, P1, P2, R1, R2, P3, R3, T3, N4, P4, R4, T4, N5	J3, L1, K2, K3, M1, L2, L3, L4, K4, J4, M2, N1, N2, M3, M4, N3
BS[3:2]	PBS[3:2]	CAS[3:2]	_	0	M3, R5	K1, L5
ŌĒ	PBUSCTL[7]	_	_	0	K1	H4
TA	PBUSCTL[6]	_	_	I	L13	K14
TEA	PBUSCTL[5]	DREQ1		I	Т8	_
R/W	PBUSCTL[4]	_	_	0	P7	L6
TSIZ1	PBUSCTL[3]	DACK1	_	0	D16	B14
TSIZ0	PBUSCTL[2]	DACK0	_	0	G16	E14
TS	PBUSCTL[1]	DACK2	_	0	L4	H2
TIP	PBUSCTL[0]	DREQ0	_	0	P6	_
		Chip	Selects			
CS[7:1]	PCS[7:1]	_	_	0	D10:13, E13, F13, N7	D8, A9, A10, D10, B12, C14, P4
CS0	_	_	_	0	R6	N5
		DDR SDR	AM Controll	er		
DDR_CLKOUT	_	_	_	0	T7	P6
DDR_CLKOUT	_	_	_	0	T6	P5
SD_CS[1:0]	PSDRAM[7:6]	CS[3:2]	_	0	M2, T5	H3, M5
SD_SRAS	PSDRAM[5]	_	_	0	L2	H1
SD_SCAS	PSDRAM[4]	_	_	0	L1	G3
SD_WE	PSDRAM[3]	_	_	0	K2	G4
SD_A10	_	_	_	0	N6	N4
SD_DQS[3:2]	PSDRAM[2:1]	_	_	I/O	M4, P5	J2, P3
SD_CKE	PSDRAM[0]	_	_	0	L3	J1
SD_VREF	_	_	_	I	A15, T2	A13, P2
		External l	nterrupts Po	ort		
ĪRQ[7:5]	PIRQ[7:5]	_	_	I	G13, H16, H15	F14, G13, G14
ĪRQ[4]	PIRQ[4]	DREQ2	_	I	H14	H11
ĪRQ[3:2]	PIRQ[3:2]	DREQ[3:2]	_	I	J14, J13	H14, H12

Signal Descriptions

Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)

Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA
ĪRQ1	PIRQ[1]	_	_	I	K13	J13
			FEC0			
FEC0_MDIO	PFECI2C[5]	I2C_SDA	U2RXD	I/O	A7	A3
FEC0_MDC	PFECI2C[4]	I2C_SCL	U2TXD	0	B7	C5
FEC0_TXCLK	PFEC0H[7]	_	_	I	C3	C1
FEC0_TXEN	PFEC0H[6]	_	_	0	D4	C3
FEC0_TXD[0]	PFEC0H[5]	_	_	0	G4	D2
FEC0_COL	PFEC0H[4]	_	_	I	A6	B4
FEC0_RXCLK	PFEC0H[3]	_	_	I	B6	В3
FEC0_RXDV	PFEC0H[2]	_	_	I	B5	C4
FEC0_RXD[0]	PFEC0H[1]	_	_	I	C6	D5
FEC0_CRS	PFEC0H[0]	_	_	I	C7	A2
FEC0_TXD[3:1]	PFEC0L[7:5]	_	_	0	E3, F3, F4	D1, E3, D3
FEC0_TXER	PFEC0L[4]	_	_	0	D3	C2
FEC0_RXD[3:1]	PFEC0L[3:1]	_	_	I	D5, C5, D6	D4, B1, B2
FEC0_RXER	PFEC0L[0]	_	_	I	C4	E4
			FEC1			
FEC1_MDIO	PFECI2C[3]	_	_	I/O	G1	_
FEC1_MDC	PFECI2C[2]	_	_	0	G2	_
FEC1_TXCLK	PFEC1H[7]	_	_	I	C1	_
FEC1_TXEN	PFEC1H[6]	_	_	0	D2	_
FEC1_TXD[0]	PFEC1H[5]	_	_	0	F1	_
FEC1_COL	PFEC1H[4]	_	_	I	A 5	_
FEC1_RXCLK	PFEC1H[3]	_	_	I	B4	_
FEC1_RXDV	PFEC1H[2]	_	_	I	A3	_
FEC1_RXD[0]	PFEC1H[1]	_	_	I	В3	_
FEC1_CRS	PFEC1H[0]	_	_	I	A4	_
FEC1_TXD[3:1]	PFEC1L[7:5]			0	E1, E2, F2	
FEC1_TXER	PFEC1L[4]		_	0	D1	_
FEC1_RXD[3:1]	PFEC1L[3:1]	_	_	I	B1, B2, A2	_
FEC1_RXER	PFEC1L[0]		_	I	C2	_

Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)

Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA		
I ² C								
I2C_SDA	PFECI2C[1]	U2RXD	_	I/O	B10	В7		
I2C_SCL	PFECI2C[0]	U2TXD	_	I/O	C10	A7		
			DMA					
Please PCS3/PWM3 f DACK1, TSIZ0	DREQ[3:0] do ne refer to the folloor DACK3, PCS for DACK0, IRC	owing pins for r 2/PWM2 for DA 3 for DREQ3,	muxing: ACK2, TSIZ1 IRQ2 and TA	for	_	_		
			QSPI					
QSPI_CS[3:2]	PQSPI[6:5]	PWM[3:2]	DACK[3:2]	0	R13, N12	P10, N9		
QSPI_CS1	PQSPI[4]		_	0	T14	N10		
QSPI_CS0	PQSPI[3]		_	0	P12	M9		
QSPI_CLK	PQSPI[2]	I2C_SCL	_	0	T15	L11		
QSPI_DIN	PQSPI[1]	I2C_SDA	_	I	T13	M10		
QSPI_DOUT	PQSPI[0]		_	0	R12	L10		
		ι	JARTs					
U2RXD	PUARTH[3]	_	_	I	Т9	_		
U2TXD	PUARTH[2]	_	_	0	R9	_		
U2CTS	PUARTH[1]	PWM1	_	I	P9	_		
U2RTS	PUARTH[0]	PWM0	_	0	R8	_		
U1RXD	PUARTL[7]	_	_	I	A9	A6		
U1TXD	PUARTL[6]	_	_	0	B9	D7		
U1CTS	PUARTL[5]	_	_	I	C9	C7		
U1RTS	PUARTL[4]	_	_	0	D9	B6		
U0RXD	PUARTL[3]			I	A8	A4		
U0TXD	PUARTL[2]			0	B8	A5		
U0CTS	PUARTL[1]	_	_	I	C8	C6		
U0RTS	PUARTL[0]	_	_	0	D7	B5		
			USB					
USB_SPEED	PUSBH[0]	_	_	I/O	G14	G11		
USB_CLK	PUSBL[7]	_	_	I	G15	F12		

Signal Descriptions

Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)

			1			,
Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA
USB_RN	PUSBL[6]	_	_	I	J16	H13
USB_RP	PUSBL[5]	_	_	I	J15	J11
USB_RXD	PUSBL[4]	_	_	I	L15	L14
USB_SUSP	PUSBL[3]	_	_	0	M13	N13
USB_TN	PUSBL[2]	_	_	0	K14	J14
USB_TP	PUSBL[1]	_	_	0	K15	J12
USB_TXEN	PUSBL[0]	_	_	0	L14	K13
		Timers	(and PWMs)			
DT3IN	PTIMERH[3]	DT3OUT	U2RTS	I	J4	G2
DT3OUT	PTIMERH[2]	PWM3	U2CTS	0	K3	G1
DT2IN	PTIMERH[1]	DT2OUT	_	I	J2	F3
DT2OUT	PTIMERH[0]	PWM2	_	0	J3	F4
DT1IN	PTIMERL[3]	DT1OUT	_	ı	H1	F1
DT1OUT	PTIMERL[2]	PWM1	_	0	H2	F2
DT0IN	PTIMERL[1]	DT0OUT	_	I	H3	E1
DT0OUT	PTIMERL[0]	PWM0	_	0	G3	E2
		BD	M/JTAG ²			
DSCLK	_	TRST	_	I	P14	P13
PSTCLK	_	TCLK	_	0	P16	P12
BKPT	_	TMS	_	I	R15	N12
DSI	_	TDI	_	I	R16	M12
DSO	_	TDO	_	0	P15	K11
JTAG_EN	_	_	_	I	R14	P11
DDATA[3:0]	_	_	_	0	P10, N10, P11, N11	M7, N7, P8, L9
PST[3:0]	_	_	_	0	T10, R10, T11, R11	P7, L8, M8, N8
			Test			
TEST	_	_	_	I	N9	N6
PLL_TEST	_	_	_	I	M14	_
	•	Powe	r Supplies			
VDDPLL	_	_	_	I	M15	M13
			_			

MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 4

Signal Name	GPIO	Alternate1	Alternate2	Dir. ¹	MCF5274 MCF5275 256 MAPBGA	MCF5274L MCF5275L 196 MAPBGA
VSSPLL	_	_	_	I	K16	L13
VSS	1			I	A1, A10, A16, E5, E12, F6, F11, G7:10, H7:10, J1, J7:10, K7:10, L6, L11, M5, N16, R7, T1, T16	F7, F8, G6:9, H6:9, J7, J8
OVDD	1	_	_	I	E6:8, F5, F7, F8, G5, G6, H5, H6, J11, J12, K11, K12, L9, L10, L12, M9:11	E5:7, F5, F6, H10, J9, J10, K8:10
VDD		_	_	I	D8, H13, K4, N8	D6, G5, G12, L7
SD_VDD	I	_	_	I	E9:11, F9, F10, F12, G11, G12, H11, H12, J5, J6, K5, K6, L5, L7, L8, M6, M7, M8	E8:10, F9, F10, G10, H5, J5, J6, K5:7

Table 2. MCF5274 and MCF5275 Signal Information and Muxing (continued)

5 Design Recommendations

5.1 Layout

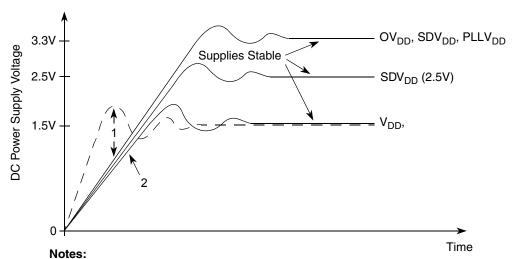
- Use a 4-layer printed circuit board with the VDD and GND pins connected directly to the power and ground planes for the MCF5275.
- See application note AN1259 System Design and Layout Techniques for Noise Reduction in MCU-Based Systems.
- Match the PC layout trace width and routing to match trace length to operating frequency and board impedance. Add termination (series or therein) to the traces to dampen reflections. Increase the PCB impedance (if possible) keeping the trace lengths balanced and short. Then do cross-talk analysis to separate traces with significant parallelism or are otherwise "noisy". Use 6 mils trace and separation. Clocks get extra separation and more precise balancing.

5.2 Power Supply

• 33uF, 0.1 μF, and 0.01 μF across each power supply

MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 4

Refers to pin's primary function. All pins which are configurable for GPIO have a pullup enabled in GPIO mode with the exception of PBUSCTL[7], PBUSCTL[4:0], PADDR, PBS, PSDRAM.


If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these pins.

Design Recommendations

5.2.1 Supply Voltage Sequencing and Separation Cautions

Figure 2 shows situations in sequencing the I/O V_{DD} (OV_{DD}), SDRAM V_{DD} (SDV_{DD}), PLL V_{DD} (PLLV_{DD}), and Core V_{DD} (V_{DD}).

- 1. VDD should not exceed OVDD, SDVDD or PLLVDD by more than 0.4 V at any time, including power-up.
- Recommended that VDD should track OVDD/SDVDD/PLLVDD up to 0.9 V, then separate for completion of ramps.
- 3. Input voltage must not be greater than the supply voltage (OVDD, SDVDD, VDD, or PLLVDD) by more than 0.5 V at any time, including during power-up.
- 4. Use 1 ms or slower rise time for all supplies.

Figure 2. Supply Voltage Sequencing and Separation Cautions

The relationship between SDV_{DD} and OV_{DD} is non-critical during power-up and power-down sequences. SDV_{DD} (2.5V or 3.3V) and OV_{DD} are specified relative to V_{DD} .

5.2.1.1 Power Up Sequence

If OV_{DD}/SDV_{DD} are powered up with V_{DD} at 0 V, then the sense circuits in the I/O pads cause all pad output drivers connected to the OV_{DD}/SDV_{DD} to be in a high impedance state. There is no limit on how long after OV_{DD}/SDV_{DD} powers up before V_{DD} must powered up. V_{DD} should not lead the OV_{DD} , SDV_{DD} , or $PLLV_{DD}$ by more than 0.4 V during power ramp-up or high current will be in the internal ESD protection diodes. The rise times on the power supplies should be slower than 1 μ s to avoid turning on the internal ESD protection clamp diodes.

The recommended power up sequence is as follows:

- 1. Use 1 µs or slower rise time for all supplies.
- V_{DD}/PLLV_{DD} and OV_{DD}/SDV_{DD} should track up to 0.9 V, then separate for the completion of ramps with OV_{DD}/SD V_{DD} going to the higher external voltages. One way to accomplish this is to use a low drop-out voltage regulator.

5.2.1.2 Power Down Sequence

If V_{DD} is powered down first, then sense circuits in the I/O pads cause all output drivers to be in a high impedance state. There is no limit on how long after V_{DD} powers down before OV_{DD} , SDV_{DD} , or $PLLV_{DD}$ must power down. V_{DD} should not lag OV_{DD} , SDV_{DD} , or $PLLV_{DD}$ going low by more than 0.4 V during power down or undesired high current will be in the ESD protection diodes. There are no requirements for the fall times of the power supplies.

The recommended power down sequence is as follows:

- 1. Drop V_{DD} to 0 V.
- 2. Drop OV_{DD}/SDV_{DD}/PLLV_{DD} supplies.

5.3 Decoupling

- Place the decoupling capacitors as close to the pins as possible, but they can be outside the footprint
 of the package.
- 0.1 µF and 0.01 µF at each supply input

5.4 Buffering

• Use bus buffers on all data/address lines for all off-board accesses and for all on-board accesses when excessive loading is expected. See electricals.

5.5 Pull-up Recommendations

• Use external pull-up resistors on unused inputs. See pin table.

5.6 Clocking Recommendations

- Use a multi-layer board with a separate ground plane.
- Place the crystal and all other associated components as close to the EXTAL and XTAL (oscillator pins) as possible.
- Do not run a high frequency trace around crystal circuit.
- Ensure that the ground for the bypass capacitors is connected to a solid ground trace.
- Tie the ground trace to the ground pin nearest EXTAL and XTAL. This prevents large loop currents in the vicinity of the crystal.
- Tie the ground pin to the most solid ground in the system.
- Do not connect the trace that connects the oscillator and the ground plane to any other circuit element. This tends to make the oscillator unstable.
- Tie XTAL to ground when an external oscillator is clocking the device.

Design Recommendations

5.7 Interface Recommendations

5.7.1 DDR SDRAM Controller

5.7.1.1 SDRAM Controller Signals in Synchronous Mode

Table 3 shows the behavior of SDRAM signals in synchronous mode.

Table 3. Synchronous DRAM Signal Connections

Signal	Description
SD_SRAS	Synchronous row address strobe. Indicates a valid SDRAM row address is present and can be latched by the SDRAM. SD_SRAS should be connected to the corresponding SDRAM SD_SRAS. Do not confuse SD_SRAS with the DRAM controller's SDRAM_CS[1:0], which should not be interfaced to the SDRAM SD_SRAS signals.
SD_SCAS	Synchronous column address strobe. Indicates a valid column address is present and can be latched by the SDRAM. SD_SCAS should be connected to the corresponding signal labeled SD_SCAS on the SDRAM.
SD_WE	DRAM read/write. Asserted for write operations and negated for read operations.
SD_CS[1:0]	Row address strobe. Select each memory block of SDRAMs connected to the MCF5275. One SDRAM_CS signal selects one SDRAM block and connects to the corresponding CS signals.
SD_CKE	Synchronous DRAM clock enable. Connected directly to the CKE (clock enable) signal of SDRAMs. Enables and disables the clock internal to SDRAM. When CKE is low, memory can enter a power-down mode where operations are suspended or they can enter self-refresh mode. SD_CKE functionality is controlled by DCR[COC]. For designs using external multiplexing, setting COC allows SD_CKE to provide command-bit functionality.
BS[3:2]	Column address strobe. For synchronous operation, BS[3:2] function as byte enables to the SDRAMs. They connect to the DQM signals (or mask qualifiers) of the SDRAMs.
DDR_CLKOUT	Bus clock output. Connects to the CLK input of SDRAMs.

5.7.1.2 Address Multiplexing

See the SDRAM controller module chapter in the *MCF5275 Reference Manual* for details on address multiplexing.

5.7.2 Ethernet PHY Transceiver Connection

The FEC supports an MII interface for 10/100 Mbps Ethernet and a seven-wire serial interface for 10 Mbps Ethernet. The interface mode is selected by R_CNTRL[MII_MODE]. In MII mode, the 802.3 standard defines and the FEC module supports 18 signals. These are shown in Table 4.

Table 4. MII Mode

Signal Description	MCF5275 Pin
Transmit clock	FECn_TXCLK
Transmit enable	FECn_TXEN
Transmit data	FECn_TXD[3:0]
Transmit error	FECn_TXER

MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 4

Table 4. MII Mode (continued)

Signal Description	MCF5275 Pin
Collision	FECn_COL
Carrier sense	FECn_CRS
Receive clock	FECn_RXCLK
Receive enable	FECn_RXDV
Receive data	FECn_RXD[3:0]
Receive error	FECn_RXER
Management channel clock	FECn_MDC
Management channel serial data	FECn_MDIO

The serial mode interface operates in what is generally referred to as AMD mode. The MCF5275 configuration for seven-wire serial mode connections to the external transceiver are shown in Table 5.

Table 5. Seven-Wire Mode Configuration

Signal Description	MCF5275 Pin
Transmit clock	FECn_TXCLK
Transmit enable	FECn_TXEN
Transmit data	FECn_TXD[0]
Collision	FECn_COL
Receive clock	FECn_RXCLK
Receive enable	FECn_RXDV
Receive data	FECn_RXD[0]
Unused, configure as PB14	FECn_RXER
Unused input, tie to ground	FECn_CRS
Unused, configure as PB[13:11]	FECn_RXD[3:1]
Unused output, ignore	FECn_TXER
Unused, configure as PB[10:8]	FECn_TXD[3:1]
Unused, configure as PB15	FECn_MDC
Input after reset, connect to ground	FECn_MDIO

Refer to the M5275EVB evaluation board user's manual for an example of how to connect an external PHY. Schematics for this board are accessible at the MCF5275 site by navigating to: http://www.freescale.com/coldfire.

5.7.3 BDM

Use the BDM interface as shown in the M5275EVB evaluation board user's manual. The schematics for this board are accessible at the MCF5275 site by navigating to: http://www.freescale.com/coldfire.

MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 4

Mechanicals/Pinouts

6 Mechanicals/Pinouts

6.1 256 MAPBGA Pinout

Figure 3 is a consolidated MCF5274/75 pinout for the 256 MAPBGA package. Table 2 lists the signals by group and shows which signals are muxed and bonded on each of the device packages.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Α	VSS	FEC1_ RXD1	FEC1_ RXDV	FEC1_ CRS	FEC1_ COL	FEC0_ COL	FEC0_ MDIO	U0RXD	U1RXD	VSS	A23	A20	A17	A14	SD_ VREF	VSS	Α
В	FEC1_ RXD3	FEC1_ RXD2	FEC1_ RXD0	FEC1_ RXCLK	FEC0_ RXDV	FEC0_ RXCLK	FEC0_ MDC	U0TXD	U1TXD	I2C_ SDA	A22	A19	A16	A13	A11	A9	В
С	FEC1_ TXCLK	FEC1_ RXER	FEC0_ TXCLK	FEC0_ RXER	FEC0_ RXD2	FEC0_ RXD0	FEC0_ CRS	U0CTS	U1CTS	I2C_ SCL	A21	A18	A15	A12	A10	A8	С
D	FEC1_ TXER	FEC1_ TXEN	FEC0_ TXER	FEC0_ TXEN	FEC0_ RXD3	FEC0_ RXD1	U0RTS	VDD	U1RTS	CS7	CS6	CS5	CS4	A7	A6	TSIZ1	D
Е	FEC1_ TXD3	FEC1_ TXD2	FEC0_ TXD3	NC	VSS	OVDD	OVDD	OVDD	SD_VDD	SD_VDD	SD_VDD	VSS	CS3	A5	A4	А3	Е
F	FEC1_ TXD0	FEC1_ TXD1	FEC0_ TXD2	FEC0_ TXD1	OVDD	VSS	OVDD	OVDD	SD_VDD	SD_VDD	VSS	SD_VDD	CS2	A2	A1	A0	F
G	FEC1_ MDIO	FEC1_ MDC	DT0OUT	FEC0_ TXD0	OVDD	OVDD	VSS	VSS	VSS	VSS	SD_VDD	SD_VDD	ĪRQ7	USB_ SPEED	USB_ CLK	TSIZ0	G
Н	DT1IN	DT1OUT	DT0IN	NC	OVDD	OVDD	VSS	VSS	VSS	VSS	SD_VDD	SD_VDD	VDD	ĪRQ4	IRQ5	ĪRQ6	Н
J	VSS	DT2IN	DT2OUT	DT3IN	SD_VDD	SD_VDD	VSS	VSS	VSS	VSS	OVDD	OVDD	ĪRQ2	IRQ3	USB_RP	USB_RN	J
К	ŌE	SD_WE	DT3OUT	VDD	SD_VDD	SD_VDD	VSS	VSS	VSS	VSS	OVDD	OVDD	ĪRQ1	USB_TN	USB_TP	VSSPLL	К
L	SD_ SCAS	SD_ SRAS	SD_CKE	TS	SD_VDD	VSS	SD_VDD	SD_VDD	OVDD	OVDD	VSS	OVDD	TA	USB_ TXEN	USB_ RXD	EXTAL	L
М	D31	SD_CS1	BS3	SD_DQS3	VSS	SD_VDD	SD_VDD	SD_VDD	OVDD	OVDD	OVDD	NC	USB_ SUSP	PLL_ TEST	VDDPLL	XTAL	М
N	D30	D29	D28	D20	D16	SD_A10	CS1	VDD	TEST	DDATA2	DDATA0	QSPI_ CS2	CLK MOD1	RSTOUT	RESET	VSS	N
Р	D27	D26	D23	D19	SD_DQS2	TIP	R/W	RCON	U2CTS	DDATA3	DDATA1	QSPI_ CS0	CLK MOD0	TRST/ DSCLK	TDO/ DSO	TCLK/ PSTCLK	Р
R	D25	D24	D22	D18	BS2	CS0	VSS	U2RTS	U2TXD	PST2	PST0	QSPI_ DOUT	QSPI_ CS3	JTAG_ EN	TMS/ BKPT	TDI/DSI	R
Т	VSS	SD_ VREF	D21	D17	SD_CS0	DDR_CLK OUT	DDR_CLK OUT	TEA	U2RXD	PST3	PST1	CLKOUT	QSPI_ DIN	QSPI_ CS1	QSPI_ CLK	VSS	Т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Figure 3. MCF5274 and MCF5275 Pinout (256 MAPBGA)

6.2 Package Dimensions - 256 MAPBGA

Figure 6 shows MCF5275 256 MAPBGA package dimensions.

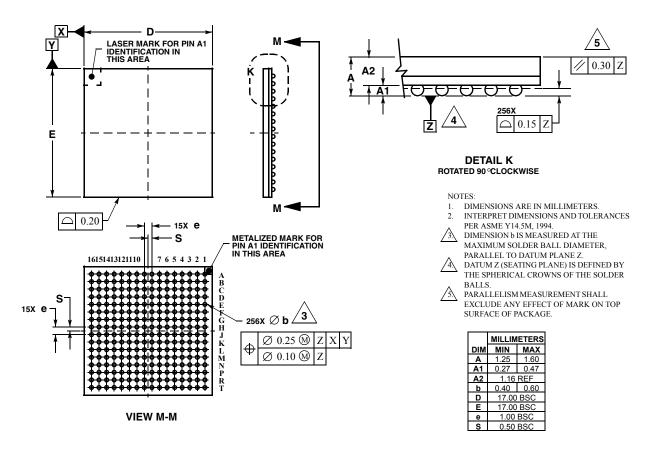


Figure 4. 256 MAPBGA Package Dimensions

Mechanicals/Pinouts

196 MAPBGA Pinout 6.3

Figure 5 is a consolidated MCF5274L/75L pinout for the 196 MAPBGA package. Table 2 lists the signals by group and shows which signals are muxed and bonded on each of the device packages.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Α	NC	FEC0_ CRS	FECO_ MDIO	U0RXD	UOTXD	U1RXD	I2C_SCL	A23	CS6	CS5	A15	A12	SD_ VREF	NC	Α
В	FEC0_ RXD2	FEC0_ RXD1	FEC0_ RXCLK	FEC0_ COL	U0RTS	U1RTS	I2C_SDA	A22	A20	A16	A13	CS3	А9	TSIZ1	В
С	FEC0_ TXCLK	FEC0_ TXER	FEC0_ TXEN	FEC0_ RXDV	FEC0_ MDC	U0CTS	U1CTS	A21	A18	A17	A14	A10	A8	CS2	С
D	FEC0_ TXD3	FEC0_ TXD0	FEC0_ TXD1	FEC0_ RXD3	FEC0_ RXD0	VDD	U1TXD	CS7	A19	CS4	A11	A7	A5	A2	D
Ε	DT0IN	DT0OUT	FEC0_ TXD2	FEC0_ RXER	OVDD	OVDD	OVDD	SD_VDD2	SD_VDD2	SD_VDD2	A6	A4	A1	TSIZ0	Е
F	DT1IN	DT10UT	DT2IN	DT2OUT	OVDD	OVDD	VSS	VSS	SD_VDD2	SD_VDD2	А3	USB_CLK	A0	ĪRQ7	F
G	DT3OUT	DT3IN	SD_CAS	SD_WE	VDD	VSS	VSS	VSS	VSS	SD_VDD2	USB_ SPEED	VDD	ĪRQ6	ĪRQ5	G
Н	SD_SRAS	TS	SD_CS1	ŌE	SD_VDD1	VSS	VSS	VSS	VSS	OVDD	ĪRQ4	ĪRQ2	USB_RN	ĪRQ3	Н
J	SD_CKE	SD_DQS3	D31	D22	SD_VDD1	SD_VDD1	VSS	VSS	OVDD	OVDD	USB_RP	USB_TP	ĪRQ1	USB_TN	J
К	BS3	D29	D28	D23	SD_VDD1	SD_VDD1	SD_VDD1	OVDD	OVDD	OVDD	TDO/DSO	RESET	USB_ TXEN	TA	К
L	D30	D26	D25	D24	BS2	R/W	VDD	PST2	DDATA0	QSPI_ DOUT	QSPI_CLK	RSTOUT	VSSPLL	USB_RXD	L
М	D27	D21	D18	D17	SD_CS0	RCON	DDATA3	PST1	QSPI_ CS0	QSPI_DIN	CLKMOD1	TDI/DSI	VDDPLL	EXTAL	М
N	D20	D19	D16	SD_A10	CS0	TEST	DDATA2	PST0	QSPI_ CS2	QSPI_ CS1	CLKMOD0	TMS/BKPT	USB_ SUSP	XTAL	N
Р	NC	SD_ VREF	SD_DQS2	CS1	DDR_CLK OUT	DDR_CLK OUT	PST3	DDATA1	CLKOUT	QSPI_ CS3	JTAG_EN	TCLK/PST CLK	TRST/DSC LK	NC	Р
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

Figure 5. MCF5274L and MCF5275L Pinout (196 MAPBGA)

MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 4 16 Freescale Semiconductor

6.4 Package Dimensions - 196 MAPBGA

Figure 6 shows MCF5275 196 MAPBGA package dimensions.

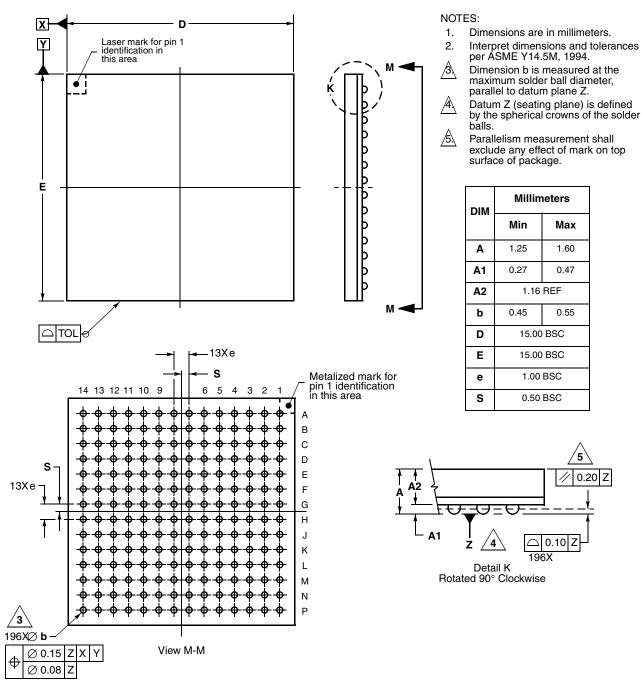


Figure 6. 196 MAPBGA Package Dimensions

Ordering Information

7 Ordering Information

Table 6. Orderable Part Numbers

Freescale Part Number	Description	Package	Speed	Temperature
MCF5274LVM166	MCF5274L RISC Microprocessor	196 MAPBGA	166 MHz	0° to +70° C
MCF5274LCVM166	MOI 3274L MGO MICIOPIOCESSOI	190 MAI BGA	100 WII 12	-40° to +85° C
MCF5274VM166	MCF5274 RISC Microprocessor	256 MAPBGA	166 MHz	0° to +70° C
MCF5274CVM166	MOI 3274 THOC MICroprocessor	230 MAI BOA	100 1011 12	-40° to +85° C
MCF5275LCVM166	MCF5275L RISC Microprocessor	196 MAPBGA	166 MHz	-40° to +85° C
MCF5275CVM166	MCF5275 RISC Microprocessor	256 MAPBGA	166 MHz	-40° to +85° C

8 Electrical Characteristics

This appendix contains electrical specification tables and reference timing diagrams for the MCF5275 microcontroller unit. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications of MCF5275.

NOTE

The parameters specified in this appendix supersede any values found in the module specifications.

8.1 Maximum Ratings

Table 7. Absolute Maximum Ratings^{1, 2}

Rating	Symbol	Value	Unit
Core Supply Voltage	V_{DD}	- 0.5 to +2.0	V
I/O Pad Supply Voltage (3.3V)	OV _{DD}	- 0.3 to +4.0	V
Memory Interface SSTL 2.5V Pad Supply Voltage	SDV _{DD}	- 0.3 to + 2.8	V
Memory Interface SSTL 3.3V Pad Supply Voltage	SDV _{DD}	- 0.3 to +4.0	V
PLL Supply Voltage	V _{DDPLL}	- 0.3 to +4.0	V
Digital Input Voltage ³	V _{IN}	- 0.3 to + 4.0	V
EXTAL pin voltage	V _{EXTAL}	0 to 3.3	V
XTAL pin voltage	V _{XTAL}	0 to 3.3	V
Instantaneous Maximum Current Single pin limit (applies to all pins) ^{4, 5}	I _D	25	mA
Operating Temperature Range (Packaged)	T _A (T _L - T _H)	– 40 to 85	°C
Storage Temperature Range	T _{stg}	- 65 to 150	°C

Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 4

- This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., V_{SS} or O V_{DD}).
- Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

 4 All functional non-supply pins are internally clamped to V_{SS} and O V_{DD} .

Power supply must maintain regulation within operating O V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{in} > O V_{DD}) is greater than I_{DD}, the injection current may flow out of O V_{DD} and could result in external power supply going out of regulation. Ensure the external O V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (ex; no clock). Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions.

8.2 Thermal Characteristics

Table 8 lists thermal resistance values

Table 8. Thermal characteristics

Characteristic	Characteristic				Unit
Junction to ambient, natural convection	Four layer board (2s2p)	θ_{JMA}	26 ^{1,2}	32 ^{1,2}	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	θ_{JMA}	23 ^{1,2}	29 ^{1,2}	°C/W
Junction to board		$\theta_{\sf JB}$	15 ³	20 ³	°C/W
Junction to case		θ_{JC}	10 ⁴	10 ⁴	°C/W
Junction to top of package	Natural convection	Ψ_{jt}	2 ^{1,5}	2 ^{1,5}	°C/W
Maximum operating junction temperature		T _j	105	105	°C

 $[\]theta_{\text{JMA}}$ and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JmA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.

Per JEDEC JESD51-6 with the board horizontal.

- Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁴ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \Theta_{JMA})$$
 (1)

Where:

T_A = Ambient Temperature, °C

Θ_{JMA} = Package Thermal Resistance, Junction-to-Ambient, °C/W

 $P_D = P_{INT} + P_{I/O}$

MCF5275 Integrated Microprocessor Family Hardware Specification, Rev. 4

Electrical Characteristics

 $P_{INT} = I_{DD} \times V_{DD}$, Watts - Chip Internal Power

P_{I/O} = Power Dissipation on Input and Output Pins — User Determined

For most applications $P_{I/O} < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273^{\circ}C)$$
 (2)

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273 \,^{\circ}C) + \Theta_{JMA} \times P_D^2 \quad (3)$$

where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

8.3 ESD Protection

Table 9. ESD Protection Characteristics^{1, 2}

Characteristics	Symbol	Value	Units
ESD Target for Human Body Model	HBM	2000	V
ESD Target for Machine Model	MM	200	V
HBM Circuit Description	R _{series}	1500	Ω
	С	100	pF
MM Circuit Description	R _{series}	0	Ω
	С	200	pF
Number of pulses per pin (HBM) positive pulses negative pulses	_	1 1	_
Number of pulses per pin (MM) positive pulses negative pulses	_	3 3	_
Interval of Pulses	_	1	sec

All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

8.4 DC Electrical Specifications

Table 10. DC Electrical Specifications¹

Characteristic	Symbol	Min	Max	Unit
Core Supply Voltage	V _{DD}	1.4	1.6	V
I/O Pad Supply Voltage	OV _{DD}	3.0	3.6	V
PLL Supply Voltage	V _{DDPLL}	3.0	3.6	V
SSTL I/O Pad Supply Voltage	SDV _{DD}	2.3	2.7	V
SSTL I/O Pad Supply Voltage	SDV _{DD}	3.0	3.6	V
SSTL Memory pads reference voltage (SD V _{DD} = 2.5V)	V _{REF}	0.5 SD V _{DD}	2	V
SSTL Memory pads reference voltage (SD V _{DD} = 3.3V)	V _{REF}	0.45 SD V _{DD}	2	V
Input High Voltage 3.3V I/O Pads	V _{IH}	0.7 x OV _{DD}	$OV_{DD} + 0.3$	V
Input Low Voltage 3.3V I/O Pads	V _{IL}	V _{SS} - 0.3	0.35 x OV _{DD}	V
Output High Voltage 3.3V I/O Pads I _{OH} = -2.0 mA	V _{OH}	OV _{DD} - 0.5	_	V
Output Low Voltage 3.3V I/O Pads I _{OL} = 2.0mA	V _{OL}	_	0.5	V
Input Hysteresis 3.3V I/O Pads	V _{HYS}	0.06 x V _{DD}	_	mV
Input High Voltage SSTL 3.3V/2.5V ³	V _{IH}	V _{REF} + 0.3	SDV _{DD} + 0.3	V
Input Low Voltage SSTL 3.3V/2.5V ³	V _{IL}	V _{SS} - 0.3	V _{REF} - 0.3	V
Output High Voltage SSTL $3.3V/2.5V^4$ $I_{OH} = -5.0 \text{ mA}$	V _{OH}	SDV _{DD} - 0.25V	_	V
Output Low Voltage SSTL 3.3V/2.5V ⁴ I _{OL} = 5.0 mA	V _{OL}	_	0.35	V
Input Leakage Current $V_{in} = V_{DD}$ or V_{SS} , Input-only pins	I _{in}	-1.0	1.0	μΑ
High Impedance (Off-State) Leakage Current $V_{in} = V_{DD}$ or V_{SS} , All input/output and output pins	I _{OZ}	-1.0	1.0	μΑ
Weak Internal Pull Up Device Current, tested at V _{IL} Max. ⁵	I _{APU}	-10	-130	μΑ
Input Capacitance ⁶ All input-only pins All input/output (three-state) pins	C _{in}		7 7	pF

Electrical Characteristics

Table 10. DC Electrical Specifications¹ (continued)

Characteristic	Symbol	Min	Max	Unit
Load Capacitance ⁷ Low Drive Strength High Drive Strength	CL		25 50	pF
Core Operating Supply Current ⁸ Master Mode WAIT DOZE STOP	I _{DD}	_ _ _ _	175 15 10 100	mA mA mA μA
I/O Pad Operating Supply Current Master Mode Low Power Modes	Ol _{DD}	_ _	250 250	mA μA
DC Injection Current ^{3, 9, 10, 11} V _{NEGCLAMP} = V _{SS} – 0.3 V, V _{POSCLAMP} = V _{DD} + 0.3 Single Pin Limit Total MCU Limit, Includes sum of all stressed pins	lic	-1.0 -10	1.0 10	mA

Refer to Table 11 for additional PLL specifications.

V_{REF} is specified as a nominal value only instead of a range, so no maximum value is listed.

This specification is guaranteed by design and is not 100% tested.

⁴ The actual V_{OH} and V_{OL} values for SSTL pads are dependent on the termination and drive strength used. The specifications numbers assume no parallel termination.

⁵ Refer to the MCF5274 signals chapter for pins having weak internal pull-up devices.

⁶ This parameter is characterized before qualification rather than 100% tested.

⁷ pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces require transmission line analysis to determine proper drive strength and termination.

⁸ Current measured at maximum system clock frequency, all modules active, and default drive strength with matching load.

 $^{^{9}}$ All functional non-supply pins are internally clamped to V_{SS} and their respective V_{DD} .

¹⁰ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{in} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure the external V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up, system clock is not present during the power-up sequence until the PLL has attained lock.

8.5 Oscillator and Phase Lock Loop (PLLMRFM) Electrical Specifications

Table 11. PLL Electrical Specifications¹

Characteristic	Symbol	Min	Max	Unit
PLL Reference Frequency Range Crystal reference External reference 1:1 Mode (NOTE: f _{sys/2} = 2 × fref_1:1)	f _{ref_crystal} f _{ref_ext} f _{ref_1:1}	8 8 24	25 25 83	MHz
Core frequency CLKOUT Frequency ² External reference On-Chip PLL Frequency	f _{core}	0 f _{ref} / 32	166 83 83	MHz MHz MHz
Loss of Reference Frequency ^{3, 5}	f_{LOR}	100	1000	kHz
Self Clocked Mode Frequency ^{4, 5}	f _{SCM}	TBD	TBD	MHz
Crystal Start-up Time ^{5, 6}	t _{cst}	_	10	ms
EXTAL Input High Voltage Crystal Mode All other modes (Dual Controller (1:1), Bypass, External)	V _{IHEXT} V _{IHEXT}	TBD TBD	TBD TBD	V
EXTAL Input Low Voltage Crystal Mode All other modes (Dual Controller (1:1), Bypass, External)	V _{ILEXT} V _{ILEXT}	TBD TBD	TBD TBD	V
XTAL Output High Voltage I _{OH} = 1.0 mA	V _{OH}	TBD	_	V
XTAL Output Low Voltage I _{OL} = 1.0 mA	V _{OL}	_	TBD	V
XTAL Load Capacitance ⁷		5	30	pF
PLL Lock Time ⁸	t _{lpll}	_	750	μS
Power-up To Lock Time ^{6, 9} With Crystal Reference Without Crystal Reference ¹⁰	t _{lplk}		11 750	ms μs
1:1 Mode Clock Skew (between CLKOUT and EXTAL) 11	t _{skew}	-1	1	ns
Duty Cycle of reference ⁵	t _{dc}	40	60	% f _{sys/2}
Frequency un-LOCK Range	f _{UL}	-3.8	4.1	% f _{sys/2}
Frequency LOCK Range	f _{LCK}	-1.7	2.0	% f _{sys/2}
CLKOUT Period Jitter, ^{5, 6, 9,12, 13} Measured at f _{sys/2} Max Peak-to-peak Jitter (Clock edge to clock edge) Long Term Jitter (Averaged over 2 ms interval)	C _{jitter}		5 .01	% f _{sys/2}
Frequency Modulation Range Limit ¹⁴ , ¹⁵ (f _{sys/2} Max must not be exceeded)	C _{mod}	0.8	2.2	% f _{sys/2}
ICO Frequency. $f_{ico} = f_{ref} \cdot 2 \cdot (MFD+2)^{16}$	f _{ico}	48	83	MHz
i l				

All values given are initial design targets and subject to change.

² All internal registers retain data at 0 Hz.

^{3 &}quot;Loss of Reference Frequency" is the reference frequency detected internally, which transitions the PLL into self clocked mode.

Electrical Characteristics

- Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below f_{LOR} with default MFD/RFD settings.
- This parameter is guaranteed by characterization before qualification rather than 100% tested.
- Proper PC board layout procedures must be followed to achieve specifications.
- Load capacitance determined from crystal manufacturer specifications and includes circuit board parasitics.
- This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
- Assuming a reference is available at power up, lock time is measured from the time V_{DD} and V_{DDPLL} are valid to RSTOUT negating. If the crystal oscillator is being used as the reference for the PLL, then the crystal start up time must be added to the PLL lock time to determine the total start-up time.
- $t_{|D|} = (64 * 4 * 5 + 5 x \tau) \times T_{ref}$, where $t_{ref} = 1/F_{ref_crystal} = 1/F_{ref_ext} = 1/F_{ref_1:1}$, and $t_{ref} = 1.57 \times 10^{-6} \times 2 (MFD + 2)$
- ¹¹ PLL is operating in 1:1 PLL mode.
- ¹² Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys/2}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDPLL} and V_{SSPLL} and variation in crystal oscillator frequency increase the jitter percentage for a given interval.
- ¹³ Based on slow system clock of 33MHz maximum frequency.
- ¹⁴ Modulation percentage applies over an interval of 10μs, or equivalently the modulation rate is 100KHz.
- 15 Modulation rate selected must not result in $f_{\text{sys/2}}$ value greater than the $f_{\text{sys/2}}$ maximum specified value. Modulation range determined by hardware design. $f_{sys/2} = f_{ico} / (2 \cdot 2^{RFD})$

External Interface Timing Characteristics 8.6

Table 12 lists processor bus input timings.

NOTE

All processor bus timings are synchronous; that is, input setup/hold and output delay with respect to the rising edge of a reference clock. The reference clock is the CLKOUT output.

All other timing relationships can be derived from these values.

Table 12. Processor Bus Input Timing Specifications

Name	Characteristic ¹	Symbol	Min	Max	Unit		
В0	CLKOUT	t _{CYC}	12	_	ns		
	Control Inputs						
B1a	Control input valid to CLKOUT high ²	t _{CVCH}	9	_	ns		
B1b	BKPT valid to CLKOUT high ³	t _{BKVCH}	9	_	ns		
B2a	CLKOUT high to control inputs invalid ²	t _{CHCII}	0	_	ns		
B2b	CLKOUT high to asynchronous control input BKPT invalid ³	t _{BKNCH}	0	_	ns		
	Data Inputs						
B4	Data input (D[31:16]) valid to CLKOUT high	t _{DIVCH}	4	_	ns		
B5	CLKOUT high to data input (D[31:16]) invalid	t _{CHDII}	0	_	ns		

Timing specifications have been indicated taking into account the full drive strength for the pads.

TEA and TA pins are being referred to as control inputs.

Refer to figure A-19.

Timings listed in Table 12 are shown in Figure 7.

* The timings are also valid for inputs sampled on the negative clock edge.

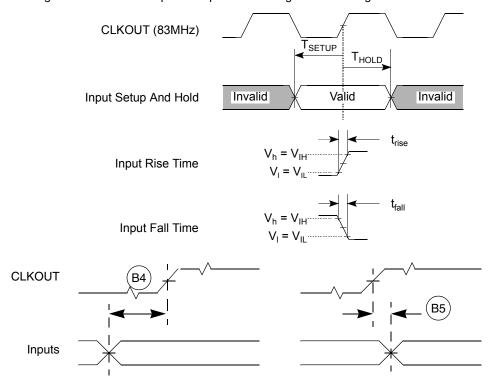


Figure 7. General Input Timing Requirements

8.7 Processor Bus Output Timing Specifications

Table 13 lists processor bus output timings.

Table 13. External Bus Output Timing Specifications

Name	Characteristic	Symbol	Min	Max	Unit
	Control Outp	uts			
B6a	CLKOUT high to chip selects (CS[7:0]) valid ¹	t _{CHCV}	_	0.5t _{CYC} + 5.5	ns
B6b	CLKOUT high to byte enables (BS[3:2]) valid ¹	t _{CHBV}	_	0.5t _{CYC} + 5.5	ns
B6c	CLKOUT high to output enable (OE) valid ¹	t _{CHOV}	_	0.5t _{CYC} + 5.5	ns
B7	CLKOUT high to control output (BS[3:2], OE) invalid	t _{CHCOI}	0.5t _{CYC} + 1.0	_	ns
В7а	CLKOUT high to chip selects invalid	t _{CHCI}	0.5t _{CYC} + 1.0	_	ns
	Address and Attribut	te Outputs			
B8	CLKOUT high to address (A[23:0]) and control (\overline{TS} , TSIZ[1:0], \overline{TIP} , R/ \overline{W}) valid	t _{CHAV}	_	9	ns
B9	CLKOUT high to address (A[23:0]) and control (TS, TSIZ[1:0], TIP, R/W) invalid	t _{CHAI}	1.0	_	ns