imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MCH6663

Power MOSFET 30V, 188mΩ, 1.8A, -30V, 325mΩ, -1.5A, **Complementary Dual**

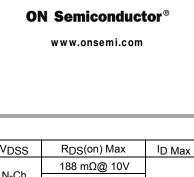
Features

• ON-Resistance Nch : $R_{DS}(on)1=145m\Omega$ (typ)

Pch : $R_{DS}(on)1=250m\Omega$ (typ)

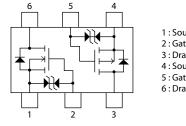
- 4V Drive
- Complementary N-Channel and P-Channel MOSFET
- Pb-Free, Halogen Free and RoHS Compliance

Specifications

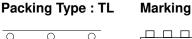

Absolute Maximum Ratings at Ta = 25°C

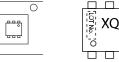
Parameter	Symbol	N-channel	P-channel	Unit
Drain to Source Voltage	V _{DSS}	30	-30	V
Gate to Source Voltage	V _{GSS}	±20	±20	V
Drain Current (DC)	ID	1.8	-1.5	А
Drain Current (Pulse) PW≤10μs, duty cycle≤1%	I _{DP}	7.2	-6	А
Power Dissipation When mounted on ceramic substrate (900mm ² ×0.8mm) 1unit	PD	0.8		W
Junction Temperature	Tj	150		°C
Storage Temperature	Tstg	-55 to +150		°C

This product is designed to "ESD immunity < 200V*", so please take care when handling. * Machine Model


Thermal Resistance Ratings

Parameter	Symbol	Value	Unit
Junction to Ambient When mounted on ceramic substrate (900mm ² ×0.8mm) 1unit	R _{θJA}	156.25	°C/W



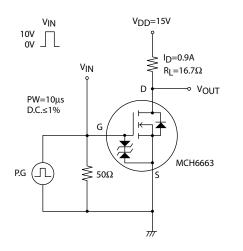

VDSS	R _{DS} (on) Max	ID Max
NL OF	188 mΩ@ 10V	
N-Ch 30V	343 mΩ@ 4.5V	1.8A
	378 mΩ@ 4V	
P-Ch –30V	325 mΩ@ –10V	
	555 mΩ@ –4.5V	-1.5A
	641 mΩ@ –4V	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

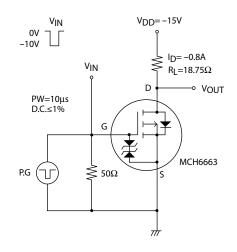
ORDERING INFORMATION

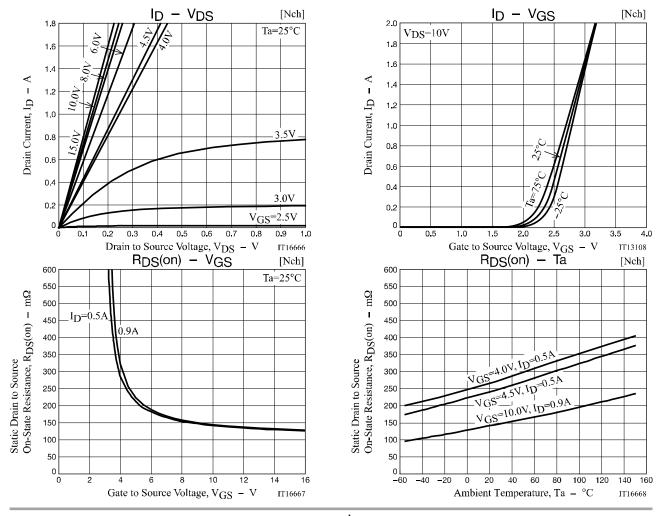
See detailed ordering and shipping information on page 7 of this data sheet.

MCH6663

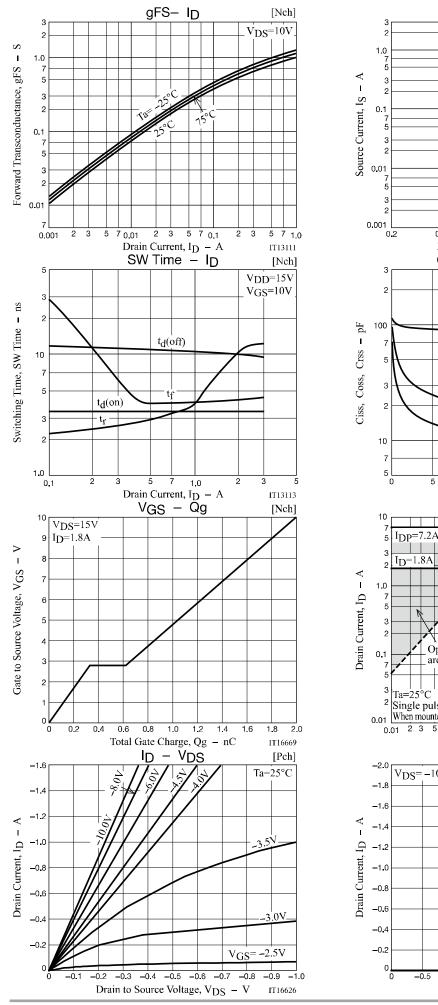

Electrical Characteristics at $Ta = 25^{\circ}C$

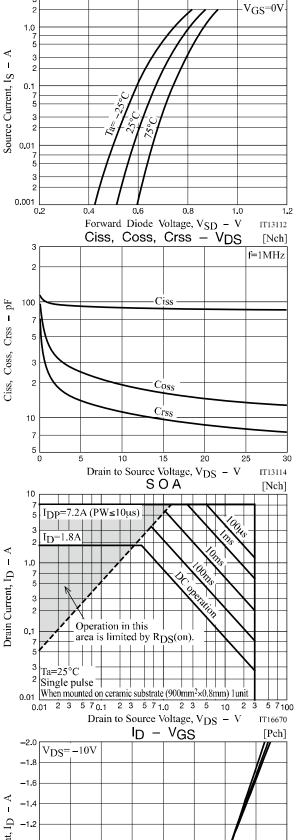
Parameter	Symbol	Conditions		Value		
Falalletei	Symbol	Symbol Conditions		typ	max	Unit
[N-channel]						
Drain to Source Breakdown Voltage	V(BR)DSS	I _D =1mA, V _{GS} =0V	30			V
Zero-Gate Voltage Drain Current	IDSS	V _{DS} =30V, V _{GS} =0V			1	μA
Gate to Source Leakage Current	IGSS	V _{GS} =±16V, V _{DS} =0V			±10	μA
Gate Threshold Voltage	V _{GS} (th)	V _{DS} =10V, I _D =1mA	1.2		2.6	V
Forward Transconductance	9FS	V _{DS} =10V, I _D =0.9A		1.1		S
Static Drain to Source On-State Resistance	R _{DS} (on)1	I _D =0.9A, V _{GS} =10V		145	188	mΩ
	R _{DS} (on)2	I _D =0.5A, V _{GS} =4.5V		245	343	mΩ
	R _{DS} (on)3	I _D =0.5A, V _{GS} =4V		270	378	mΩ
Input Capacitance	Ciss			88		pF
Output Capacitance	Coss	V _{DS} =10V, f=1MHz		19		pF
Reverse Transfer Capacitance	Crss			11		pF
Turn-ON Delay Time	t _d (on)			3.4		ns
Rise Time	tr	1		3.6		ns
Turn-OFF Delay Time	t _d (off)	See specified Test Circuit		10.5		ns
Fall Time	tf	7		4.0		ns
Total Gate Charge	Qg			2.0		nC
Gate to Source Charge	Qgs	V _{DS} =15V, V _{GS} =10V, I _D =1.8A		0.33		nC
Gate to Drain "Miller" Charge	Qgd	7		0.29		nC
Forward Diode Voltage	V _{SD}	I _S =1.8A, V _{GS} =0V		0.86	1.2	V
[P-channel]						
Drain to Source Breakdown Voltage	V(BR)DSS	I _D =-1mA, V _{GS} =0V	-30			V
Zero-Gate Voltage Drain Current	IDSS	V _{DS} =-30V, V _{GS} =0V			-1	μA
Gate to Source Leakage Current	IGSS	V _{GS} =±16V, V _{DS} =0V			±10	μΑ
Gate Threshold Voltage	V _{GS} (th)	V _{DS} =-10V, I _D =-1mA	-1.2		-2.6	V
Forward Transconductance	9FS	V _{DS} =-10V, I _D =-0.8A		1.3		S
	R _{DS} (on)1	I _D =-0.8A, V _{GS} =-10V		250	325	mΩ
Static Drain to Source On-State Resistance	R _{DS} (on)2	I _D =-0.4A, V _{GS} =-4.5V		397	555	mΩ
	R _{DS} (on)3	I _D =-0.4A, V _{GS} =-4V		458	641	mΩ
Input Capacitance	Ciss			82		pF
Output Capacitance	Coss	V _{DS} =-10V, f=1MHz		22		pF
Reverse Transfer Capacitance	Crss			16		pF
Turn-ON Delay Time	t _d (on)			4.0		ns
Rise Time	tr			3.3		ns
Turn-OFF Delay Time	t _d (off)	See specified Test Circuit		12		ns
Fall Time	t _f			5.4		ns
Total Gate Charge	Qg			2.2		nC
Gate to Source Charge	Qgs	V _{DS} =-15V, V _{GS} =-10V, I _D =-1.5A		0.36		nC
Gate to Drain "Miller" Charge	Qgd]		0.49		nC
Forward Diode Voltage	V _{SD}	IS=-1.5A, VGS=0V		-0.9	-1.5	V


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


Switching Time Test Circuit

[N-channel]




[P-channel]

www.onsemi.com 3

ŝ

-3.0

-3.5

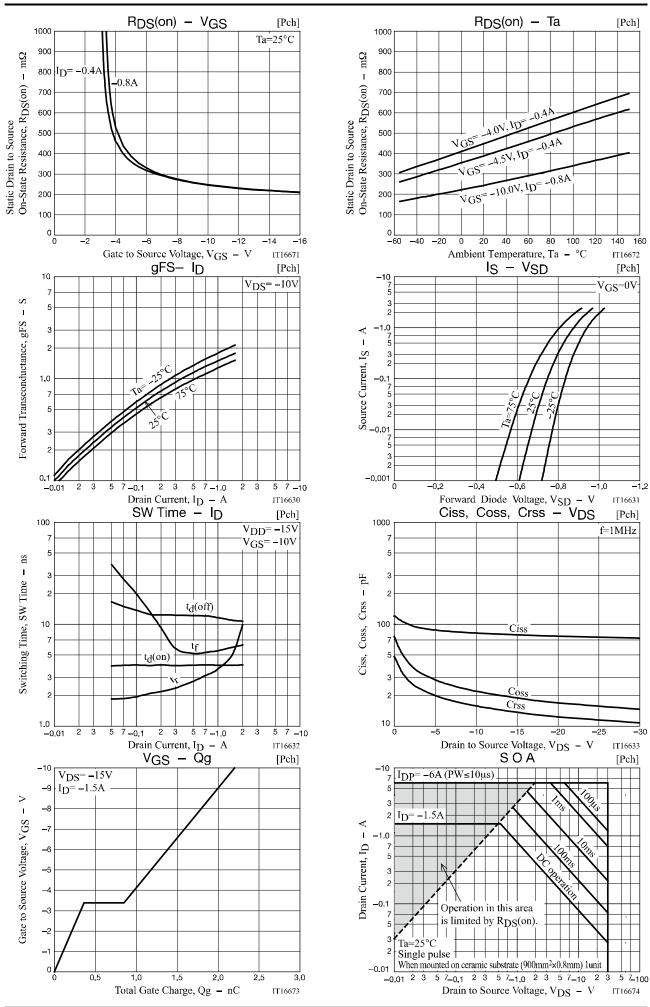
-4.0

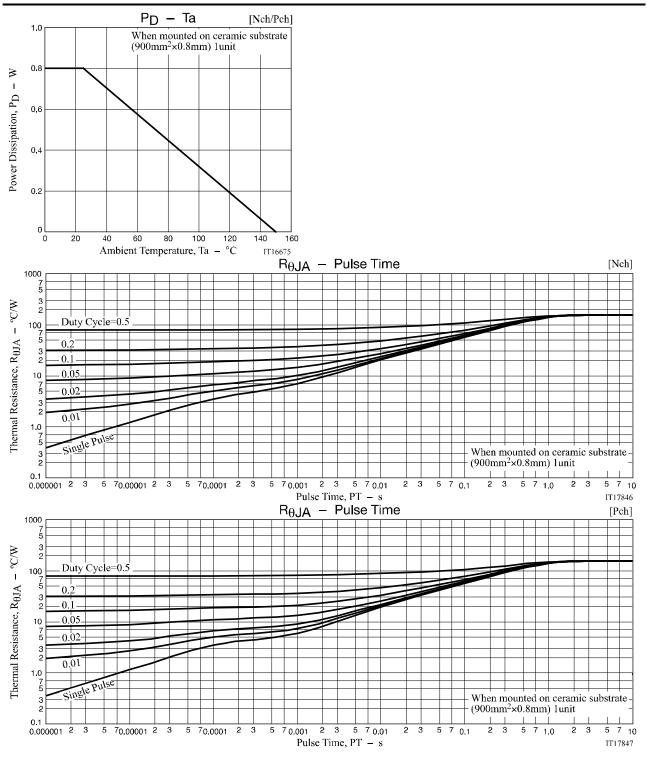
IT16627

-2.5

-1.0

-1.5


-2.0

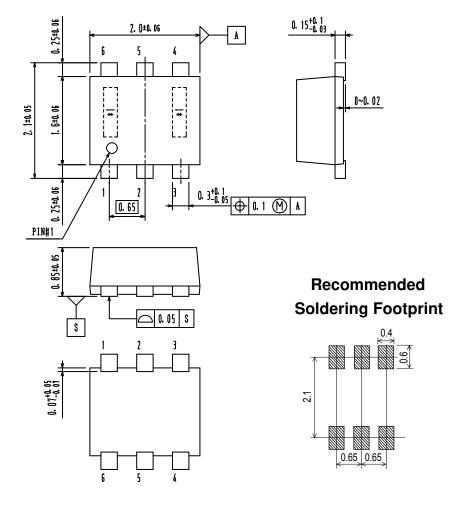

Gate to Source Voltage, V_{GS} – V

 $I_{S} - V_{SD}$

[Nch]

www.onsemi.com 4

Package Dimensions


MCH6663-TL-H / MCH6663-TL-W

MCPH6

CASE 419AS ISSUE O

unit : mm

- 1 : Source1
- 2 : Gate1
- 3 : Drain2
- 4 : Source2
- 5 : Gate 2
- 6 : Drain1

ORDERING INFORMATION

Device	Package	Shipping	Note	
MCH6663-TL-H	MCPH6	3,000 pcs. / Tape & Reel	Pb-Free and Halogen Free	
MCH6663-TL-W	SC-88,SC-70-6,SOT-363	3,000 pcs. / Tape & Reel		

Note on usage : Since the MCH6663 is a MOSFET product, please avoid using this device in the vicinity of highly charged objects.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not