imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

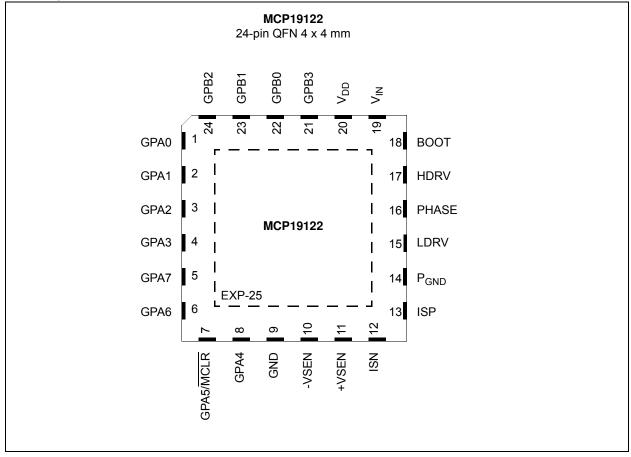
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MCP19122/3

Digitally Enhanced Power Analog Controller with Integrated Synchronous Driver


Synchronous Buck Features

- Input Voltage: 4.5V to 40V (operating), 48V (non-operating)
- Output Voltage: 0.3V to 16V
 - 0.1% typical output voltage accuracy
 - Greater than 16V requires external divider
- Switching Frequency: 100 kHz to 1.6 MHz
- Shutdown Quiescent Current: 50 µA Typical
- · High-Drive:
 - +5V Gate Drive
 - 2A Source Current
 - 2A Sink Current
- Low-Drive:
 - +5V Gate Drive
 - 2A Source Current
 - 4A Sink Current
- Emulated Average Current Mode Control
- Differential Remote Output Sense
- Multi-Phase Systems:
 - Master or Slave
 - Frequency Synchronized
 - Common Current Sense Signal
- Multiple Output Systems:
 - Master or Slave
- Frequency Synchronized
- AEC-Q100 Qualified
- Configureable Parameters:
 - Overcurrent Limit
 - Input Undervoltage Lockout
 - Input Overvoltage
 - Output Overvoltage
 - Output Undervoltage
 - Internal Analog Compensation
 - Soft Start Profile
 - Synchronous Driver Dead Time
 - Switching Frequency
- Thermal Shutdown

Microcontroller Features

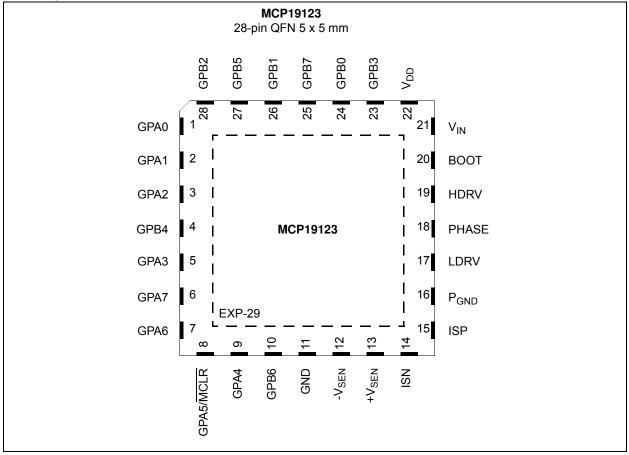
- Precision 8 MHz Internal Oscillator Block:
 - Factory Calibrated
- Interrupt Capable
 - Firmware
- Interrupt-on-Change Pins
- Only 35 Instructions to Learn
- · 4096 Words On-Chip Program Memory
- High Endurance Flash:
 - 100,000 Write Flash Endurance
 - Flash Retention: >40 years
- Watchdog Timer (WDT) with Independent Oscillator for Reliable Operation
- Programmable Code Protection
- In-Circuit Debug (ICD) via Two Pins (MCP19123)
- In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- 12 I/O Pins and One Input-Only Pin (MCP19122)
 - 3 Open Drain Pins
 - 2 Weak Current Source Pins
- 16 I/O Pins and One Input-Only Pin (MCP19123)
 - 3 Open Drain Pins
 - 2 Weak Current Source Pins
- Analog-to-Digital Converter (ADC):
 - 10-bit Resolution
 - 24 Internal Channels
 - 8 External Channels
- Timer0: 8-bit Timer/Counter with 8-Bit Prescaler
- Enhanced Timer1:
 - 16-bit Timer/Counter with Prescaler
 - 2 Selectable Clock Sources
 - External Gate Input Mode
- Timer2: 8-Bit Timer/Counter with Prescaler
 - 8-bit Period Register
- Capture, Compare Module
- I²C[™] Communication:
 - 7-bit Address Masking
 - 2 Dedicated Address Registers
 - SMBus/PMBus[™] Compatibility

Pin Diagram – 24-Pin 4X4 QFN (MCP19122)

24-PIN QFN (MCP19122) SUMMARY								
24-Pin QFN	ANSEL	A/D	Timers	MSSP	Interrupt	dn-IIn4	Basic	Additional
1	Y	AN0	_	_	IOC	Y	—	Analog Debug Output ⁽¹⁾
2	Y	AN1	_	_	IOC	Y	_	Sync Signal In/Out ^(2, 3)
3	Y	AN2	TOCKI		IOC INT	_	—	Weak Current Source
4	Y	AN3		_	IOC	_	—	Weak Current Source Timer1 Gate Input 1
8	Ν	—	_		IOC	Ν	—	—
7	Ν	—	_		IOC ⁽⁴⁾	Y ⁽⁵⁾	MCLR	_
6	Ν	_	_	_	IOC	Ν	ICSPDAT	—
5	Ν	—	—	SCL	IOC	Ν	ICSPCLK	—
22	Ν	_	_	SDA	IOC	Ν	_	—
23	Y	AN4		_	IOC	Y	—	Current Sense Output Current Reference Input ⁽³⁾
24	Y	AN5	_		IOC	Y	_	Timer1 Gate Input 2
21	Ν		_		IOC	Y	_	Clock Signal In/Out ^(2, 3)
19	Ν	—		_	_		V _{IN}	Device Input Voltage
20	Ν	—		_	_		V _{DD}	Internal Regulator Output
9	Ν	—	_		_	_	GND	Small Signal Ground
14	Ν	—		_	_		—	Large Signal Ground
15	Ν	_	_		_	_	_	Low-Side MOSFET Connection
17	Ν	—	_	_	—	_	—	High-Side MOSFET Connection
16	Ν	_	_	_	_	_	_	Switch Node
18	Ν							Floating Bootstrap Supply
11	Ν	—	_	_	—		_	Output Voltage Differential Sense
10	Ν	_	_	_	—		—	Output Voltage Differential Sense
13	Ν				_		_	Current Sense Input
12	Ν				_	_	—	Current Sense Input
_	_	_	_	_	_	_		Exposed Pad
	N S 1 2 3 4 8 7 6 5 22 23 24 21 19 20 9 14 15 17 16 18 11 10 13 13	N I Y 1 Y 2 Y 3 Y 4 Y 8 N 7 N 6 N 5 N 22 N 23 Y 24 Y 23 Y 24 Y 21 N 19 N 20 N 9 N 14 N 15 N 16 N 11 N 10 N 13 N	HO I Y AN0 1 Y AN1 2 Y AN1 3 Y AN2 4 Y AN3 8 N 7 N 6 N 22 N 23 Y AN4 24 Y AN5 21 N 19 N 9 N 14 N 15 N 16 N 11 N 13 N	NUMU I Y AN0 1 Y AN0 2 Y AN1 3 Y AN2 TOCKI 4 Y AN3 8 N 7 N 6 N 7 N 6 N 7 N 22 N 23 Y AN5 21 N 9 N 9 N 14 N 16 N 18 N 10 N 13	NUM I Y AN0 Samif Gas 1 Y AN0 — — 2 Y AN1 — — 3 Y AN2 TOCKI — 4 Y AN3 — — 4 Y AN3 — — 5 N — — — 6 N — — — 5 N — — SCL 22 N — — SDA 23 Y AN4 — — 24 Y AN5 — — 20 N — — — 9 N — — — 15 N — — — 16 N — — — 18 N — — — 11 N	NUM Image: series Ser	HO II Y AN0 IOC Y 1 Y AN0 IOC Y 2 Y AN1 IOC Y 3 Y AN2 TOCKI IOC Y 4 Y AN3 IOC N 8 N IOC N 7 N IOC N 6 N IOC N - 7 N IOC N - 6 N IOC N N 22 N SDA IOC Y 23 Y AN4 IOC Y 19 N	HO HC HC HC HC HC HC HC HC HC HC HC HC HC

TABLE 1: 24-PIN QFN (MCP19122) SUMMARY

Note 1: The Analog Debug Output is selected when the BUFFCON<BNCHEN> bit is set.


2: Selected when device is functioning as multiple output master or slave by proper configuration of the MSC<2:0> bits in the MODECON register.

3: Selected when device is functioning as multi-phase master or slave by proper configuration of the MSC<2:0> bits in the MODECON register.

4: The IOC is disabled when MCLR is enabled.

5: Weak pull-up always enabled when MCLR is enabled, otherwise the pull-up is under user control.

Pin Diagram – 28-Pin 5X5 QFN (MCP19123)

TABLE 2:	2	28-PIN QFN (MCP19123) SUMMARY							
I/O	28-Pin QFN	ANSEL	A/D	Timers	dSSM	Interrupt	dn-lluq	Basic	Additional
GPA0	1	Y	AN0	_	_	IOC	Y	—	Analog Debug Output ⁽¹⁾
GPA1	2	Y	AN1	—	_	IOC	Y	—	Sync Signal In/Out ^(2, 3)
GPA2	3	Y	AN2	TOCKI		IOC INT	Y	—	Weak Current Source
GPA3	5	Y	AN3	—	_	IOC	Y	_	Weak Current Source Timer1 Gate Input 1
GPA4	9	Ν	—	—		IOC	Ν	—	—
GPA5	8	Ν	_	_	—	IOC ⁽⁴⁾	Y ⁽⁵⁾	MCLR	_
GPA6	7	N	_	_	_	IOC	N	—	CCD Input 1
GPA7	6	Ν	—	—	SCL	IOC	Ν	—	—
GPB0	24	Ν	_	_	SDA	IOC	Ν	—	—
GPB1	26	Y	AN4	_	_	IOC	Y	_	Current Sense Output Current Reference Input ⁽³⁾
GPB2	28	Y	AN5	—		IOC	Y	—	Timer1 Gate Input 2
GPB3	23	Ν		_		IOC	Y	—	Clock Signal In/Out ^(2, 3)
GPB4	4	Y	AN6			IOC	Y	ICSPDAT ICDDAT	
GPB5	27	Y	AN7	_		IOC	Y	ICSPCLK ICDCLK	_
GPB6	10	N	—	—	—	IOC	Y	—	CCD Input 2
GPB7	25	Ν	—	—		IOC	Y	—	External A/D Reference
V _{IN}	21	Ν	_	—	_	_	_	V _{IN}	Device Input Voltage
V _{DD}	22	N	—	—	—	—	—	V _{DD}	Internal Regulator Output
GND	11	N	—	—				GND	Small Signal Ground
P _{GND}	16	N	—	—				—	Large Signal Ground
LDRV	17	Ν	—	—				—	Low-Side MOSFET Connection
HDRV	19	Ν	_	_	_	—	—	_	High-Side MOSFET Connection
PHASE	18	Ν			_	_	_	—	Switch Node
BOOT	20	Ν	—	—				—	Floating Bootstrap Supply
+V _{SEN}	13	Ν		—	_	_	_	_	Output Voltage Differential Sense
–V _{SEN}	12	N			_	_	_	_	Output Voltage Differential Sense
ISP	15	Ν							Current Sense Input
ISN	14	Ν						_	Current Sense Input
EP	_							_	Exposed Pad

TABLE 2: 28-PIN QFN (MCP19123) SUMMARY

Note 1: The Analog Debug Output is selected when the BUFFCON<BNCHEN> bit is set.

2: Selected when device is functioning as multiple output master or slave by proper configuration of the MSC<2:0> bits in the MODECON register.

3: Selected when device is functioning as multi-phase master or slave by proper configuration of the MSC<2:0> bits in the MODECON register.

4: The IOC is disabled when $\overline{\text{MCLR}}$ is enabled.

5: Weak pull-up always enabled when MCLR is enabled, otherwise the pull-up is under user control.

Table of Contents

1.0	Device Overview	9
2.0	Pin Description	12
3.0	Functional Description	17
4.0	Electrical Characteristics	39
5.0	Digital Electrical Characteristics	45
6.0	Typical Performance Curves.	55
7.0	Test Mux Control	
8.0	Relative Efficiency Measurement	59
9.0	Device Calibration	
10.0	Memory Organization	75
11.0	Special Features of the CPU	87
12.0	Resets	91
13.0	Interrupts	
14.0	Power-Down Mode (Sleep)	109
15.0	Watchdog Timer (WDT)	
16.0	Oscillator Modes	113
17.0	I/O Ports	115
18.0	Interrupt-On-Change	
19.0	Analog-to-Digital Converter (ADC) Module	
	Flash Program Memory Control	
	Timer0 Module	
	Timer1 Module With Gate Control	
23.0	Timer2 Module	
24.0	Dual Capture/Compare (CCD) Module	
25.0	Internal Temperature Indicator Module	
	Enhanced PWM Module	
27.0	Master Synchronous Serial Port (MSSP) Module	175
	Instruction Set Summary	
	In-Circuit Serial Programming™ (ICSP™)	
	Packaging Information	
	ndix A: Revision History	
	Х	
	Vicrochip Web Site	
	omer Change Notification Service	
	omer Support	
	uct Identification System	
	emarks	
World	dwide Sales and Service	252

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via e-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

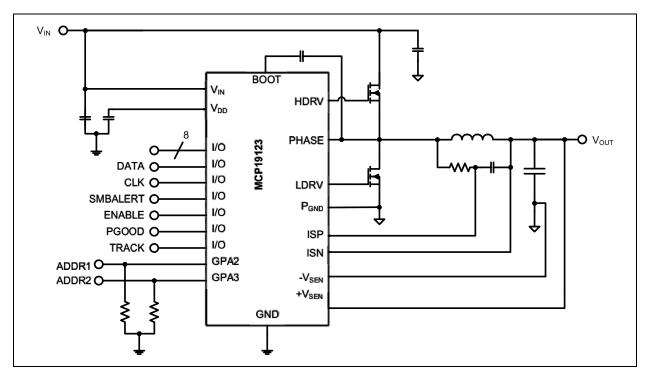
Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

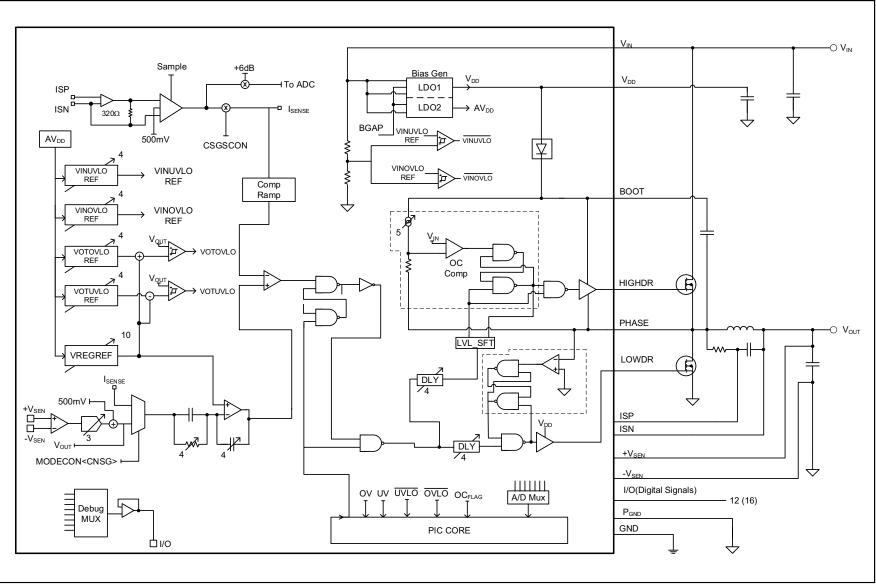
MCP19122/3

NOTES:

1.0 DEVICE OVERVIEW


The MCP19122/3 is a stand-alone mixed signal synchronous buck pulse-width modulated (PWM) current mode controller that features an integrated microcontroller core, high-endurance flash memory, communication and configurable analog circuitry. It features integrated synchronous drivers, bootstrap device, internal linear regulator and 4k words of nonvolatile memory. The devices are capable of efficiently converting 4.5V-40V to 0.3V-16V.

Since the MCP19122/3 uses traditional analog control circuitry to regulate the output of the DC/DC converter, the integration of the $PIC^{\mbox{\tiny B}}$ microcontroller mid-range core is


FIGURE 1-1: TYPICAL APPLICATION CIRCUIT

used to provide complete customization of device operating parameters, start-up and shut-down profiles, protection levels and fault handling procedures.

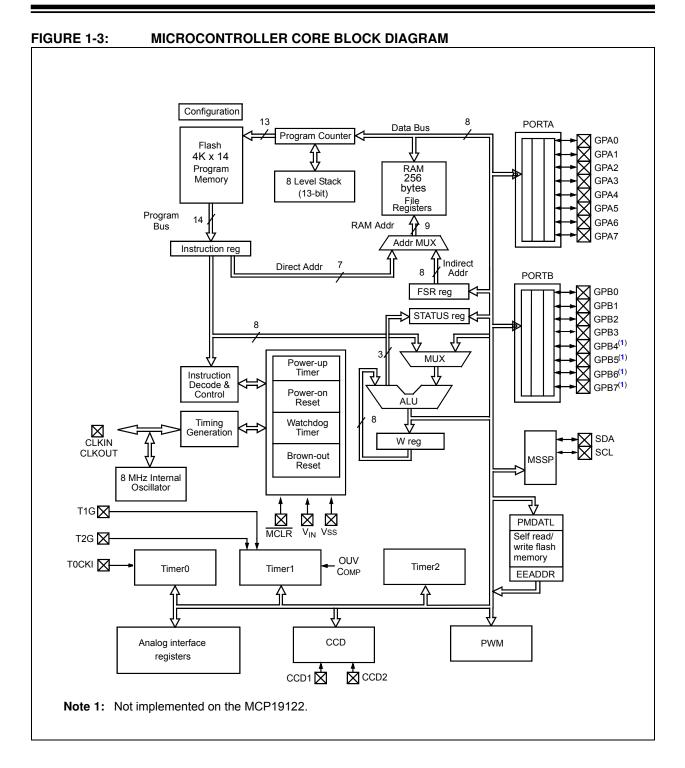

After initial device configuration using Microchip's MPLAB[®] X Integrated Development Environment (IDE) software, PMBus commands or I^2C can be used by a host to communicate with, or modify, the operation of the MCP19122/3.

FIGURE 1-2: MCP19122/3 SYNCHRONOUS BUCK BLOCK DIAGRAM

MCP19122/3

2.0 PIN DESCRIPTION

The MCP19122/3 family of devices features pins that have multiple functions associated with each pin. Table 2-1 provides a description of the different functions. See Section 2.1 "Detailed Pin Description" for more detailed information.

Name	Function	Input Type	Output Type	Description	
GPA0/AN0/ANALOG_TEST	GPA0	TTL	CMOS	General purpose I/O	
	AN0	AN		A/D Channel 0 input.	
	ANALOG_TEST			Internal analog signal multiplexer output ⁽¹⁾	
GPA1/AN1/SYC_SIGNAL	GPA1	TTL	CMOS	CMOS General purpose I/O — A/D Channel 1 input — Switching clock synchronization signal input and	
	AN1	AN			
	SYC_SIGNAL			Switching clock synchronization signal input and output ^(2,3)	
GPA2/AN2/T0CKI/INT	GPA2	TTL	CMOS	General purpose I/O	
	AN2	AN		A/D Channel 2 input	
	TOCKI	ST	_	Timer0 clock input	
	INT	ST		External interrupt	
GPA3/AN3/T1G1	GPA3	TTL	CMOS	General purpose I/O	
	AN3	AN		A/D Channel 3 input	
	T1G1	ST		Timer1 gate input 1	
GPA4	GPA4	TTL	OD	General purpose I/O	
GPA5/MCLR	GPA5	TTL	_	General purpose input only	
	MCLR	ST	_	Master Clear with internal pull-up	
GPA6/CCD1 ⁽⁴⁾ /ICSPDAT ⁽⁵⁾	GPA6	ST	CMOS	General purpose I/O	
	CCD1	ST	CMOS	Capture/Compare input 1 ⁽⁴⁾	
	ICSPDAT		CMOS	Serial Programming Data I/O ⁽⁵⁾	
GPA7/SCL/ICSPCLK ⁽⁵⁾	GPA7	ST	OD	General purpose open drain I/O	
	SCL	l ² C	OD	I ² C clock	
	ICSPCLK	ST	_	Serial Programming Clock ⁽⁵⁾	
GPB0/SDA	GPB0	TTL	OD	General purpose I/O	
	SDA	l ² C	OD	I ² C data input/output	
GPB1/AN4/CON_SIGNAL	GPB1	TTL	CMOS	General purpose I/O	
	AN4	AN	_	A/D Channel 4 input	
	CON_SIGNAL	_	_	Current sense output or current reference input ⁽³⁾	

TABLE 2-1: MCP19122/3 PINOUT DESCRIPTION
--

Legend:AN= Analog input or outputCMOS= CMOS compatible input or outputOD= Open DrainTTL= TTL compatible input ST= Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C

Note 1: Analog Test is selected when the BUFFCON<BNCHEN> bit is set.

2: Selected when device is functioning as multiple output master or slave by proper configuration of the MSC<2:0> bits in the MODECON register.

3: Selected when device is functioning as multi-phase master or slave by proper configuration of the MSC<2:0> bits in the MODECON register.

4: Feature only available on the MCP19123.

5: Feature only available on the MCP19122.

TABLE 2-1:	MCP19122/3 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description	
GPB2/AN5/T1G2	GPB2	TTL	CMOS	General purpose I/O	
	AN5	AN		A/D Channel 5 input	
	T1G2	ST	_	Timer1 gate input 2	
GPB3/CLOCK	GPB3	TTL	CMOS	General purpose I/O	
	CLOCK	_		Clock signal input/output ^(2 ,3)	
GPB4 ⁽⁴⁾ /AN6 ⁽⁴⁾ /ICSPDAT ⁽⁴⁾ /	GPB4	TTL	CMOS	General purpose I/O ⁽⁴⁾	
ICDDAT ⁽⁴⁾	AN6	AN		A/D Channel 6 input ⁽⁴⁾	
	ICSPDAT	ST		Serial Programming Data I/O ⁽⁴⁾	
-	ICDDAT	ST		In-circuit debug data ⁽⁴⁾	
GPB5 ⁽⁴⁾ /AN7 ⁽⁴⁾ /ICSPCLK ⁽⁴⁾ /	GPB5	TTL	CMOS	General purpose I/O ⁽⁴⁾	
ICDCLK ⁽⁴⁾	AN7	AN		A/D Channel 7 input ⁽⁴⁾	
	ISCPCLK	ST		Serial Programming Clock ⁽⁴⁾	
	ICDCLK	ST		In-circuit debug clock ⁽⁴⁾	
GPB6/CCD2 ⁽⁴⁾	GPB6	TTL	CMOS	General purpose I/O	
	CCD2	ST	CMOS	Capture/Compare input 2 ⁽⁴⁾	
GPB7/VADC ⁽⁴⁾	GPB7	TTL	CMOS	General purpose I/O	
	VADC	AN		External voltage reference for A/D ⁽⁴⁾	
V _{IN}	V _{IN}	_		Device input supply voltage	
V _{DD}	V _{DD}	_	_	Internal +5V LDO output pin	
GND	GND	—	_	Small signal quiet ground	
P _{GND}	P _{GND}	_		Large signal power ground	
LDRV	LDRV	—	—	High-current drive signal connected to the gate of the low-side MOSFET	
HDRV	HDRV	—	_	Floating high-current drive signal connected to the gate of the high-side MOSFET	
PHASE	PHASE	—	—	Synchronous buck switch node connection	
BOOT	BOOT	—	—	Floating bootstrap supply	
+V _{SEN}	+V _{SEN}	-		Positive input of the output voltage sense differential amplifier	
-V _{SEN}	-V _{SEN}	-		Negative input of the output voltage sense differential amplifier	
ISP	ISP	—	—	Current sense input	
ISN	ISN	—	—	Current sense input	
EP	—		_	Exposed Thermal Pad	

Legend:AN = Analog input or outputCMOS = CMOS compatible input or outputOD = Open DrainTTL = TTL compatible input ST =Schmitt Trigger input with CMOS levels l^2C = Schmitt Trigger input with l^2C

Note 1: Analog Test is selected when the BUFFCON<BNCHEN> bit is set.

2: Selected when device is functioning as multiple output master or slave by proper configuration of the MSC<2:0> bits in the MODECON register.

3: Selected when device is functioning as multi-phase master or slave by proper configuration of the MSC<2:0> bits in the MODECON register.

- 4: Feature only available on the MCP19123.
- 5: Feature only available on the MCP19122.

2.1 Detailed Pin Description

2.1.1 GPA0 PIN

GPA0 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPA. An internal weak pull-up and interrupt-on-change are also available.

AN0 is an input to the A/D. To configure this pin to be read by the A/D on channel 0, bits TRISA0 and ANSA0 must be set.

When the BUFFCON<BNCHEN> bit is set, this pin is configured as the ANALOG_TEST function. It is a buffered output of the internal analog and digital signal multiplexer. Analog signals present on this pin are controlled by the ADCON0 register; see Register 19-1. Digital signals present on this pin are controlled by the BUFFCON register; see Register 7-1.

2.1.2 GPA1 PIN

GPA1 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPA. An internal weak pull-up and interrupt-on-change are also available.

AN1 is an input to the A/D. To configure this pin to be read by the A/D on channel 1, bits TRISA1 and ANSA1 must be set.

When the MCP19122/3 is configured as a multiple output or multi-phase MASTER or SLAVE, this pin is configured to be the switching frequency synchronization input or output, SYN_SIGNAL. See Section 3.12 "System Configuration Control" for more information.

2.1.3 GPA2 PIN

GPA2 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPA. An internal weak current source and interrupt-on-change are also available.

AN2 is an input to the A/D. To configure this pin to be read by the A/D on channel 2, bits TRISA2 and ANSA2 must be set.

When bit T0CS is set, the T0CKI function is enabled. See **Section 21.0** "**Timer0 Module**" for more information.

GPA2 can also be configured as an external interrupt by setting of the INTE bit. See **Section 13.0.1** "GPA2/ INT Interrupt" for more information.

2.1.4 GPA3 PIN

GPA3 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPA. An internal weak current source and interrupt-on-change are also available. AN3 is an input to the A/D. To configure this pin to be read by the A/D on channel 3, bits TRISA3 and ANSA3 must be set.

T1G1 is an input to the TIMER1 gate. To configure this pin to be an external source to the TIMER1 gate circuitry, see Section 22.0 "Timer1 Module With Gate Control".

2.1.5 GPA4 PIN

GPA4 is a true open drain general purpose pin whose data direction is controlled in TRISGPA. There is no internal connection between this pin and device V_{DD} , making this pin ideal to be used as an SMBus Alert pin. This pin does not have a weak pull-up, but interrupt-on-change is available.

2.1.6 GPA5 PIN

GPA5 is a general purpose TTL input-only pin. An internal weak pull-up and interrupt-on-change are also available.

For programming purposes, this pin is to be connected to the MCLR pin of the serial programmer. See Section 29.0 "In-Circuit Serial Programming™ (ICSP™)" for more information.

2.1.7 GPA6 PIN

GPA6 is a general purpose CMOS input/output pin whose data direction is controlled in TRISGPA. An interrupt-on-change is also available.

On the MCP19122, the ISCPDAT is the primary serial programming data input function. This is used in conjunction with ICSPCLK to serial program the device. This pin function is only implemented on the MCP19122.

On the MCP19123, this pin can be configured as an input to the CCD module. For more information refer to **Section 24.0 "Dual Capture/Compare (CCD) Module**".

2.1.8 GPA7 PIN

GPA7 is a true open drain general purpose pin whose data direction is controlled in TRISGPA. There is no internal connection between this pin and device V_{DD} . This pin does not have a weak pull-up, but interrupt-on-change is available.

When the MCP19122/3 is configured for I^2C communication (see Section 27.2 " I^2C Mode Overview"), GPA7 functions as the I^2C clock, SCL.

On the MCP19122, the ISCPCLK is the serial programming clock function. This is used in conjunction with ICSPDAT to serial program the device. This pin function is only implemented on the MCP19122.

2.1.9 GPB0 PIN

GPB0 is a true open drain general purpose pin whose data direction is controlled in TRISGPB. There is no internal connection between this pin and device V_{DD} . This pin does not have a weak pull-up, but interrupt-on-change is available.

When the MCP19122/3 is configured for I^2C communication (see Section 27.2 " I^2C Mode Overview"), GPB0 functions as the I^2C clock, SDA.

2.1.10 GPB1 PIN

GPB1 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPB. An internal weak pull-up and interrupt-on-change are also available.

AN4 is an input to the A/D. To configure this pin to be read by the A/D on channel 4, bits TRISB1 and ANSB1 must be set.

When the MCP19122/3 is configured as a multi-phase MASTER or SLAVE, this pin is configured to be the sensed current input or output signal. On a device configured to be a MASTER, this is an output signal of the sensed current that is to be shared with the SLAVE devices. On a device configured as a SLAVE, this is an input signal used to as a current regulation point. See **Section 3.12 "System Configuration Control**", for more information.

2.1.11 GPB2 PIN

GPB2 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPB. An internal weak pull-up and interrupt-on-change are also available.

AN5 is an input to the A/D. To configure this pin to be read by the A/D on channel 5, bits TRISB2 and ANSB2 must be set.

T1G2 is an input to the TIMER1 gate. To configure this pin to be an external source to the TIMER1 gate circuitry, see Section 22.0 "Timer1 Module With Gate Control".

2.1.12 GPB3 PIN

GPB3 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPB. An internal weak pull-up and interrupt-on-change are also available.

When the MCP19122/3 is configured as a multiple output or multi-phase Master or Slave, this pin is configured to be the switching frequency clock input or output. See Section 3.12 "System Configuration Control".

2.1.13 GPB4 PIN

This pin and associated functions are only available on the MCP19123 device.

GPB4 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPB. An internal weak pull-up and interrupt-on-change are also available.

AN6 is an input to the A/D. To configure this pin to be read by the A/D on channel 6, bits TRISB4 and ANSB4 must be set.

On the MCP19123, the ISCPDAT is the primary serial programming data input function. This is used in conjunction with ICSPCLK to serial program the device.

The ICDDAT is the in-circuit debug data function. This pin function is only implemented on the MCP19123. See **Section 29.2 "In-Circuit Debugger**"

2.1.14 GBP5 PIN

This pin and associated functions is only available on the MCP19123 device.

GPB5 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPB. An internal weak pull-up and interrupt-on-change are also available.

AN7 is an input to the A/D. To configure this pin to be read by the A/D on channel 7, bits TRISB5 and ANSB5 must be set.

On the MCP19123, the ISCPCLK is the primary serial programming clock function. This is used in conjunction with ICSPDAT to serial program the device.

The ICDDLK is the in-circuit debug clock function. This pin function is only implemented on the MCP19123. See Section 29.2 "In-Circuit Debugger"

2.1.15 GPB6 PIN

This pin and associated functions is only available on the MCP19123 device.

GPB6 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPB. An internal weak pull-up and interrupt-on-change are also available.

CCD2 is an input to the CCD module. For more information refer to Section 24.0 "Dual Capture/Compare (CCD) Module".

2.1.16 GPB7 PIN

This pin and associated functions is only available on the MCP19123 device.

GPB7 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPB. An internal weak pull-up and interrupt-on-change are also available.

VADC is an external A/D reference voltage input. See Section 19.0 "Analog-to-Digital Converter (ADC) Module".

2.1.17 V_{IN} PIN

Device input power connection pin. It is recommended that capacitance be placed between this pin and the GND pin of the device.

2.1.18 V_{DD} PIN

The output of the internal +5.0V regulator is connected to this pin. It is recommended that a 1.0 μ F bypass capacitor be connected between this pin and the GND pin of the device. The bypass capacitor should be placed physically close to the device.

2.1.19 GND PIN

GND is the small signal ground connection pin. This pin should be connected to the exposed pad, on the bottom of the package.

2.1.20 P_{GND} PIN

Connect all large signal level ground returns to P_{GND} . These large-signal level ground traces should have a small loop area and minimal length to prevent coupling of switching noise to sensitive traces.

2.1.21 LDRV PIN

The gate of the low-side or rectifying MOSFET is connected to LDRV. The PCB trace connecting LDRV to the gate must be of minimal length and appropriate width to handle the high peak drive currents and fast voltage transitions.

2.1.22 HDRV PIN

The gate of the high-side MOSFET is connected to HDRV. This is a floating driver referenced to PHASE. The PCB trace connecting HDRV to the gate must be of minimal length and appropriate width to handle the high peak drive current and fast voltage transitions.

2.1.23 PHASE PIN

The PHASE pin provides the return path for the highside gate driver. The source of the high-side MOSFET, drain of the low-side MOSFET and the inductor are connected to this pin.

2.1.24 BOOT PIN

The BOOT pin is the floating bootstrap supply pin for the high-side gate driver. A capacitor is connected between this pin and the PHASE pin to provide the necessary charge to turn on the high-side MOSFET.

2.1.25 +V_{SEN} PIN

The non-inverting input of the unity gain amplifier used for output voltage remote sensing is connected to the $+V_{SEN}$ pin.

2.1.26 -V_{SEN} PIN

The inverting input of the unity gain amplifier used for output voltage remote sensing is connected to the $-V_{SEN}$ pin.

2.1.27 ISP PIN

The non-inverting input of the current sense amplifier is connected to the ISP pin.

2.1.28 ISN PIN

The inverting input of the current sense amplifier is connected to the ISN pin.

2.1.29 EXPOSED PAD (EP)

There is no internal connection to the Exposed Thermal Pad. The EP should be connected to the GND pin and to the GND PCB plane to aid in the removal of the heat.

3.0 FUNCTIONAL DESCRIPTION

3.1 Internal Supplies

The operating input voltage of the MCP19122/3 ranges from 4.5V to 40V. There are two internal Low Dropout (LDO) voltage regulators. A 5V LDO (V_{DD}) is used to power the internal microcontroller, the internal gate driver circuitry and provide a 5V output for external use. It is recommended that a 1 μ F ceramic capacitor be placed between the V_{DD} pin and the P_{GND} pin.

The MODECON<VDDEN> bit controls the state of the 5V V_{DD} LDO when the SLEEP command is issued to the MCP19122/3. See **Section 3.12.3** "VDD LDO Control" for more information.

The gate drive current required to drive the external power MOSFETs must be added to the MCP19122/3 quiescent current $I_{Q(max)}$. This total current must be less than the maximum current, I_{DD-OUT} , available from V_{DD} that is specified in Section 4.0 "Electrical Characteristics".

A second 4V LDO (AV_{DD}) is used to power the internal analog circuitry. The AV_{DD} is not available externally. AV_{DD} is calibrated to 4.096V and is the default ADC reference voltage.

EQUATION 3-1: TOTAL REGULATOR CURRENT

$$I_{DD-OUT} > (I_Q + I_{DRIVE} + I_{EXT})$$

Where:

- I_{DD-OUT} is the total current available from V_{DD}
- I_Q is the device quiescent current
- I_{DRIVE} is the current required to drive the external MOSFETs
- I_{EXT} is the amount of current used to power additional external circuitry.

EQUATION 3-2: GATE DRIVE CURRENT

$$I_{DRIVE} = (Q_{gHIGH} + Q_{gLOW}) \times F_{SW}$$

Where:

- I_{DRIVE} is the current required to drive the external MOSFETs
- Q_{gHIGH} is the total gate charge of the high-side MOSFET
- Q_{gLOW} is the total gate charge of the low-side MOSFET
- F_{SW} is the switching frequency

3.2 Switching Frequency

The switching frequency is configurable over the range of 100 kHz to 1.6 MHz. The Timer2 module is used to generate the HDRV/LDRV switching frequency. Refer to Section 26.0, Enhanced PWM Module for more information. Example 3-1 shows how to configure the MCP19122/3 for a switching frequency of 300 kHz.

EXAMPLE 3-1:	CONFIGURING F _{SW}

-		
BANKSEL	T2CON	
CLRF	T2CON	;Turn off Timer2
CLRF	TMR2	;Initialize module
MOVLW	0x19	;Fsw=300 kHz
MOVWF	PR2	
MOVLW	0x0A	;Max duty cycle=40%
MOVWF	PWMRL	
MOVWF	PWMRH	
MOVLW	0x00	;No phase shift
MOVWF	PWMPHL	
MOVWF	PWMPHH	
MOVLW	0x04	;Turn on Timer2
MOVWF	T2CON	

3.3 Input Voltage Monitoring

The input voltage to the MCP19122/3 is monitored to determine an input undervoltage or an input overvoltage. It can also be measured by the ADC and reported as telemetry data.

3.3.1 INPUT UNDERVOLTAGE LOCKOUT

The VINUVLO register contains the digital value that sets the input under voltage lockout. When the input voltage on the V_{IN} pin to the MCP19122/3 is below this programmed level, the PIR2<UVLOIF> status flag will be set. This bit is automatically cleared when the MCP19122/3 V_{IN} voltage rises above this programmed level. The VINUVLO shall operate on a rising or falling input voltage. Hysteresis shall exist between the rising threshold that clears the flag and the failing threshold that sets the flag.

A hardware under voltage lockout path can be enabled by setting the VINCON<UVLOEN> bit. When this bit is set and the voltage on the V_{IN} pin is below the threshold set by the VINUVLO register, hardware will keep the high-side and low-side MOSFET drivers off. Once the voltage on the $V_{\rm IN}$ pin is greater than the threshold set by the VINUVLO register, the high-side and low-side MOSFET drivers are enabled.

To function properly, the V_{IN} under voltage lockout setting must be lower than the V_{IN} over voltage lockout setting. The state of the VINUVLO and VINOVLO registers are unknown at power-up. Therefore if only the V_{IN} under voltage lockout is desired, the V_{IN} over voltage lockout threshold still must be set in the VINOVLO register.

The UVLOIF interrupt flag bit is set when
an interrupt condition occurs, regardless
of the state of its corresponding enable bit
or the Global Enable bit, GIE, of the INT-
CON register.

Note: The UVLOIF interrupt flag bit is set when an interrupt condition occurs regardless of the state of the VINCON<UVLOEN> bit.

REGISTER 3-1: VINUVLO: INPUT UNDER VOLTAGE LOCKOUT CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	—	UVLO3	UVLO2	UVLO1	UVLO0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	Unimplemented: Read as '0'
bit 3-0	UVLO<3:0>: Under Voltage Lockout Configuration bits
	0000 = 4.0V
	0001 = 6.0V
	0010 = 8.0V
	0011 = 10.0V
	0100 = 12.0V
	0101 = 14.0V
	0110 = 16.0V
	0111 = 18.0V
	1000 = 20.0V
	1001 = 22.0V
	1010 = 24.0V
	1011 = 26.0V
	1100 = 28.0V
	1101 = 30.0V
	1110 = 32.0V
	1111 = 34.0V

3.3.2 INPUT OVER VOLTAGE LOCKOUT

The VINOVLO register contains the digital value that sets the input over voltage lockout. When the input voltage on the V_{IN} pin to the MCP19122/3 is above this programmed level, the PIR2<OVLOIF> status flag will be set. This bit is automatically cleared when the MCP19122/3 V_{IN} voltage falls below this programmed level. The VINOVLO shall operate on a rising or falling input voltage. Hysteresis shall exist between the rising threshold that sets the flag and the failing threshold that clears the flag.

A hardware over voltage lockout path can be enabled by setting the VINCON<OVLOEN> bit. When this bit is set and the voltage on the V_{IN} pin is above the threshold set by the VINOVLO register, hardware will keep the high-side and low-side MOSFET drivers off. Once the voltage on the V_{IN} pin is lower than the threshold set by the VINOVLO register, the high-side and low-side MOSFET drivers are enabled.

To function properly, the V_{IN} overvoltage lockout setting must be lower than the V_{IN} undervoltage lockout setting. The state of the VINUVLO and VINOVLO registers are unknown at power-up. Therefore if only the V_{IN} overvoltage lockout is desired, the V_{IN} undervoltage lockout threshold still must be set in the VINUVLO register.

- Note: The OVLOIF interrupt flag bit is set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register.
- Note: The OVLOIF interrupt flag bit is set when an interrupt condition occurs regardless of the state of the VINCON<OVLOEN> bit.

REGISTER 3-2: VINOVLO: INPUT OVERVOLTAGE LOCKOUT CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	—		—	OVLO3	OVLO2	OVLO1	OVLO0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented: Read as '0'

bit 3-0	OVLO<3:0>: Overvoltage Lockout Configuration bits 0000 = 12.0V 0001 = 14.0V 0010 = 16.0V 0011 = 18.0V 0100 = 20.0V 0101 = 22.0V 0110 = 24.0V 0111 = 26.0V 1000 = 28.0V 1001 = 30.0V 1010 = 32.0V 1011 = 34.0V 1110 = 36.0V 1110 = 40.0V
	1110 = 40.0V 1111 = 42.0V

3.3.3 INPUT UNDER/OVERVOLTAGE CONTROL REGISTER

The VINCON register is the comparator control register for both the input undervoltage lockout and input overvoltage lockout. It contains the enable bits, the polarity edge detection bits and the status output bits for both protection circuits. The interrupt flags <UVLOIF> and <OVLOIF> in the PIR2 register are independent of the enable <UVLOEN> and <OVLOEN> bits in the VINCON register. The <UVLOOUT> undervoltage lockout status output bit in the VINCON register indicates if an UVLO event has occurred. The <OVLOOUT> overvoltage lockout status output bit in the VINCON register indicates if an OVLO event has occurred.

When the input voltage on the V_{IN} pin to the MCP19122/3 is below the threshold programmed by the VINUVLO register and the <UVLOEN> bit is set, both the HDRV and LDRV gate drivers are disabled.

When the input voltage on the V_{IN} pin to the MCP19122/3 is above the threshold programmed by the VINOVLO register and the <OVLOEN> bit is set, both the HDRV and LDRV gate drivers are disabled.

REGISTER 3-3: VINCON: INPUT VOLTAGE UVLO AND OVLO CONTROL REGISTER

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0
UVLOEN	UVLOOUT	UVLOINTP	UVLOINTN	OVLOEN	OVLOOUT	OVLOINTP	OVLOINTN
bit 7						•	bit 0

Legend:						
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'		
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		
bit 7	1 = UVL0	I: UVLO Comparator Module O Comparator Module Logic O Comparator Module Logic	enabled			
bit 6	1 = UVL	JT: Undervoltage Lock Out S O event has occurred O event has not occurred	Status bit			
bit 5	1 = UVL0	OIF will be set upon a positiv	rupt-on-Positive Going Edge I re going edge of the UVLO sitive going edge of the UVLC			
bit 4	1 = UVL0	UVLOINTN: UVLO Comparator Interrupt on Negative Going Edge Enable bit 1 = UVLOIF will be set upon a negative going edge of the UVLO 0 = No UVLOIF will be set upon a negative going edge of the UVLO				
bit 3	1 = OVL	OVLOEN: OVLO Comparator Module Logic Enable bit 1 = OVLO Comparator Module Logic enabled 0 = OVLO Comparator Module Logic disabled				
bit 2	1 = OVL	JT: Overvoltage Lock Out St O event has occurred O event has not occurred	atus bit			
bit 1	1 = OVL	OIF will be set upon a positiv	rupt on Positive Going Edge I ve going edge of the OVLO sitive going edge of the OVLC			
bit 0	1 = OVL	OIF will be set upon a negati	rupt on Negative Going Edge ve going edge of the OVLO gative going edge of the OVL			

3.4 Output Overcurrent

The MCP19122/3 features a cycle-by-cycle peak current limit. By monitoring the OCIF interrupt flag, custom over current fault handling can be implemented.

To detect an output overcurrent, the MCP19122/3 senses the voltage drop across the high-side MOSFET while it is conducting. Leading-edge blanking is incorporated to mask the overcurrent measurement for a given amount of time. This helps prevent false overcurrent readings.

When an output overcurrent is sensed, the OCIF flag is set and the high-side drive signal is immediately terminated. Without any custom overcurrent handling implemented, the high-side drive signal will be asserted high at the beginning of the next clock cycle. If the overcurrent condition still exists, the high-drive signal will again be terminated.

The OCIF interrupt flag must be cleared in software. It can only be cleared once a switching cycle without an overcurrent condition has occurred.

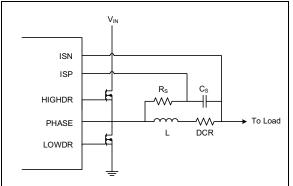
Register OCCON contains the bits used to configure both the output overcurrent limit and the amount of leading edge blanking (see Register 3-4).

The OCCON<OCEN> bit must be set to enable the input overcurrent circuitry.

Note:	The OCIF interrupt flag bit is set when an
	interrupt condition occurs, regardless of
	the state of its corresponding enable bit or
	the Global Enable bit, GIE, of the INTCON
	register.

MCP19122/3

R/W-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
OCEN	OCLEB1	OCLEB0	OOC4	OOC3	OOC2	00C1	0000
bit 7			•				bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		ʻ0' = Bit is cle		x = Bit is unkr	nown
bit 7	OCEN: Outp	out Overcurrent	Control bit				
		Overcurrent com Overcurrent com					
bit 6-5	OCLEB<1:0 00 = 110 ns 01 = 200 ns 10 = 380 ns 11 = 740 ns	blanking blanking	e Blanking				
bit 4-0	OOC<4:0>:	Output Overcur	rent Configura	ation bits			
	00000 = 91 0001 = 112 0001 = 132 00010 = 133 00110 = 193 00100 = 17 00101 = 220 00110 = 220 00111 = 243 01001 = 283 01001 = 300 01011 = 322 01001 = 350 01101 = 370 01110 = 392 01110 = 392 01111 = 413 10000 = 433 10011 = 500 10010 = 522 10101 = 543 10011 = 543 10001 = 602 11011 = 650 11011 = 671 11000 = 693 11011 = 714	2 mV drop 4 mV drop 5 mV drop 5 mV drop 8 mV drop 0 mV drop 1 mV drop 3 mV drop 3 mV drop 6 mV drop 0 mV drop 0 mV drop 2 mV drop 2 mV drop 5 mV drop 5 mV drop 6 mV drop 6 mV drop 7 mV drop 7 mV drop 7 mV drop 8 mV drop 7 mV drop 8 mV drop 1 mV drop 1 mV drop 1 mV drop 1 mV drop 2 mV drop 3 mV drop 3 mV drop 1 mV drop 1 mV drop 3 mV drop 3 mV drop 3 mV drop 1 mV drop 3 mV drop					


REGISTER 3-4: OCCON: OUTPUT OVERCURRENT CONTROL REGISTER

3.5 Current Sensing

The system output current can be sensed by using either a low value resistor placed in series with the output or for applications that require the highest possible efficiency the series resistance (DCR) of the inductor.

For applications that use DCR sensing, a resistor in series with a capacitor are placed around the inductor, as shown in Figure 3-1. If the value of R_S and C_S are chosen so the RC time constant matches the inductor time constant, the voltage appearing across C_S will equal the voltage across the DCR and therefore the current flowing through the inductor. Equation 3-3 can be used to select R_S and C_S .

FIGURE 3-1: INDUCTOR CURRENT SENSE FILTER

EQUATION 3-3: CALCULATING FILTER VALUES

$$\frac{L}{DCR} = (R_S \times C_S)$$

Where:

- L is the inductance value of the output inductor
- DCR is the series resistance of the output inductor
- R_S is the current sense filter resistor
- C_S is the current sense filter capacitor

3.5.1 CURRENT SENSE GAIN

The entire current sense path has a fixed gain of 32. Additional gain or attenuation can be added. The amount added is controlled by the CSGSCON register, Register 3-5. The gain added to this current sense signal does not change the +6 dB of current sense gain added before being read by the A/D.

3.5.2 INDUCTOR OR SENSE RESISTOR SELECTION

The DCR of the inductor or the value of the sense resistor are to be selected so the output of the internal current sense amplifier output does not exceed 3.0V at full load current. The internal current sense amplifier has a fixed gain of 32. See Equation 3-4.

EQUATION 3-4: SENSE ELEMENT RESISTANCE

$$R_{SENSE} = \frac{AMP_{VOUT}}{AMP_{GAIN} \times I_{MAX}}$$

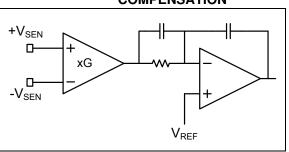
Where:

- R_{SENSE} is the resistance of the sense element
- AMP_{VOUT} is the maximum output voltage of the current sense amplifier
- AMP_{GAIN} is the fixed gain of the current sense amplifier
- I_{MAX} is the maximum application load current

3.5.3 MEASURING SYSTEM LOAD CURRENT

The system load current can be measured by the internal ADC. Before being measured by the ADC, the sampled current is gained by a fixed +6 dB. It is recommended that multiple ADC readings of the sampled current be taken and averaged together to provide a more uniform measurement.

MCP19122/3


REGISTER	3-5: CSG	SCON: CURR	ENT SENSE	GAIN CONT	ROL REGIST	ſER	
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	—	CSGS4	CSGS3	CSGS2	CSGS1	CSGS0
bit 7							bit
Legend:							
R = Readab		W = Writable			mented bit, read		
-n = Value a	IT POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unki	nown
bit 7-5	Unimpleme	ented: Read as	'O'				
bit 4-0	-	>: Current Sens		bits			
	000000 = -	3.0 dB	-				
	000001 = -	2.8 dB					
	000010 = -						
	000011 = - 000100 = -						
	000100 = -						
	000110 = -						
	000111 = -	1.6 dB					
	001000 = -						
	001001 = - 001010 = -						
	001010 = -						
	001100 = -						
	001101 = -	0.4 dB					
	001110 = -						
	001111 = 0						
	010000 = 0 010001 = 0						
	010001 = 0 010010 = 0						
	010011 = 0						
	010100 = 1	1.0 dB					
	010101 = 1						
	010110 = 1						
	010111 = 1 011000 = 1						
	011000 = 2						
	011010 = 2						
	011011 = 2						
	011100 = 2						
	011101 = 2						
	011110 = 3 011111 = 3						
	<u> </u>						

3.6 Control Parameters

3.6.1 COMPENSATION SETTING

The MCP19122/3 is an emulated current mode controller with integrated compensation. The desired response of the overall loop can be tuned by proper placement of the compensation zero frequency and gain. The CMPZCON register, Register 3-6, is used to adjust the compensation zero frequency and gain. Figure 3-2 shows a simplified drawing of the internal compensation with and the adjustable gain differential amplifier.

FIGURE 3-2: SIMPLIFIED COMPENSATION

REGISTER 3-6: CMPZCON: COMPENSATION SETTING CONTROL REGISTER

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CMPZF3 | CMPZF2 | CMPZF1 | CMPZF0 | CMPZG3 | CMPZG2 | CMPZG1 | CMPZG0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7-4		:3:0>: Compensation Zero F	requency Setting bits	
	0000 = 1			
	0001 = 1			
	0010 = 2			
	0011 = 2 0100 = 3			
	0100 - 3 0101 - 4			
	0110 = 5			
	0111 = 6			
	1000 = 8			
	1001 = 9	950 Hz		
	1010 = 1			
	1011 = 1			
	1100 = 1			
	1101 = 2			
	1110 = 2			
	1111 = 3			
bit 3-0		<3:0>: Compensation Gain S	Setting bits	
	0000 = 3			
	0001 = 2			
	0010 = 2 0011 = 2			
	0100 = 2			
	0100 - 2 0101 - 1			
	0101 = 1			
	0111 = 1			
	1000 = 1			
	1001 = 8	.30 dB		
	1010 = 6	.02 dB		
	1011 = 3			
	1100 = 1			
	1101 = -			
	1110 = -			
	1111 = -	0.UZ UB		