imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LIN Transceiver with Voltage Regulator

Features

- · Supports baud rates up to 20 Kbaud
- · 40V load dump protected
- Wide supply voltage, 6.0 18.0V, continuous
- Maximum input voltage of 30V
- Extended Temperature Range: -40°C to +125°C
- · Interface to standard USARTs
- Compatible with LIN Spec 1.3
- · Local Interconnect Network (LIN) Line pin:
- Internal pull-up resistor and diode
- Protected against ground shorts (LIN pin to ground)
- Protected against LIN pin loss of ground
- High current drive, 40 mA \leq IOL \leq 200 mA
- · Automatic thermal shutdown
- On-board Voltage Regulator:
 - Output voltage of 5V with ±5% tolerances over temperature range
 - Maximum output current of 50 mA
 - Able to drive an external series-pass transistor for increased current supply capability
 - Internal thermal overload protection
 - Internal short-circuit current limit
 - External components limited to filter capacitor only and load capacitor

Block Diagram

Package Types

NOTES:

1.0 DEVICE OVERVIEW

The MCP201 provides a physical interface between a microcontroller and a LIN half-duplex bus. It is intended for automotive and industrial applications with serial bus speeds up to 20 Kbaud.

The MCP201 provides a half-duplex, bidirectional communications interface between a microcontroller and the serial network bus. This device will translate the CMOS/TTL logic levels to LIN level logic, and vice versa.

The LIN specification 1.3 requires that the transceiver of all nodes in the system be connected via the LIN pin, referenced to ground and with a maximum external termination resistance of 510Ω from LIN bus to battery supply. The 510Ω corresponds to 1 Master and 16 Slave nodes.

The MCP201 provides a +5V 50 mA regulated power output. The regulator uses a LDO design, is shortcircuit-protected and will turn the regulator output off if it falls below 3.5V. The MCP201 also includes thermal shutdown protection. The regulator has been specifically designed to operate in the automotive environment and will survive reverse battery connections, +40V load dump transients and double-battery jumps (see **Section 1.6 "Internal Voltage Regulator"**).

1.1 Optional External Protection

1.1.1 TRANSIENT VOLTAGE PROTECTION (LOAD DUMP)

An external 27V transient suppressor (TVS) diode, between VBAT and ground, with a 50Ω resistor in series with the battery supply and the VBAT pin, serves to protect the device from power transients (see Figure 1-2) and ESD events. While this protection is optional, it should be considered as good engineering practice.

1.1.2 REVERSE BATTERY PROTECTION

An external reverse-battery-blocking diode can be used to provide polarity protection (see Figure 1-2). This protection is optional, but should be considered as good engineering practice.

1.2 Internal Protection

1.2.1 ESD PROTECTION

For component-level ESD ratings, please refer to the maximum operation specifications.

1.2.2 GROUND LOSS PROTECTION

The LIN bus specification states that the LIN pin must transition to the recessive state when ground is disconnected. Therefore, a loss of ground effectively forces the LIN line to a hi-impedance level.

1.2.3 THERMAL PROTECTION

The thermal protection circuit monitors the die temperature and is able to shut down the LIN transmitter and voltage regulator. Refer to Table 1-1 for details.

There are three causes for a thermal overload. A thermal shut down can be triggered by any one, or a combination of, the following thermal overload conditions.

- · Voltage regulator overload
- · LIN bus output overload
- Increase in die temperature due to increase in environment temperature

Driving the TXD and checking the RXD pin makes it possible to determine whether there is a bus contention (Rx = low, Tx = high) or a thermal overload condition (Rx = high, Tx = low).

Note: After recovering from a thermal, bus or voltage regulator overload condition, the device will be in the Ready1 mode. In order to go into Operational mode, the CS/ WAKE pin has to be toggled.

TXD	RXD	Comments					
L	Н	LIN transmitter shutdown, receiver and voltage regulator active, thermal overload condition.					
Н	L	Regulator shutdown, receiver active, bus contention.					

Legend: x = Don't care, L = Low, H = High

Note 1: LIN transceiver overload current on the LIN pin is 200 mA.

2: Voltage regulator overload current on voltage regulator greater than 50 mA.

1.3 Modes of Operation

For an overview of all operational modes, please refer to Table 1-2.

1.3.1 POWER-DOWN MODE

In the Power-down mode, the transmitter and the voltage regulator are both off. Only the receiver section and the CS/WAKE pin wake-up circuits are in operation. This is the lowest power mode.

If any bus activity (e.g., a BREAK character) should occur during Power-down mode, the device will immediately enable the voltage regulator. Once the output has stabilized, the device will enter Ready mode.

The part will enter the Operation mode, if the CS/WAKE pin should become active-high ('1').

1.3.2 READY AND READY1 MODES

There are two states for the Ready mode. The only difference between these states is the transition during start-up. The state Ready1 mode ensures that the transition from Ready to Operation mode (once a rising edge of CS/WAKE) occurs without disrupting bus traffic.

Immediately upon entering either Ready1 or Ready mode, the voltage regulator will turn on and provide power. The transmitter portion of the circuit is off, with all other circuits (including the receiver) of the MCP201 being fully operational. The LIN pin is kept in a recessive state.

If a microcontroller is being driven by the voltage regulator output, it will go through a power-on reset and initialization sequence. All other circuits, other than the transmitter, are fully operational. The LIN pin is held in the recessive state.

The device will stay in Ready mode until the CS/WAKE pin transitions high ('1'). After CS/WAKE is active, the transmitter is enabled and the device enters Operation mode.

The device may only enter Power-down mode after going through the Operation mode step.

At power-on of the VBAT supply pin, the component is in either Ready or Ready1 mode, waiting for a CS/WAKE rising edge.

The MCP201 will stay in either mode for 600 μ s as the regulator powers its internal circuitry and waits until the CS/WAKE pin transitions high. During the 600 μ s delay, the MCP201 will not recognize a CS/WAKE event. The CS/WAKE transition from low to high should not occur until after this delay.

- The CS input is edge, not level, sensitive.
- The CS pin is not monitored until approximately 600 µs after VREG has stabized.
- The transistion from Ready1 to Ready is made on the falling edge of CS.
- The transition from Ready mode to Operational mode is on the rising edge of CS.

1.3.3 OPERATION MODE

In this mode, all internal modules are operational.

The MCP201 will go into Power-down mode on the falling edge of CS/WAKE.

FIGURE 1-1: OPERATIONAL MODES STATE DIAGRAMS

Note: After power-on, CS will not be sampled until VREG has stabized and an additional 600 μs has elapsed. The microcontroller should toggle CS approximately 1mS after RESET to ensure that CS will be recognized.

Note:	While the MCP201 is in shutdown, TXD
	should not be actively driven high. If TXD
	is driven high actively, it may power
	internal logic.

1.3.4 DESCRIPTION OF BROWNOUT CONDITIONS

As VBAT decreases VREG is regulated to 5.0 VDC (see VREG in **Section 2.2 "DC Specifications"**) while VBAT is greater than 5.5 - 6.0 VDC.

As VBAT decreases further VREG tracks VBAT (VREG = VBAT - (0.5 to 1.0) VDC.

The MCP201 monitors VREG and as long as VREG does not fall below VSD (see VSD in **Section 2.2 "DC Specifications**"), VREG will remain powered.

As VBAT increases VREG will continue to track VBAT until VREG reaches 5.0 VDC.

If VREG falls below VSD, VREG is turned off and the MCP201 powers itself down.

The MCP201 will remain powered down until VBAT increases above VON (see VON in Section 2.2 "DC Specifications".

State	Transmitter	Voltage Regulator	Operation	Comments			
POR	OFF	OFF	Read CS/WAKE. If low, then READY. If high, READY1 mode.	Sample FAULT/SLPS and select slope			
Ready	OFF	ON	If CS/WAKE rising edge, then Operation mode.	Bus Off state			
Ready1	OFF	ON	If CS/WAKE falling edge, then READY mode.	Bus Off state			
Operation	ON	ON	If CS/WAKE falling edge, then Power down.	Normal Operation mode			
Power-down	OFF	OFF	On LIN bus falling, go to READY mode. On CS/WAKE rising edge, go to Operational mode	Low-Power mode			
Note: After power-on, CS will not be sampled until VREG has stabized and an additional 600 μs has elapsed. The microcontroller should toggle CS approximately 1mS after RESET to ensure that CS will be recognized.							

TABLE 1-2:	OVERVIEW	OF	OPERATIONAL	MODES
		U .		MODEO

1.4 Typical Applications

FIGURE 1-2: TYPICAL MCP201 APPLICATION^(1,2)

FIGURE 1-3: TYPICAL LIN NETWORK CONFIGURATION

1.5 Pin Descriptions

Devices	Bond Bod	Function			
8-Pin PDIP/ SOIC/DFN	Name	Normal Operation			
1	RXD	Receive Data Output (CMOS output)			
2 CS/WAKE		Chip Select (TTL-HV input)			
3	VREG	Power Output			
4	ТХD	Transmit Data Input (TTL)			
5	Vss	Ground			
6 LIN		LIN bus (bidirectional- HV)			
7	VBAT	Battery			
8 FAULT/SLPS		Fault Detect Output, Slope Select Input			

TABLE 1-3: MCP201 PINOUT OVERVIEW

Legend: TTL = TTL input buffer, HV = High Voltage (VBAT)

1.5.1 RECEIVE DATA OUTPUT (RXD)

The Receive Data Output pin is a standard CMOS output and follows the state of the LIN pin.

The LIN receiver monitors the state of the LIN pin and generates the output signal RXD.

1.5.2 CS/WAKE

Chip Select Input pin. This pin controls whether the part goes into READY1 or READY mode at power-up. The internal pull-down resistor will keep the CS/WAKE pin low. This is done to ensure that no disruptive data will be present on the bus while the microcontroller is executing a Power-on Reset and I/O initialization sequence. The pin must see a low-to-high transition to activate the transmitter.

After CS/WAKE transitions to '1', the transmitter is enabled. If CS/WAKE = '0', the device is in Ready1 mode on power-up or in Low-Power mode. In Low-Power mode, the voltage regulator is shut down, the transmitter driver is disabled and the receiver logic is enabled.

An external switch (see Figure 1-2) can then wake up both the transceiver and the microcontroller. An external-blocking diode and current-limiting resistor are necessary to protect the microcontroller I/O pin.

Note:	On POR, the MCP201 enters Ready or
	Ready1 mode (see Figure 1-1). In order to
	enter Operational mode, the MCP201 has
	to see one rising edge on CS/WAKE
	600 µs after the voltage regulator reaches
	5V.

1.5.3 POWER OUTPUT (VREG)

Positive Supply Voltage Regulator Output pin.

1.5.4 TRANSMIT DATA INPUT (TXD)

The Transmit Data Input pin has an internal pull-up to VREG. The LIN pin is low (dominant) when TXD is low, and high (recessive) when TXD is high.

In case the thermal protection detects an over-temperature condition while the signal TXD is low, the transmitter is shutdown. The recovery from the thermal shutdown is equal to adequate cooling time.

1.5.5 GROUND (Vss)

Ground pin.

1.5.6 LIN

The bidirectional LIN bus Interface pin is the driver unit for the LIN pin and is controlled by the signal TXD. LIN has an open collector output with a current limitation. To reduce EMI, the edges during the signal changes are slope-controlled.

1.5.7 BATTERY (VBAT)

Battery Positive Supply Voltage pin. This pin is also the input for the internal voltage regulator.

1.5.8 FAULT/SLPS

FAULT Detect Output, Slope Select Input.

This pin is usually in Output mode. Its state is defined as shown in Table 1-5.

The state of this pin is internally sampled during poweron of VBAT. Once VBAT has reached a stable level, (approximately 6 VDC) and VREG is stable at 4.75 to 5.25 VDC, the state of this pin selects which slew rate profile to apply to the LIN output. It is only during this time that the pin is used as an input (the output driver is off during this time). The slope will stay selected until the next VBAT power-off/power-on sequence, regardless of any power-down, wake-up or SLEEP events. Only a VBAT rising state will cause a sampling of the FAULT/SLPS pin. The Slope selection will be made irrespective of the state of any other pin.

The FAULT/SLPS pin is connected to either VREG or Vss through a resistor (approximately 100 k Ω) to make the slope selection. This large resistance allows the FAULT indication function to overdrive the resistor in normal operation mode.

If the FAULT/SLPS is high ('1'), the normal slope shaping is selected (dv/dt = 2 V/ μ s). If FAULT/SLPS is low ('0') during this time, the alternate slope-shaping is selected (dv/dt = 4 V/ μ s). This mode can be used if a user desires to run at a faster slope. This mode is not LIN compliant.

TABLE 1-4: FAULT / SLPS SLOPE SELECTION DURING POR

FAULT/SLPS	Slope Shaping			
Н	Normal			
L	Alternate ⁽¹⁾			

Note 1: This mode does not conform to LIN bus specification version 1.3, but might be used for K-line applications.

TABLE 1-5: FAULT / SLPS TRUTH TABLE

- Note: This pin is '0' whenever the internal circuits have detected a short or thermal excursion and have disabled the LIN output driver.
- **Note:** Every time TX is toggled, a Fault condition will occur for the length of time, depending on the bus load. The Fault time is equal to the propagation delay.

TXD In	RXD Out	LIN Bus I/O	Thermal Override	FAULT / SLPS Out	Comments
L	Н	VBAT	OFF	L	Bus shorted to battery
Н	Н	VBAT	OFF	Н	Bus recessive
L	L	GND	OFF	Н	Bus dominant
Н	L	GND	OFF	L	Bus shorted to ground
x	х	VBAT	ON	L	Thermal excursion

Legend: x = don't care

1.6 Internal Voltage Regulator

The MCP201 has a low drop-out voltage, positive regulator capable of supplying 5.00 VDC \pm 5% at up to 50 mA of load current over the entire operating temperature range. With a load current of 50 mA, the minimum input-to-output voltage differential required for the output to remain in regulation is typically +0.5V (+1V maximum over the full operating temperature range). Quiescent current is less than 1.0 mA, with a full 50 mA load current, when the input-to-output voltage differential is greater than +2V.

The regulator requires an external output bypass capacitor for stability. The capacitor should be either a ceramic or tantalum for stable operation over the extended temperature range. The compensation capacitor should range from 1.0 μ f – 22 μ f and have a ESR or CSR of 0.4 Ω – 5.0 Ω . The input capacitor, CF, in Figure 1.4 should be on the order of 8 to 10 times larger than the output capacitor, CG.

Designed for automotive applications, the regulator will protect itself from reverse battery connections, doublebattery jumps and up to +40V load dump transients. The voltage regulator has both short-circuit and thermal shutdown protection built-in.

Regarding the correlation between VBAT, VREG and IDD, please refer to Figure 1-4 through 1-6. When the input voltage (VBAT) drops below the differential needed to provide stable regulation, the output VREG will track the input down to approximately 3.5V, at which point the regulator will turn off. This will allow microcontrollers with internal POR circuits to generate a clean arming of the Power-on Reset trip point. The MCP201 will then monitor VBAT and turn on the regulator when VBAT is 6.0V. The device will come up in either READY1 or READY mode and will have to be transitioned to Operational mode to re-enable data transmission.

In the start phase, VBAT must be at least 6.0V (Figure 1-4) to initiate operation during power-up. In Power-down mode, the VBAT monitor will be turned off.

The regulator has a thermal shutdown. If the thermal protection circuit detects an overtemperature condition caused by an overcurrent condition (Figure 1-6) of the regulator, it will shut down.

The regulator has an overload current limiting. During a short-circuit, VREG is monitored. If VREG is lower than 3.5V, the regulator will turn off. After a thermal recovery time, the VREG will be checked again. If there is no short-circuit (VREG > 3.5V), the regulator will be switched back on. The MCP201 will come up in either READY1 or READY mode and will have to be transitioned to Operational mode to re-enable data transmission.

The accuracy of the voltage regulator, when using a pass transistor, will degrade due to the extra external components needed. All performance characteristics should be evaluated on every design.

VOLTAGE REGULATOR OUTPUT ON OVERCURRENT SITUATION

1.7 ICSP™ Considerations

The following should be considered when the MCP201 is connected to pins supporting in-circuit programming:

- Power used for programming the microcontroller should be supplied from the programmer, not from the MCP201
- The MCP201 should be left unpowered
- The voltage on VREG should not exceed the maximum output voltage of VREG
- The TXD pin should not be brought high during programming

NOTES:

2.0 ELECTRICAL CHARACTERISTICS

2.1 Absolute Maximum Ratings†

VIN DC Voltage on Logic pins except CS/WAKE	
VIN DC Voltage on CS/WAKE	0.3 to VBAT+0.3V
VBAT Battery Voltage, non-operating (LIN bus recessive, no regulator load, t < 60s)	0.3 to +40V
VBAT Battery Voltage, transient (Note 1)	-0.3 to +40V
VBAT Battery Voltage, continuous	-0.3 to +30V
VLBUS Bus Voltage, continuous	
VLBUS Bus Voltage, transient (Note 1)	27 to +40V
ILBUS Bus Short Circuit Current Limit	200 mA
ESD protection on LIN, VBAT (Human Body Model) (Note 2)	>4 kV
ESD protection on all other pins (Human Body Model) (Note 2)	>2 kV
Maximum Junction Temperature	150°C
Storage Temperature	55 to +150°C

Note 1: ISO 7637/1 load dump compliant (t < 500 ms).

2: According to JESD22-A114-B.

† NOTICE: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

2.2 DC Specifications

		Electrical Characteristics:						
DC Specif	ications	VBAT = 6.0V to 18.0V						
20 0000			TAMB = -40° C to $+125^{\circ}$ C					
		CLOADREG	$CLOADREG = 10 \mu F$					
Sym.	Parameter	Min.	Тур.	Max.	Units	Conditions		
	Power							
IBATQ	VBAT Quiescent Operating Current (voltage regulator without load and transceiver)	_	0.45	1.0	mA	IVREG = 0 mA, LIN bus pin recessive, (Note 3)		
IBAT	VBAT Power-down Current transceiver only	—	23	50	μA	CS/WAKE = High, voltage regulator disabled		
IDDQ	VREG Quiescent Operating Current	—	500	—	μA	(Note 2)		
IVREG	VREG maximum output current	—	—	50	mA	(Note 4)		
	Microcontroller Interface							
Viн	High-level Input Voltage (TXD, FAULT/SLPS)	2.0	—	VREG + 0.3	V			
VIL	Low-level Input Voltage (TXD, FAULT/SLPS)	-0.3	_	0.15 x Vreg	V			
lihtxd	High-level Output Current (TXD)	-90	_	+30	μA	Input voltage = 4V		
Iiltxd	Low-level Output Current (TXD)	-150	_	-10	μA	Input voltage = 1V (though > 50 kΩ internal pull-up)		
VIHCS/ WAKE	High-level Input Voltage (CS/WAKE)	3.0	—	VBAT	V	Through an external current- limiting resistor (10 k Ω)		
VILCS/ WAKE	Low-level Input Voltage (CS/WAKE)	-0.3	_	1.0	V			
IIHCS/ WAKE	High-level Input Current (CS/WAKE)	-10	_	+80	μA	Input voltage = 4V (though >100 k Ω internal pull-down)		
IILCS/ WAKE	Low-level Input Current (CS/WAKE)	5	_	30	μA	Input voltage = 1V		
Vohrxd	High-level Output Voltage (RXD)	0.8 Vreg	_	_		IOH = -4 mA		
Volrxd	Low-level Output Voltage (RXD)	—	—	0.2 VREG		IOL = 4 mA		

Note 1: Internal current limited. 2.0 ms typical recovery time ($R_{LBUS} = 0\Omega$, TX = 0.4 VREG, $V_{LBUS} = V_{BAT}$, TAMB = 25C. Recovery time highly dependent on ambient temperature, package and thermal resistance).

2: For design guidance only, not tested.

3: This current is at the VBAT pin.

4: The maximum power dissipation is a function of TJMAX, ΘJA and ambient temperature TA. The maximum allowable power dissipation at an ambient temperature is PD = (TJMAX - TA)ΘJA. If this dissipation is exceeded, the die temperature will rise above 150°C and the MCP201 will go into thermal shutdown.

2.2 DC Specifications (Continued)

DC Specifications		Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VBAT = 6.0V to 18.0V TAMB = -40°C to +125°C CLOADREG = 10 µF					
Sym.	Parameter	Min.	Тур.	Max.	Units	Conditions	
	Bus Interface						
VIHLBUS	High-level Input Voltage (LBUS)	0.6 Vbat		18	V	Recessive state	
VILLBUS	Low-level Input Voltage (LBUS)	-8	—	0.4 Vbat	V	Dominant state	
VHYS	Input Hysteresis	0.05 Vbat	_	0.1 Vbat	V	VIH - VIL	
IOL	Low-level Output Current (LBUS)	40	_	200	mA	Output voltage = 0.1 VBAT, VBAT = 12V	
lo	High-level Output Current (LBUS)	-20	_	20	μA	Vbus \geq Vbat, Vlbus < 40V	
IP	Pull-up Current on Input (LBUS)	-180	—	-60	μA	Approx. 30 k Ω internal pull-up @ VIH = 0.7 VBAT	
Isc	Short-circuit Current-Limit	50	—	200	mA	(Note 1)	
Voн	High-level Output Voltage (LBUS)	0.8 Vbat	_	—	V		
Vol	Low-level Output Voltage (LBUS)	—		0.2 Vbat	V		
	Voltage Regulator						
VREG	Output Voltage	4.75	—	5.25	V	0 mA > IOUT > 50 mA, 7.0V < VBAT < 18V	
VREG1	Output Voltage	4.4	—	5.25	V	0 mA > IOUT > 50 mA, 6.0V < VBAT < 7.0V	
$\Delta VREG1$	Line Regulation	—	10	50	mV	IOUT = 1 mA, 7.0V < VBAT < 18V	
$\Delta VREG2$	Load Regulation	—	10	50	mV	5 mA < IOUT < 50 mA, VBAT = Constant	
VN	Output Noise Voltage	_	—	400	μVRMS	1 Vrms @ 10 Hz - 100 kHz	
VSD	Shutdown Voltage (monitoring VREG)	3.5	—	4.0	V	See Figure 1-4	
Von	Input Voltage to Turn On Output (monitoring VBAT)	5.5	_	6.0	V		

Note 1: Internal current limited. 2.0 ms typical recovery time ($R_{LBUS} = 0\Omega$, TX = 0.4 VREG, VLBUS = VBAT, TAMB = 25C. Recovery time highly dependent on ambient temperature, package and thermal resistance).

2: For design guidance only, not tested.

3: This current is at the VBAT pin.

4: The maximum power dissipation is a function of TJMAX, ΘJA and ambient temperature TA. The maximum allowable power dissipation at an ambient temperature is PD = (TJMAX - TA)ΘJA. If this dissipation is exceeded, the die temperature will rise above 150°C and the MCP201 will go into thermal shutdown.

2.3 AC Specifications

AC Specifications		Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VBAT = $6.0V$ to $18.0V$ TAMB = -40° C to $+125^{\circ}$ C						
Symbol	Parameter	Min	Typical	Max	Units	Conditions		
	Bus Interface							
dV/dt	Slope Rising and Falling Edges	1.0	2.0	3.0	V/µs	(40% to 60%), No Load		
dV/dt	Slope Rising and Falling edges	2.0	4.0	6.0	V/µs	(Note 1), No Load		
t _{TRANSPD}	Propagation Delay of Transmitter	—	—	6.0	μS	t _{RECPD} = max		
t _{RECPD}	Propagation Delay of Receiver	—	—	6.0	μS	(t _{RECPDR} or t _{RECPDF})		
^t RECSYM	Symmetry of Propagation Delay of Receiver Rising Edge with Respect to Falling Edge	-2.0	_	2.0	μS	t _{RECSYM} = max		
t _{transsym}	Symmetry of Propagation Delay of Transmitter Rising Edge with Respect to Falling Edge	-2.0	_	2.0	μS	t _{TRANSSYM} = max (t _{TRANSPDF} - t _{RANSPDR})		
	Voltage Regulator					·		
t _{BACTVE}	Bus Activity to Voltage Regulator Enabled	10	_	40	μS	Bus debounce time		
t _{VEVR}	Voltage Regulator Enabled to Ready	—	50	200	μS	(Note 2)		
t _{vregpo} r	Voltage Regulator Enabled to Ready after POR	—	—	2.5	ms	(Note 2) CLOAD = 25 nF		
t _{CSOR}	Chip Select to Operation Ready	0	50	200	μS	(Note 2)		
t _{CSPD}	Chip Select to Power-down	0	—	40	μS	(Note 2) No CLOAD		
^t SHUTDOWN	Short-Circuit to Shutdown	—	450	—	μS	Characterized but not tested		
tSCREC	Short-Circuit Recovery Time	-	2.0	—	ms	Characterized but not tested (Note 3)		

Note 1: The mode does not conform to LIN Bus specification version 1.3.

2: Time depends on external capacitance and load.

3: Internal current limited. 2.0 ms typical recovery time (RLBUS = 0Ω , TX = 0.4 VREG, VLBUS = VBAT, TAMB = 25C. Recovery time highly dependent on ambient temperature, package, and thermal resistance).

TABLE 2-1: MCP201 THERMAL SPECIFICATIONS

Sym	Parameter	Min	Typical	Max	Units	Test Conditions
θ _{RECOVERY}	Recovery Temperature (junction temperature)		+135		°C	Characterized but not tested
θ _{SHUTDOWN}	Shutdown Temperature (junction temperature)	—	+155		°C	Characterized but not tested
t _{THERM}	Thermal Recovery Time (after Fault condition removed)	—	2.0		ms	Characterized but not tested (Note 1)

Note 1: Internal current limited. 2.0 ms typical recovery time (RLBUS = 0Ω, TX = 0.4 VREG, VLBUS = VBAT, TAMB = 25C. Recovery time highly dependent on ambient temperature, package, and thermal resistance).

2.4 Timing Diagrams and Specifications

3.0 CHARACTERIZATION GRAPHS

FIGURE 3-2: REGULATOR VOLTAGE (V) VS. REGULATOR CURRENT

REGULATOR CHANGE (V) VS. LINE VOLTAGE CHANGE

FIGURE 3-4: LOAD REGULATION REGULATOR CHANGE VS. REGULATOR LOAD CHANGE

-7: BUS ACTIVE VS. VBAT

