

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MCP2035

Analog Front-End Device for BodyCom Applications

Device Features:

- Single Analog Input Pin for Signal Detection
- High Input Detection Sensitivity (3 mV_{PP}, typical)
- High Modulation Depth Sensitivity (as low as 8%)
- · Three Output Type Selections:
 - Demodulated Data
 - Carrier Clock
 - Received Signal Strength Indicator (RSSI)
- · Input Carrier Frequency: 125 kHz, typical
- · Input Data Rate: 10 Kbps, maximum
- · 8 Internal Configuration Registers
- Bidirectional Transponder Communication via the same input pin (LF talk-back)
- Programmable Antenna Tuning Capacitance (up to 63 pF, 1 pF/step)
- · Programmable Output Enable Filter
- Low Standby Current: 2 μA, typical
- Low Operating Current: 10 μA, typical
- Serial Peripheral Interface (SPI) with external devices
- Industrial and Extended Temperature Range: -40°C to +85°C (Industrial)

Typical Applications:

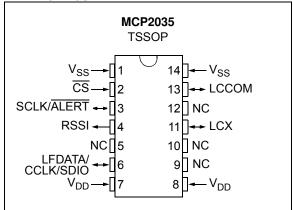
- BodyCom Applications
- · Security Industry Applications
- · Automotive Industry Applications

Description:

The MCP2035 is a single-channel, stand-alone Analog Front-End (AFE) device for low-frequency (LF) signal detection and low-power short range transponder applications, such as BodyCom communications.

The device can detect an input signal with amplitude as low as $\sim 1~\text{mV}_{PP}$, and can demodulate an amplitude-modulated input signal with as low as 8% modulation depth. The device can also transmit data (LF talk-back) by clamping and unclamping the input LC antenna voltage.

The device can output demodulated data, carrier clock or RSSI current, depending on the output-type selection configuration register bit settings. The demodulated data and carrier clock outputs are available on the LFDATA pin, while the RSSI output is available on the RSSI pin. The RSSI current output is linearly proportional to the input signal strength.


The device has programmable internal tuning capacitors for the input channel. The user can program the input tuning capacitors up to 63 pF, 1 pF per step. The internal tuning capacitors can be used effectively for fine-tuning of the external LC resonant circuit.

The device has eight volatile internal configuration registers for dynamic configurations of the device operation on-the-fly. All registers are readable and programmable using the serial SPI commands, except the read-only STATUS register.

The device is optimized for very low current consumption and has various battery-saving low-power modes (Sleep, Standby, Active).

This device is available in a 14-pin TSSOP package.

Package Type:

MCP2035

NOTES:

1.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on V _{DD} with respect to V _{SS}	0.3V to +6.5V
Voltage on all other pins with respect to V _{SS}	0.3V to (V _{DD} + 0.3V)
Maximum current out of V _{SS} pin	300 mA
Maximum current into V _{DD} pin	250 mA
Maximum LC Input Voltage (LCX) loaded, with device	10.0 V _{PP}
Maximum LC Input Voltage (LCX) unloaded, without device	700.0 V _{PP}
Maximum Input Current (rms) into device (LCX Input Channel)	10 mA
Human Body ESD rating	2000 (minimum) V
Machine Model ESD rating	200 (minimum) V

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Standard Operating Conditions (unless otherwise stated), Operating temperature: $-40^{\circ}\text{C} \le T_{\text{A}} \le +85^{\circ}\text{C}$, LCX Input Signal: Sinusoidal 300 mV_{PP,} Carrier Frequency = 125 kHz, LCCOM connected to V_{SS,} **Bits <3:1>** of Configuration Register 0: LCXEN = 0, LCZEN = LCYEN = 1.

Parameters	Sym.	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
Supply Voltage	V_{DD}	2.0	3.0	3.6	V	
V _{DD} Start Voltage to ensure internal Power-on Reset signal	V _{POR}	_	_	1.8	V	
Modulation Transistor-on Resistance	R _M	_	50	100	Ω	V _{DD} = 3.0V
Active Current (detecting signal) 1 LC Input Channel (LCX) is Receiving Signal	I _{ACT}	_	10	_	μА	CS = V _{DD} Input = Continuous Wave (CW) Amplitude = 300 mV _{PP} LCX input channel is enabled.
Standby Current (wait to detect signal)	I _{STDBY}	_	2	5	μA	CS = V _{DD} ; ALERT = V _{DD} LCX input channel is enabled.
Sleep Current	I _{SLEEP}	_	0.2	1	μΑ	$\overline{\text{CS}} = V_{\text{DD}}; \overline{\text{ALERT}} = V_{\text{DD}}$
Analog Input Leakage Current on LCX and LCCOM pins	I _{AIL}	_	_	±1	μА	V_{DD} = 3.6V, $V_{SS} \le V_{IN} \le 1$ V with respect to ground. Internal tuning capacitors are switched off, tested in Sleep mode
Digital Input Low Voltage	V _{IL}	V _{SS}	_	0.3 V _{DD}	V	SCLK, SDI, CS
Digital Input High Voltage	V _{IH}	0.8 V _{DD}		V_{DD}	V	SCLK, SDI, CS

- **Note 1:** These parameters are characterized but not tested.
 - **2:** Data in "Typ." column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 - **3:** Negative current is defined as current sourced by the pin.

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Standard Operating Conditions (unless otherwise stated), Operating temperature: $-40^{\circ}C \le T_{A} \le +85^{\circ}C$, LCX Input Signal: Sinusoidal 300 mV_{PP}, Carrier Frequency = 125 kHz, LCCOM connected to V_{SS}, **Bits <3:1>** of Configuration Register 0: LCXEN = 0, LCZEN = LCYEN = 1.

Parameters	Sym.	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
Digital Input Leakage Current SDI, SCLK, CS (Note 3)	I _{ΙL}			±1	μΑ	$\begin{aligned} &V_{DD} = 3.6V \\ &V_{SS} \leq V_{PIN} \leq V_{DD} \\ &V_{PIN} \leq V_{DD} \end{aligned}$
Digital Output Low Voltage ALERT, LFDATA/SDIO	V _{OL}		-	V _{SS} + 0.4	V	Analog Front-End section I _{OL} = 1.0 mA, V _{DD} = 2.0V
Digital Output High Voltage ALERT, LFDATA/SDIO	V _{OH}	V _{DD} - 0.5	-		V	I_{OH} = -400 μ A, V_{DD} = 2.0V
Digital Input Pull-Up Resistor CS, SCLK	R _{PU}	50	200	350	kΩ	V _{DD} = 3.6V

- Note 1: These parameters are characterized but not tested.
 - **2:** Data in "Typ." column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 - 3: Negative current is defined as current sourced by the pin.

ICP2035

AC CHARACTERISTICS

Electrical Specifications: Standard Operating Conditions (unless otherwise stated), Supply Voltage: $2.0V \le V_{DD} \le 3.6V$, Operating temperature: $-40^{\circ}C \le T_{A} \le +85^{\circ}C$, LCCOM connected to V_{SS} , LCX Input Signal: Sinusoidal 300 mV_{PP}, Carrier Frequency = 125 kHz, **Bits <3:1>** of Configuration Register 0: LCXEN = 0, LCZEN = LCYEN = 1.

Parameters	Sym.	Min.	Typ ⁽²⁾	Max.	Units	Conditions
Input Sensitivity	V _{SENSE}	1	3.0	6	mV _{PP}	V _{DD} = 3.0V Output enable filter disabled AGCSIG = 0; MODMIN = 00 (33% modulation depth setting) Input = Continuous Wave (CW) Output = Logic level transition from low-to-high at sensitivity level for CW input.
Coil de-Q'ing Voltage - RF Limiter (R _{FLM}) must be active	V _{DE_Q}	3	_	5	V	V_{DD} = 3.0V, Force I _{IN} = 5 μA (worst case)
RF Limiter Turn-on Resistance at LCX pin	R _{FLM}	_	300	700	Ω	$V_{DD} = 2.0V, V_{IN} = 8 V_{DC}$
Sensitivity Reduction	S _{ADJ}	_	0	_	dB	V _{DD} = 3.0V
		I	-30	ŀ	dB	No sensitivity reduction selected Maximum reduction selected Monotonic increment in attenuation value from setting = 0000 to 1111 by design
Minimum Modulation Depth						
60% setting	V _{IN_MOD}	-	60	84	%	$V_{DD} = 3.0V$
33% setting		l	33	49	%	See Section 5.20 "Minimum Modulation Depth
14% setting		1	14	26	%	Requirement for Input Signal". See Modulation Depth Definition in Figure 5-5.
8%			8		%	ose medalater popul pointing in riggine e el
Carrier frequency	F _{CARRIER}	_	125	_	kHz	
Input modulation frequency	F _{MOD}	_	_	10	kHz	Input data rate with NRZ data format. $V_{DD} = 3.0V$ Minimum modulation depth setting = 33% Input conditions: Amplitude = 300 mV_{PP} Modulation depth = 100%

- Note 1: Parameter is characterized but not tested.
 - 2: Data in "Typ." column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 - 3: Required output enable filter high time must account for input path analog delays (= T_{OEH} T_{DR} + T_{DF}).
 - 4: Required output enable filter low time must account for input path analog delays (= T_{OEL} + T_{DR} T_{DF}).

AC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Standard Operating Conditions (unless otherwise stated), Supply Voltage: $2.0V \le V_{DD} \le 3.6V$, Operating temperature: $-40^{\circ}C \le T_{A} \le +85^{\circ}C$, LCCOM connected to V_{SS} , LCX Input Signal: Sinusoidal 300 mV_{PP}, Carrier Frequency = 125 kHz, **Bits <3:1>** of Configuration Register 0: LCXEN = 0, LCZEN = LCYEN = 1.

Parameters	Sym.	Min.	Typ ⁽²⁾	Max.	Units	Conditions
LCX Tuning Capacitor	C _{TUNX}	_	0	_	pF	V _{DD} = 3.0V, Config. Reg. 1, bits <6:1> Setting = 000000
		44	59	82	pF	63 pF ±30% Config. Reg. 1, bits <6:1> Setting = 111111 63 steps, approx. 1 pF/step Monotonic increment in capacitor value from setting = 000000 to 111111 by design
Q of Internal Input Tuning Capacitors	Q_C	50 ⁽¹⁾	_	_		
Demodulator Charge Time (delay time of demodulated output to rise)	T _{DR}	_	50	_	μs	V _{DD} = 3.0V Minimum modulation depth setting = 33% Input conditions: Amplitude = 300 mV _{PP} Modulation depth = 100%
Demodulator Discharge Time (delay time of demodulated output to fall)	T _{DF}	_	50	_	μs	V _{DD} = 3.0V MOD depth setting = 33% Input conditions: Amplitude = 300 mV _{PP} Modulation depth = 100%
Rise time of LFDATA	TR _{LFDATA}	_	0.5	_	μs	$V_{DD} = 3.0V$. Time is measured from 10% to 90% of amplitude
Fall time of LFDATA	TF _{LFDATA}	_	0.5	_	μs	V _{DD} = 3.0V Time is measured from 10% to 90% of amplitude
Automatic Gain Control (AGC) stabilization time (T _{AGC} + T _{PAGC})	T _{STAB}	4	_	_	ms	
AGC initialization time	T _{AGC}	_	3.5	_	ms	
High time after AGC initialization time	T _{PAGC}	_	62.5	_	μs	

Note 1: Parameter is characterized but not tested.

- 2: Data in "Typ." column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- 3: Required output enable filter high time must account for input path analog delays (= T_{OEH} T_{DR} + T_{DF}).
- 4: Required output enable filter low time must account for input path analog delays (= T_{OEL} + T_{DR} T_{DF}).

AC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Standard Operating Conditions (unless otherwise stated), Supply Voltage: $2.0V \le V_{DD} \le 3.6V$, Operating temperature: $-40^{\circ}C \le T_{A} \le +85^{\circ}C$, LCCOM connected to V_{SS} , LCX Input Signal: Sinusoidal 300 mV_{PP}, Carrier Frequency = 125 kHz, **Bits** <3:1> of Configuration Register 0: LCXEN = 0, LCZEN = LCYEN = 1.

Parameters	Sym.	Min.	Typ ⁽²⁾	Max.	Units	Conditions		
Gap time after AGC stabilization time	T _{GAP}	200	_	_	μs			
Time element of pulse	T _E	100	_	_	μs	Minimum pulse width		
Time from exiting Sleep or POR to being ready to receive signal	T _{RDY}	_	_	50 ⁽¹⁾	ms			
Minimum time AGC level must be held after receiving AGC Preserve command	T _{PRES}	5 ⁽¹⁾	_	_	ms	AGC level must not change more than 10% during T _{PRES}		
Internal RC oscillator frequency	Fosc	27	32	35.5	kHz	Internal clock trimmed at 32 kHz during test		
Inactivity Timer time-out	T _{INACT}	13.5	16	17.75	ms	512 cycles of RC oscillator @ F _{OSC}		
Alarm Timer time-out	T _{ALARM}	27	32	35.5	ms	1024 cycles of RC oscillator @ F _{OSC}		
Input Resistance (LCX)	R _{IN}	_	800 ⁽¹⁾	_	kΩ	LCCOM grounded, V _{DD} = 3V, F _{CARRIER} = 125 kHz		
Input Parasitic Capacitance (LCX)	C _{IN}	_	24 ⁽¹⁾	_	pF	LCCOM grounded, V _{DD} = 3V, F _{CARRIER} = 125 kHz		
Minimum output enable filter high time OEH (Bits Config0<8:7>)								
01 = 1 ms	T _{OEH}	32 (~1 ms)	_	_		RC oscillator = F _{OSC}		
10 = 2 ms		64 (~2 ms)	_	_	clock	(see F _{OSC} specification		
11 = 4 ms		128 (~4 ms)	_	_	count	for variations). Viewed from the pin input:		
00 = Filter Disabled		_	_	_		(Note 3)		
Minimum output enable filter low time OEL (Bits Config0<6:5>)								
00 = 1 ms	T _{OEL}	32 (~1 ms)	_	_		RC oscillator = F _{OSC}		
01 = 1 ms		32 (~1 ms)	_	_	clock	Viewed from the pin input:		
10 = 2 ms		64 (~2 ms)	_	_	count	(Note 4)		
11 = 4 ms		128 (~4 ms)	_	_				

- Note 1: Parameter is characterized but not tested.
 - 2: Data in "Typ." column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 - 3: Required output enable filter high time must account for input path analog delays (= T_{OEH} T_{DR} + T_{DF}).
 - 4: Required output enable filter low time must account for input path analog delays (= T_{OEL} + T_{DR} T_{DF}).

AC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Standard Operating Conditions (unless otherwise stated), Supply Voltage: $2.0V \le V_{DD} \le 3.6V$, Operating temperature: $-40^{\circ}C \le T_{A} \le +85^{\circ}C$, LCCOM connected to V_{SS} , LCX Input Signal: Sinusoidal 300 mV_{PP}, Carrier Frequency = 125 kHz, **Bits <3:1>** of Configuration Register 0: LCXEN = 0, LCZEN = LCYEN = 1.

Parameters	Sym.	Min.	Typ ⁽²⁾	Max.	Units	Conditions
Maximum output enable filter period						
OEH OEL TOEH TOEL	-			00 (0 ====)		DOillatan E
01 00 = 1 ms 1 ms (Filter 1)	T _{OET}	_	_	96 (~3 ms)		RC oscillator = F _{OSC}
01 01 = 1 ms 1 ms (Filter 1)		_	_	96 (~3 ms)		
01 10 = 1 ms 2 ms (Filter 2)		_	_	128 (~4 ms)		
01 11 = 1 ms 4 ms (Filter 3		_	-	192 (~6 ms)		
10 00 = 2 ms 1 ms (Filter 4)		_	_	128 (~4 ms)		
10 01 = 2 ms 1 ms (Filter 4)		_	_	128 (~4 ms)		
10 10 = 2 ms 2 ms (Filter 5)		_	-	160 (~5 ms)	.11	
10 11 = 2 ms 4 ms (Filter 6)		_	_	250 (~8 ms)	clock count	
11 00 = 4 ms 1 ms (Filter 7)		_	_	192 (~6 ms)		
11 01 = 4 ms 1 ms (Filter 7)		_	_	192 (~6 ms)		
11 10 = 4 ms 2 ms (Filter 8)		_	_	256 (~8 ms)		
11 11 = 4 ms 4 ms (Filter 9)		_	_	320 (~10 ms)		
00 xx = Filter Disabled		_	_	_		LFDATA output appears as long as input signal level is greater than V _{SENSE} .
RSSI current output	I _{RSSI}	_	0.65	2	μΑ	$V_{IN} = 37 \text{ mV}_{PP}$
		6	12	20.3	μA	V_{IN} = 370 m V_{PP}
		_	100	_	μA	V_{DD} = 3.0V, V_{IN} = 0 to 4 V_{PP} Linearly increases with input signal amplitude. Tested at V_{IN} = 37 m V_{PP} , 100 m V_{PP} , and 370 m V_{PP} at +25°C.
RSSI current linearity	ILR _{RSSI}	-15		15	%	Tested at room temperature only (see Equation 5-1 and Figure 5-7 for test method).

Note 1: Parameter is characterized but not tested.

2: Data in "Typ." column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

3: Required output enable filter high time must account for input path analog delays (= T_{OEH} - T_{DR} + T_{DF}).

4: Required output enable filter low time must account for input path analog delays (= T_{OEL} + T_{DR} - T_{DF}).

SPI TIMING

Electrical Specifications: Standard Operating Conditions (unless otherwise stated),

Supply Voltage: $2.0V \le V_{DD} \le 3.6V$, Operating temperature: $-40^{\circ}C \le T_{A} \le +85^{\circ}C$, LCX Input Signal: Sinusoidal 300 mV_{PP}, Carrier Frequency: 125 kHz, LCCOM connected to V_{SS}

Parameters	Sym	Min	Typ ⁽¹⁾	Max	Units	Conditions
SCLK Frequency	F _{SCLK}	_	_	3	MHz	
CS fall to first SCLK edge setup time	T _{CSSC}	100			ns	
SDI setup time	T_{SU}	30			ns	
SDI hold time	T_{HD}	50	_	_	ns	
SCLK high time	T _{HI}	150	_		ns	
SCLK low time	T_LO	150	_	_	ns	
SDO setup time	T_{DO}	_	_	150	ns	
SCLK last edge to CS rise setup time	T _{SCCS}	100	_	_	ns	
CS high time	T _{CSH}	500	_	_	ns	
CS rise to SCLK edge setup time	T _{CS1}	50	_	_	ns	
SCLK edge to CS fall setup time	T _{CS0}	50	_		ns	SCLK edge when $\overline{\text{CS}}$ is high
Rise time of SPI data (SPI Read command)	TR _{SPI}		10		ns	$V_{DD} = 3.0V$; time is measured from 10% to 90% of amplitude
Fall time of SPI data (SPI Read command)	TF _{SPI}	_	10	_	ns	$V_{DD} = 3.0V$; time is measured from 90% to 10% of amplitude

Note 1: Data in "Typ." column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V _{DD} = 2.0V to 3.6V, V _{SS} = GND.								
Parameters	Symbol	Min	Typical	Max	Units	Conditions		
Temperature Ranges								
Specified Temperature Range	T _A	-40	_	+85	°C			
Operating Temperature Range	T _A	-40	_	+125	°C			
Storage Temperature Range	T _A	-65	_	+150	°C			
Thermal Package Resistances								
Thermal Resistance, 14L-TSSOP	θ_{JA}	_	100	_	°C/W			

MCP2035

NOTES:

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

50.0%

Note: Unless otherwise indicated, V_{DD} = 3V, Carrier Frequency = 125 kHz, LCCOM = connected to V_{SS} , T_A = +25°C.

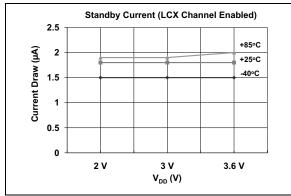
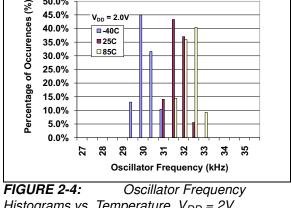



FIGURE 2-1: Typical Standby Current.

Histograms vs. Temperature, $V_{DD} = 2V$.

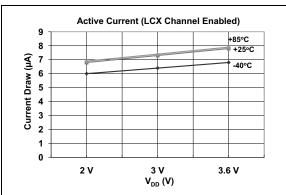


FIGURE 2-2: Typical Active Current.

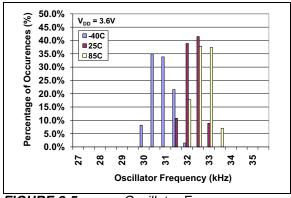


FIGURE 2-5: Oscillator Frequency Histograms vs. Temperature at $V_{DD} = 3V$.

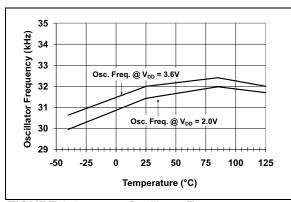


FIGURE 2-3: Oscillator Frequency vs. Temperature, $V_{DD} = 3.6V$ and 2.0V.

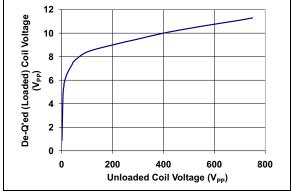


FIGURE 2-6: De-Q'ed Voltage vs. Unloaded Coil Voltage.

Note: Unless otherwise indicated, V_{DD} = 3V, Carrier Frequency = 125 kHz, LCCOM = connected to V_{SS}.

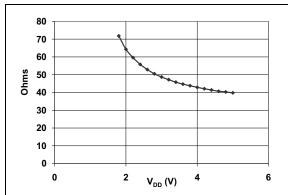


FIGURE 2-7: Modulation Transistor-on Resistance (+25°C).

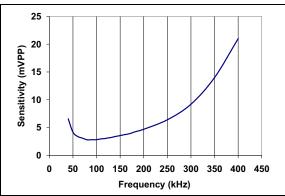
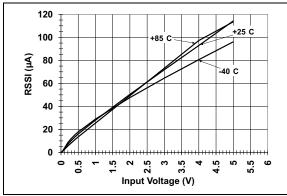
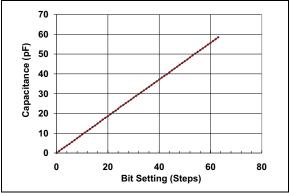
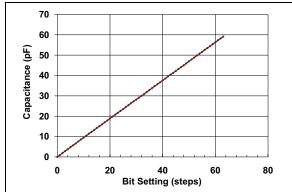


FIGURE 2-8: Input Channel Sensitivity vs. Bandwidth.

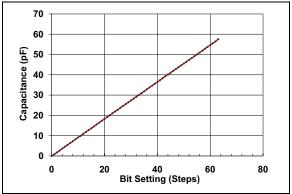

FIGURE 2-9: Typical RSSI Output Current vs. Input Signal Strength.

FIGURE 2-10: Typical Tuned Capacitance Value vs. Configuration Register Bit Setting $(V_{DD} = 3V, Temperature = +25^{\circ}C)$.

FIGURE 2-11: Typical Tuned Capacitance Value vs. Configuration Register Bit Setting $(V_{DD} = 3V, Temperature = -40 ^{\circ}C)$.

FIGURE 2-12: Typical Tuned Capacitance Value vs. Configuration Register Bit Setting $(V_{DD} = 3V, Temperature = +85^{\circ}C)$.

Note: Unless otherwise indicated, V_{DD} = 3V, Carrier Frequency = 125 kHz, LCCOM = connected to V_{SS} .

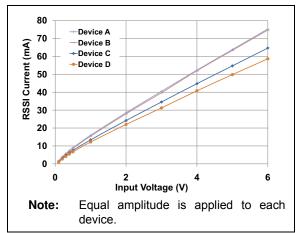
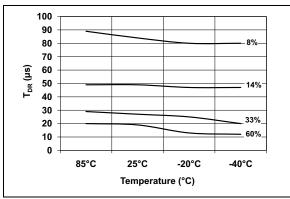
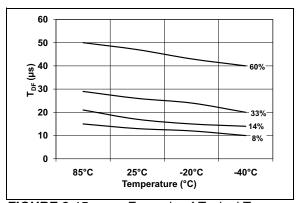




FIGURE 2-13: Examples of RSSI Output Current Variations Between Device to Device at Room Temperature.

FIGURE 2-14: Example of Typical T_{DR} Changes over Temperature. Input Signal Condition: Amplitude = 300 mV_{PR} Modulation Depth = 100 %.

FIGURE 2-15: Example of Typical T_{DF} Changes over Temperature. Input Signal Condition: Amplitude = 300 mV_{PP} Modulation Depth = 100 %.

2.1 Performance Plots

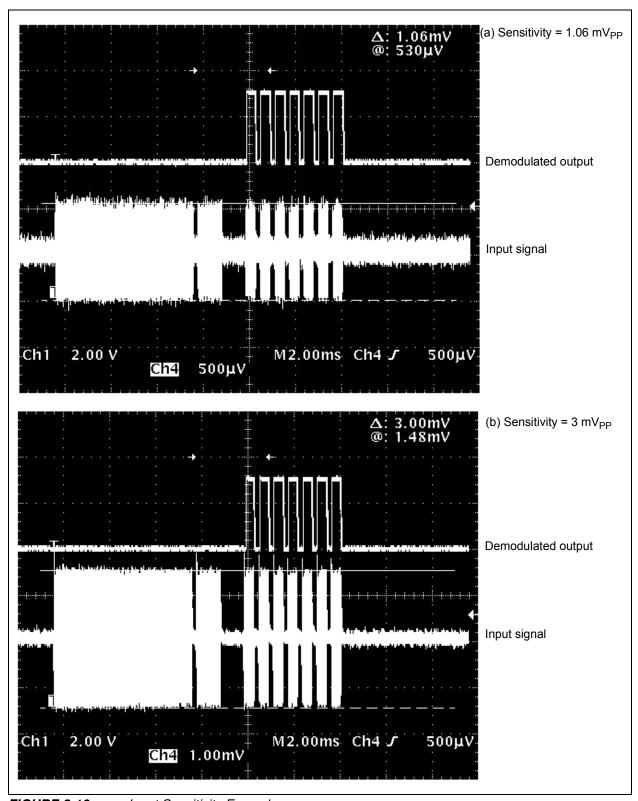
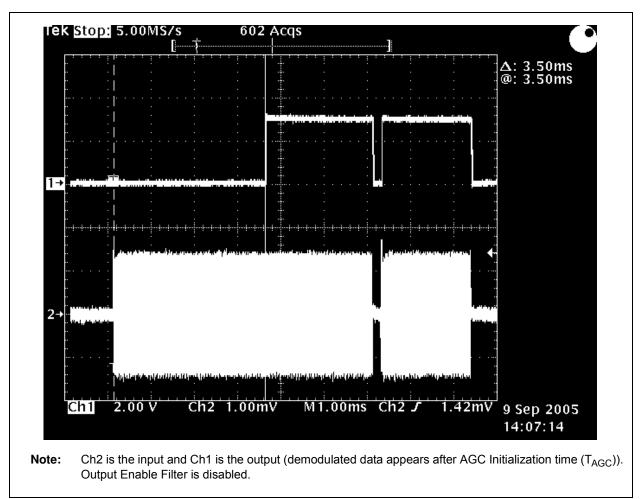



FIGURE 2-16: Input Sensitivity Example.

FIGURE 2-17: Typical AGC Initialization Time at Room Temperature ($V_{DD} = 3V$).

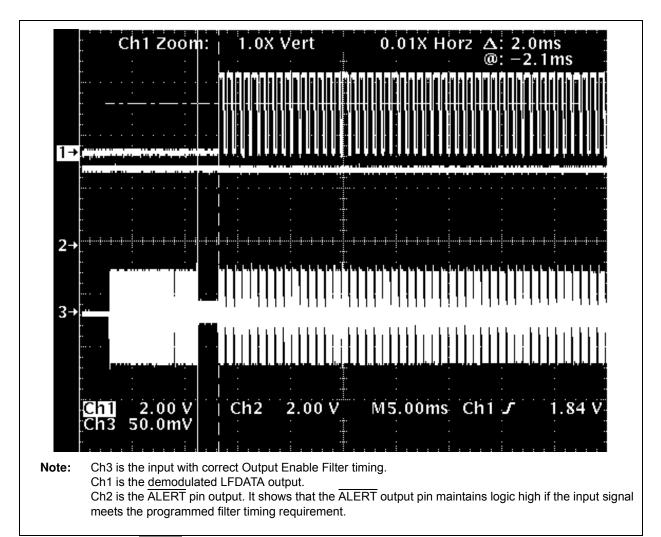
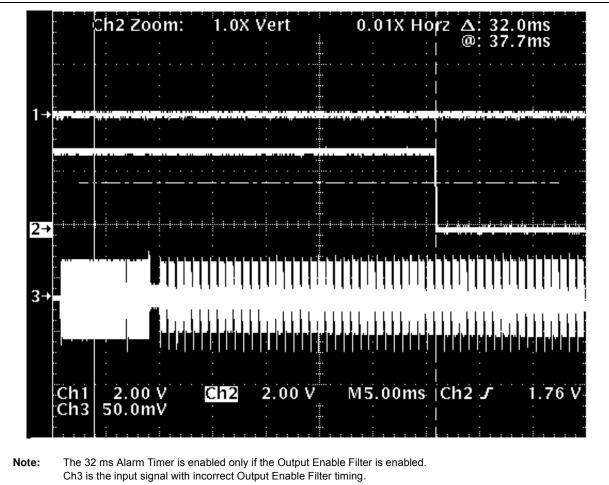
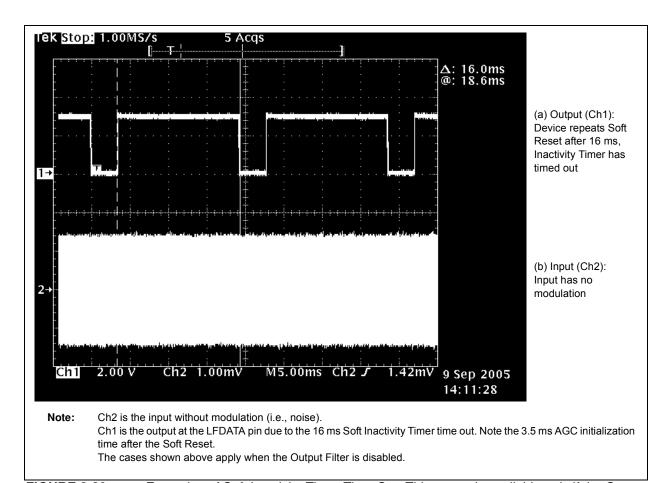



FIGURE 2-18: ALERT Output Example: With No Parity Error and no 32 ms Alarm Timer Time-out.



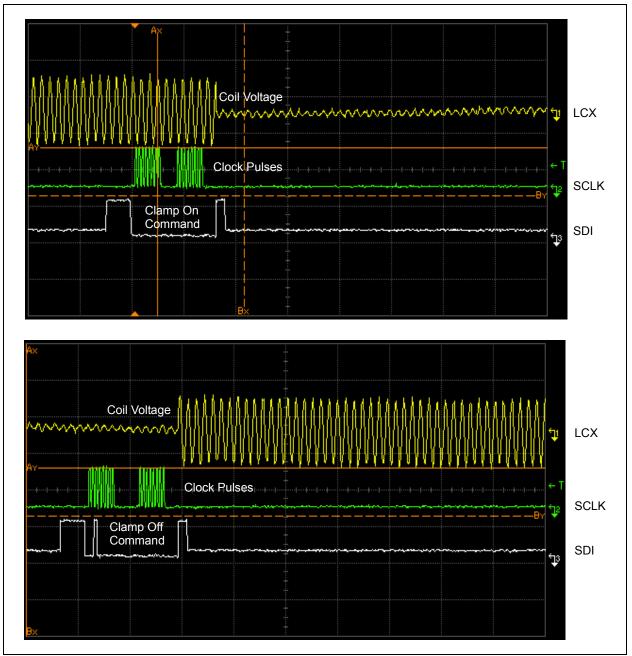
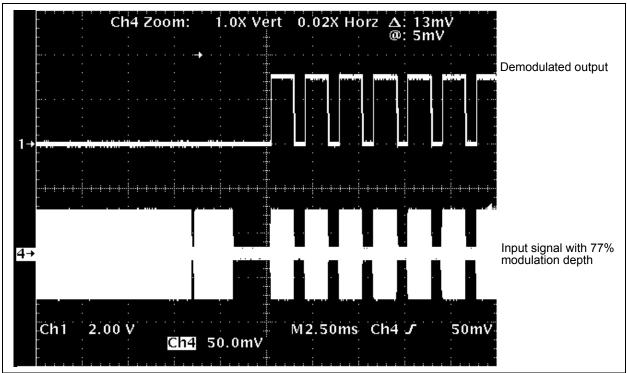
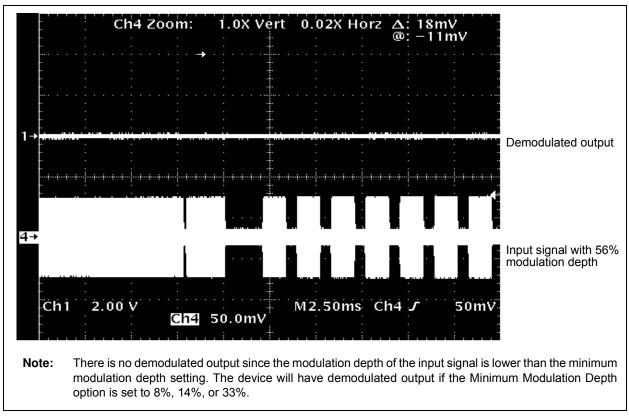
Ch1 is the demodulated LFDATA output. No output since the input filter is not matched.

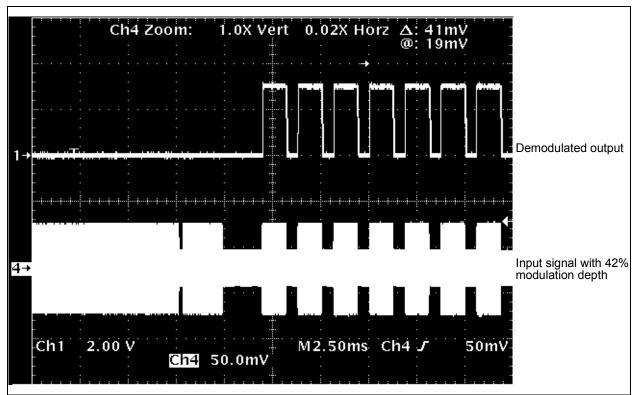
Ch2 is the $\overline{\text{ALERT}}$ output.

The output shows that the logic level changes after 32 ms from the AGC initialization time (T_{AGC}) if the input signal does not meet the programmed filter timing requirement.

FIGURE 2-19: ALERT Output Example: With 32 ms Alarm Timer Timed Out.

FIGURE 2-20: Examples of Soft Inactivity Timer Time Out: This output is available only if the Output Enable Filter is disabled.


FIGURE 2-21: Examples of Clamp-On and Clamp-Off Commands and Changes in Coil Voltage.

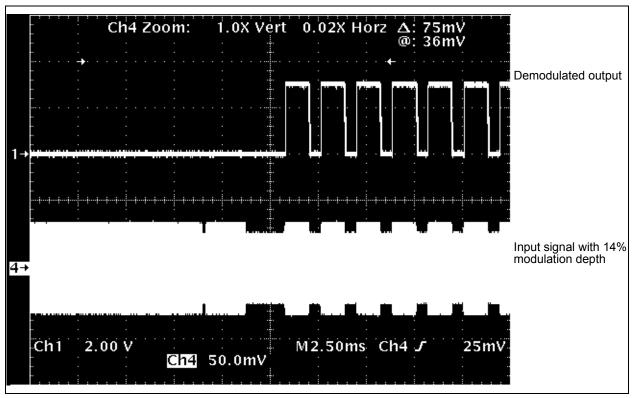

FIGURE 2-22: Example of Minimum Modulation Depth Setting: Modulation Depth of Input Signal = 77%, Minimum Modulation Depth (MODMIN) Setting = 60%.

FIGURE 2-23: Example of Minimum Modulation Depth Setting: Modulation Depth of Input Signal = 56%, Minimum Modulation Depth (MODMIN) Setting = 60%.

FIGURE 2-24: Example of Minimum Modulation Depth Setting: Modulation Depth of Input Signal = 42%, Minimum Modulation Depth (MODMIN) Setting = 33%.

FIGURE 2-25: Example of Minimum Modulation Depth Setting: Modulation Depth of Input Signal = 14%, Minimum Modulation Depth (MODMIN) Setting = 14%.

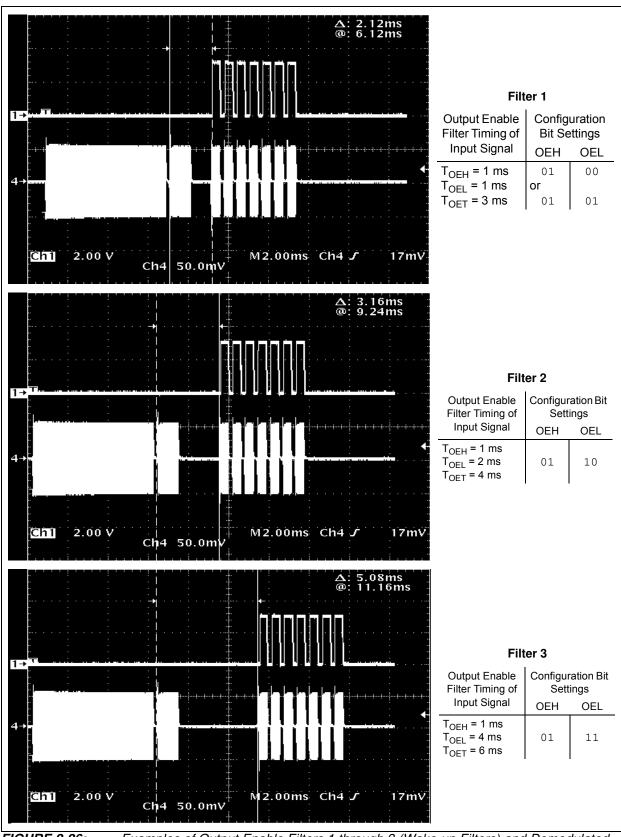


FIGURE 2-26: Examples of Output Enable Filters 1 through 3 (Wake-up Filters) and Demodulated Outputs.

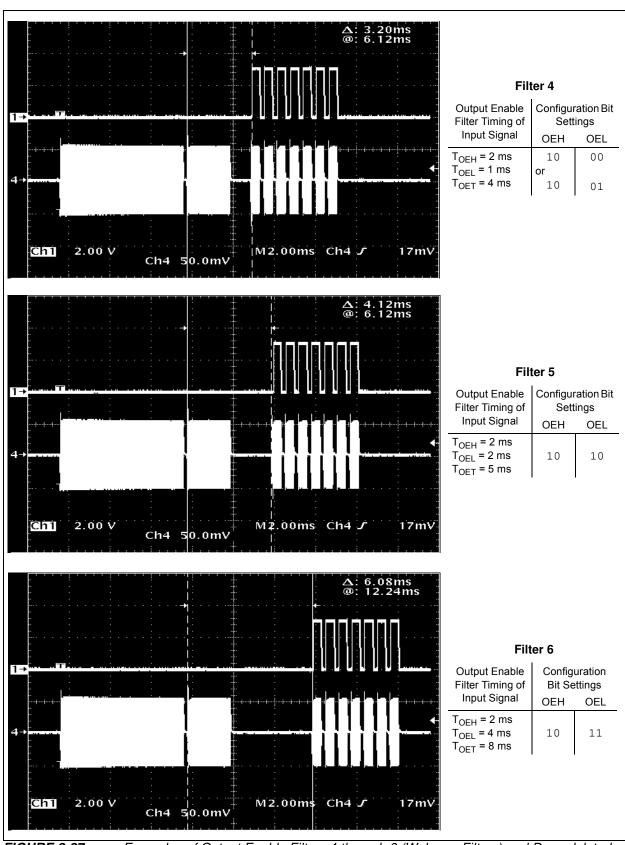


FIGURE 2-27: Examples of Output Enable Filters 4 through 6 (Wake-up Filters) and Demodulated Outputs.

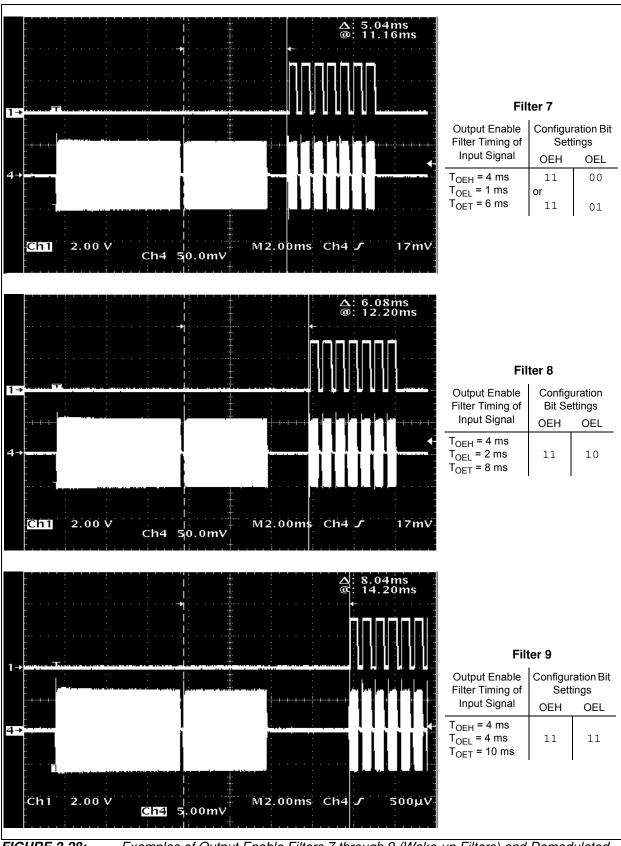


FIGURE 2-28: Examples of Output Enable Filters 7 through 9 (Wake-up Filters) and Demodulated Outputs.

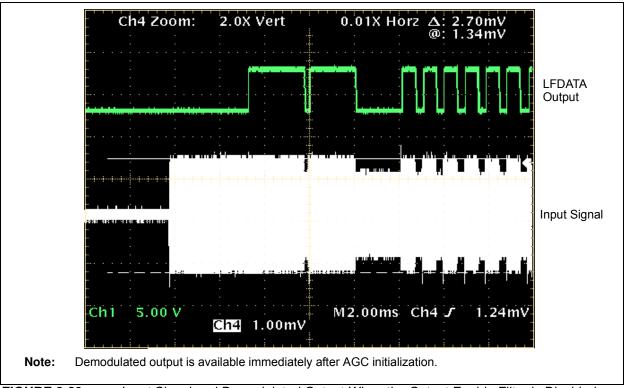
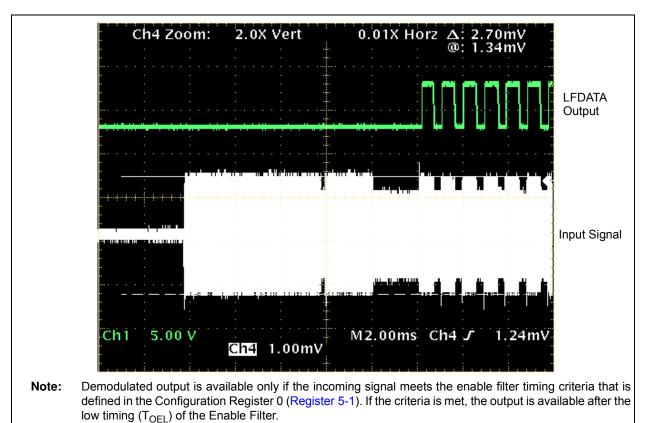



FIGURE 2-29: Input Signal and Demodulated Output When the Output Enable Filter is Disabled.

FIGURE 2-30: Input Signal and Demodulator Output When Output Enable Filter is Enabled and Input Meets Filter Timing Requirements.