
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

 2011-2017 Microchip Technology Inc. DS20002228D-page 1

MCP2200

Features

Universal Serial Bus (USB)

� Supports Full-Speed USB (12 Mb/s)

� Implements USB Protocol Composite Device:

- Communication Device Class (CDC) for

Communications and Configuration

- Human Interface Device (HID) for I/O control

� 128-Byte Buffer to Handle Data Throughput at

Any UART Baud Rate:

- 64-byte transmit

- 64-byte receive

� Fully Configurable VID and PID Assignments and

String Descriptors

� Bus-Powered or Self-Powered

� USB 2.0 Compliant: TID 40001150

USB Driver and Software Support

� Uses Standard Windows® Drivers for Virtual Com

Port (VCP): Windows XP (SP2 or later), Windows

Vista, Windows 7, Windows 8, Windows 8.1 and

Windows 10

� Configuration Utility for Initial Configuration

Universal Asynchronous Receiver/Transmitter

(UART)

� Responds to SET_LINE_CODING Commands to

Dynamically Change Baud Rates

� Supports Baud Rates: 300-1000k

� Hardware Flow Control

� UART Signal Polarity Option

General Purpose Input/Output (GPIO) Pins

� Eight General Purpose I/O pins

EEPROM

� 256 Bytes of User EEPROM

Other

� USB Activity LED Outputs (TxLED and RxLED)

� SSPND Output Pin

� USBCFG Output Pin (indicates when the enumer-
ation is completed)

� Operating Voltage: 3.0V-5.5V

� Oscillator Input: 12 MHz

� Electrostatic Discharge (ESD) Protection: >4 kV
Human Body Model (HBM)

� Industrial (I) Operating Temperature: –40°C to
+85°C

Package Types

The device is offered in the following packages:

� 20-lead VQFN (5x5 mm)

� 20-lead SOIC

� 20-lead SSOP

2

MCP2200

SOIC, SSOP

OSC2

OSC1

RST

1

2

3

4

20

19

18

17

VDD VSS

D+

D-

Vusb

GP7/TxLED 5 16 GP0/SSPND

GP6/RxLED 6 15

GP5 7 14 GP2

GP1/USBCFG

MCP2200

5x5 VQFN*

GP6/RxLED

GP5

RST D-

Vusb

G
P

3

GP0/SSPND

T
x

R
T

S

R
x

GP1/USBCFG

O
S

C
2

O
S

C
1

V
D

D

V
S

S

GP7/TxLED
EP

20

1

19 18 17

3

4

15

14

13

12

6 7 8 9

21

13

12

11

CTS

Rx

RTS

GP4 8

GP3 9

Tx 10

D
+

16

GP4 GP25 11

C
T

S

10

* Includes Exposed Thermal Pad (EP); see Table 1-1.

USB 2.0 to UART Protocol Converter with GPIO

MCP2200

DS20002228D-page 2  2011-2017 Microchip Technology Inc.

Block Diagram

UART
Controller USB Protocol

Controller
USB

Transceiver

3.3V
LDO

Configuration &
Control Registers

OSC Reset

Control

USB
Clock

State
Clock

GPIO

Baud
Generator

VSS

VUSB

RSTVSS VDD

Rx

Tx

CTS

RTS

D+

D-

OSC1 OSC2

USB LEDs

TxLED RxLEDGP0
GP1

GP2
GP3

GP4
GP5

256 Byte
EEPROM

 2011-2017 Microchip Technology Inc. DS20002228D-page 3

MCP2200

1.0 FUNCTIONAL DESCRIPTION

The MCP2200 is a USB-to-UART serial converter that

enables USB connectivity in applications that have a

UART interface. The device reduces external compo-

nents by integrating the USB termination resistors. The

MCP2200 also has 256 bytes of integrated user

EEPROM.

The MCP2200 has eight general purpose input/output

pins. Four pins have alternate functions to indicate

USB and communication status. See Table 1-1 and

Section 1.6 “GPIO Module” for details about the pin

functions.

TABLE 1-1: PINOUT DESCRIPTION

Pin

Name
VQFN

SSOP,

SOIC

Pin

Type
Standard Function Alternate Function

GP0/SSPND 13 16 I/O General purpose I/O USB suspend status pin

(refer to Section 1.6.1.1 “SSPND

Pin Function”)

GP1/USB-

CFG

12 15 I/O General purpose I/O USB configuration status pin

(refer to Section 1.6.1.2 “USBCFG

Pin Function”)

GP2 11 14 I/O General purpose I/O

GP3 6 9 I/O General purpose I/O

GP4 5 8 I/O General purpose I/O

GP5 4 7 I/O General purpose I/O

GP6/RxLED 3 6 I/O General purpose I/O USB receive activity LED output

(refer to Section 1.6.1.3 “RxLED

Pin Function (IN Message)”)

GP7/TxLED 2 5 I/O General purpose I/O USB transmit activity LED output

(refer to Section 1.6.1.4 “TxLED

Pin Function (OUT Message)”)

CTS 10 13 I Hardware flow control “Clear to Send”

input signal

RTS 8 11 O Hardware flow control “Request to Send”

output signal

Rx 9 12 I USART RX input

Tx 7 10 O USART TX output

RST 1 4 I Reset input must be externally biased

VDD 18 1 P Power

VSS 17 20 P Ground

OSC1 19 2 I Oscillator input

OSC2 20 3 O Oscillator output

D+ 16 19 I/O USB D+

D- 15 18 I/O USB D-

Vusb 14 17 P USB power pin (internally connected to

3.3V). Should be locally bypassed with a

high-quality ceramic capacitor.

EP 21 — — Exposed Thermal Pad (EP). Do not

electrically connect.

MCP2200

DS20002228D-page 4  2011-2017 Microchip Technology Inc.

1.1 Supported Operating Systems

Windows XP (SP2 and later), Windows Vista, Windows

7, Windows 8, Windows 8.1 and Windows 10 operating

systems are supported.

1.1.1 ENUMERATION

The MCP2200 will enumerate as a USB device after

Power-on Reset (POR). The device enumerates as

both a Human Interface Device (HID) for I/O control,

and a Virtual Com Port (VCP).

1.1.1.1 Human Interface Device (HID)

The MCP2200 enumerates as an HID, so the device

can be configured and the I/O can be controlled. A DLL

that facilitates I/O control through a custom interface is

supplied by Microchip.

1.1.1.2 Virtual Com Port (VCP)

The VCP enumeration implements the USB-to-UART

data translation.

1.2 Control Module

The control module is the heart of the MCP2200. All

other modules are tied together and controlled via the

control module. The control module manages the data

transfers between the USB and the UART, as well as

the command requests generated by the USB host

controller and the commands for controlling the

function of the UART and I/O.

1.2.1 SERIAL INTERFACE

The control module interfaces to the UART and USB

modules.

1.2.2 INTERFACING TO THE DEVICE

The MCP2200 can be accessed for reading and writing

via USB host commands. The device cannot be

accessed and controlled via the UART interface.

1.3 UART Interface

The MCP2200 UART interface consists of the Tx and

Rx data signals and the RTS/CTS flow control pins.

The UART is configurable for several baud rates. The

available baud rates are listed in Table 1-3.

1.3.1 INITIAL CONFIGURATION

The default UART configuration is 19200, 8, N, 1. The

default start-up baud rate can be changed using the

Microchip-supplied configuration PC tool.

Alternatively, a custom configuration tool can be

created using the Microchip-supplied DLL to set the

baud rate as well as other parameters. See Section 2.0

“Configuration” for details.

1.3.2 GET/SET LINE CODING

The GET_LINE_CODING and SET_LINE_CODING

commands are used to read and set the UART

parameters while in operation. For example,

HyperTerminal sends the SET_LINE_COMMAND when

connecting to the port. The MCP2200 responds by

setting the baud rate only. The other parameters (data

bits, parity, stop bits) remain unchanged.

1.3.2.1 Rounding Errors

The primary baud rate setting (with the rounding errors)

is shown in Table 1-3. If baud rates other than the ones

shown in the table are used, the error percentage can

be calculated using Equation 1-1 to find the actual

baud rate.

TABLE 1-3: UART PRIMARY BAUD

RATES

TABLE 1-2: UART CONFIGURATIONS

Parameter Configuration

Primary Baud Rates See Table 1-3

Data Bits 8

Parity N

Stop Bits 1

Desired Rate Actual rate % Error

300 300 0.00%

1200 1200 0.00%

2400 2400 0.00%

4800 4800 0.00%

9600 9600 0.00%

19200 19200 0.00%

38400 38339 0.16%

57600 57692 0.16%

115200 115385 0.16%

230400 230769 0.16%

460800 461538 0.16%

921600 923077 0.16%

 2011-2017 Microchip Technology Inc. DS20002228D-page 5

MCP2200

EQUATION 1-1: SOLVING FOR ACTUAL

BAUD RATE

1.3.3 CUSTOM BAUD RATES

Custom baud rates are configured by sending the

SET_LINE_CODING USB command, or by using the

DLL. See Section 2.0 “Configuration” for more

information.

1.3.4 HARDWARE FLOW CONTROL

Hardware flow control uses the RTS and CTS pins as

a handshake between two devices. The RTS pin of

one device is typically connected to the CTS of the

other device.

RTS is an active-low output that notifies the other

device when it is ready to receive data by driving the pin

low. The MCP2200 trip point for deasserting RTS (high)

is 63 characters. This is one character short of “buffer

full”.

CTS is an active-low input that notifies the MCP2200

when it is ready to send data. The MCP2200 will check

CTS just before loading and sending UART data. If the

pin is asserted during a transfer, the transfer will

continue. Refer to Figure 1-1.

FIGURE 1-1: RTS/CTS CONNECTIONS

EXAMPLE

1.3.4.1 Flow Control Disabled

The buffer pointer does not increment (or reset to

zero) if the buffer is full. Therefore, if hardware flow

control is not enabled and an overflow occurs (i.e.,

65 unprocessed characters received), the new data

overwrites the last position in the buffer.

1.4 USB Protocol Controller

The USB controller in the MCP2200 is full-speed USB

2.0 compliant.

� Composite device (CDC + HID):

- CDC: USB-to-UART communications

- HID: I/O control, EEPROM access and initial

configuration

� 128-byte buffer to handle data throughput at any

UART baud rate:

- 64-byte transmit

- 64-byte receive

� Fully configurable VID and PID assignments and

descriptors (stored on-chip)

� Bus-powered or self-powered

1.4.1 DESCRIPTORS

During configuration, the supplied PC interface stores

the descriptors in the MCP2200.

1.4.2 SUSPEND AND RESUME

The USB Suspend and Resume signals are supported

for power management of the MCP2200. The device

enters Suspend mode when “suspend signaling” is

detected on the bus.

The MCP2200 exits Suspend mode when any of the

following events occur:

1. “Resume signaling” is detected or generated.

2. A USB “Reset” signal is detected.

3. A device reset occurs.

1.5 USB Transceiver

The MCP2200 has a built-in, full-speed USB 2.0

transceiver internally connected to the USB module.

The USB transceiver obtains power from the VUSB pin,

which is internally connected to the 3.3V regulator. The

best electrical signal quality is obtained when VUSB is

locally bypassed with a high-quality ceramic capacitor.

1.5.1 INTERNAL PULL-UP RESISTORS

The MCP2200 devices have built-in pull-up resistors

designed to meet the requirements for full-speed USB.

1.5.2 MCP2200 POWER OPTIONS

The following are the main power options for the

MCP2200:

� USB Bus-Powered (5V)

� 3.3V Self-Powered

ActualRate
12 MHz

int x 
-------------------=

Where:

x
12 MHz

Desired Baud
---------------------------------=

RTS RTS

CTS CTS

I am ready

to receive

I’ll transmit

if okay

I am ready

to receive

I’ll transmit

if okay

MCU MCP2200

MCP2200

DS20002228D-page 6  2011-2017 Microchip Technology Inc.

1.5.2.1 Internal Power Supply Details

MCP2200 offers various options for power supply. To

meet the required USB signaling levels, the MCP2200

device incorporates an internal LDO used solely by the

USB transceiver in order to present the correct D+/D-

voltage levels.

Figure 1-2 shows the internal connections of the USB

transceiver LDO in relation to the VDD power supply

rail. The output of the USB transceiver LDO is tied to

the VUSB line. A capacitor connected to the VUSB pin is

required if the USB transceiver LDO provides the 3.3V

supply to the transceiver.

FIGURE 1-2: MCP2200 INTERNAL

POWER SUPPLY DETAILS

The provided VDD voltage has a direct influence on the

voltage levels present on the GPIO pins (Rx/Tx and

RTS/CTS). When VDD is 5V, all of these pins will have

a logical ‘1’ around 5V with the variations specified in

Section 3.1 “DC Characteristics”.

For applications that require a 3.3V logical ‘1’ level,

VDD must be connected to a power supply providing

3.3V voltage. In this case, the internal USB transceiver

LDO cannot provide the required 3.3V of power. It is

necessary to also connect the VUSB pin to the 3.3V

power supply rail. This way, the USB transceiver is

powered-up directly from the 3.3V power supply.

1.5.2.2 USB Bus-Powered (5V)

In Bus Power Only mode, all power for the application

is drawn from the USB (Figure 1-3). This is effectively

the simplest power method for the device.

FIGURE 1-3: BUS POWER ONLY

In order to meet the inrush current requirements of the

USB 2.0 specifications, the total effective capacitance

appearing across VBUS and ground must be no more

than 10 µF. If it is not more than 10 µF, some kind of

inrush current limiting is required. For more details on

inrush current limiting, consider the latest version of the

“Universal Serial Bus Specification”.

According to the USB 2.0 specification, all USB devices

must also support a low-power Suspend mode. In the

USB Suspend mode, devices must consume no more

than 500 µA (or 2.5 mA for high-powered devices that

are remote wake-up capable) from the 5V VBUS line of

the USB cable.

The host signals the USB device to enter Suspend

mode by stopping all USB traffic to that device for more

than 3 ms.

The USB bus provides a 5V voltage. However, the USB

transceiver requires 3.3V for the signaling (on the D+

and D- lines).

During USB Suspend mode, the D+ or D- pull-up

resistor must remain active, which will consume some

of the allowed suspended current budget (500 µA/

2.5 mA). The VUSB pin is required to have an external

bypass capacitor. It is recommended that the capacitor

be a ceramic capacitor between 0.22 µF. and 0.47 µF.

Figure 1-4 shows a circuit where MCP2200’s internal

LDO is used to provide 3.3V to the USB transceiver.

The voltage on the VDD affects the voltage levels onto

the GPIO pins (Rx/Tx and RTS/CTS). With VDD at 5V,

these pins will have a logic ‘1’ of 5V with the variations

specified in Section 3.1 “DC Characteristics”.

LDO
3.3V

USB

Transceiver

D+

VDD

VUSB

D-

IN

OUT

VDD

VUSB

VSS

VBUS

 2011-2017 Microchip Technology Inc. DS20002228D-page 7

MCP2200

FIGURE 1-4: TYPICAL POWER SUPPLY

OPTION USING THE 5V

PROVIDED BY THE USB

1.5.2.3 3.3V Self-Powered

Typically, many embedded applications are using 3.3V

power supplies. When such an option is available in the

target system, MCP2200 can be powered up from the

existing 3.3V power supply rail. The typical connections

for the MCP2200 are shown in Figure 1-5.

In this example, the MCP2200 has both VDD and VUSB

lines tied to the 3.3V rail. These tied connections

disable the internal USB transceiver LDO of the

MCP2200 to regulate the power supply on VUSB pin.

Another consequence is that the ‘1’ logical level on the

GPIO pins will be at the 3.3V level, in accordance with

the variations specified in Section 3.1 “DC

Characteristics”.

FIGURE 1-5: USING AN EXTERNALLY

PROVIDED 3.3V POWER

SUPPLY

1.6 GPIO Module

The GPIO Module is a standard 8-bit I/O port.

1.6.1 CONFIGURABLE PIN FUNCTIONS

The pins can be configured as:

� GPIO – individually configurable general purpose

input or output

� SSPND – USB Suspend state

� USBCFG – indicates USB configuration status

� RxLED – indicates USB receive traffic

� TxLED – indicates USB transmit traffic

1.6.1.1 SSPND Pin Function

The SSPND pin (if enabled) reflects the USB state

(Suspend/Resume). The pin is active-low when the

Suspend state has been issued by the USB host.

Likewise, the pin drives ‘high’ after the Resume state is

achieved.

This pin allows the application to go into low power

mode when USB communication is suspended, and

switches to a full active state when USB activity is

resumed.

1.6.1.2 USBCFG Pin Function

The USBCFG pin (if enabled) starts out ‘low’ during

power-up or after Reset, and goes ‘high’ after the

device successfully configures to the USB. The pin will

go ‘low’ when in Suspend mode and ‘high’ when the

USB resumes.

LDO
3.3V

USB

Transceiver

D+

VDD

VUSB

D-

IN

OUT

5V (USB Bus)
or external
power supply

LDO
3.3V

D+

VDD

VUSB

D-

IN

OUT

5V (USB Bus)
or external
power supply

External

USB

Transceiver

3.3V
LDO

MCP2200

DS20002228D-page 8  2011-2017 Microchip Technology Inc.

1.6.1.3 RxLED Pin Function (IN Message)

The ‘Rx’ in the pin name refers to the USB host. The

RxLED pin is an indicator for USB ‘IN’ messages.

This pin will either pulse low for a period of time

(configurable for ~100 ms or ~200 ms), or toggle to the

opposite state for every message received

(IN message) by the USB host. This allows the

application to count messages or provide a visual

indication of USB traffic.

1.6.1.4 TxLED Pin Function (OUT Message)

The ‘Tx’ in the pin name refers to the USB host. The

TxLED pin is an indicator for USB ‘OUT’ messages.

This pin will either pulse low for a period of time

(configurable for ~100 ms or ~200 ms), or toggle to the

opposite state for every message transmitted (OUT

message) by the USB host. This allows the application

to count messages or provide a visual indication of

USB traffic.

1.7 EEPROM Module

The EEPROM module is a 256-byte array of nonvola-

tile memory. The memory locations are accessed for

read/write operations via USB host commands. Refer

to Section 2.0 “Configuration” for details on accessing

the EEPROM. The memory cells for data EEPROM are

rated to endure thousands of erase/write cycles, up to

100K for EEPROM.

Data retention without refresh is conservatively

estimated to be greater than 40 years.

The host should wait for the write cycle to complete and

then verify the write by reading the byte(s).

1.8 RESET/POR

1.8.1 RESET PIN

The RST pin provides a method for triggering an

external Reset of the device. A Reset is generated by

holding the pin low. These devices have a noise filter in

the Reset path which detects and ignores small pulses.

1.8.2 POWER-ON RESET (POR)

A POR pulse is generated on-chip whenever VDD rises

above a certain threshold. This allows the device to

start in the initialized state when VDD is adequate for

operation.

To take advantage of the POR circuitry, tie the RST pin

through a resistor (1 kΩ to 10 kΩ) to VDD. This will

eliminate external RC components usually needed to

create a POR delay.

In the self-powered configuration, it is recommended to

tie the RST pin to the VBUS line of the USB connector,

as in Figure 1-6.

FIGURE 1-6: CONNECTING THE RST

PIN IN A SELF-POWERED

CONFIGURATION

(RECOMMENDED)

When the device starts normal operation (i.e., exits the

Reset condition), device operating parameters

(voltage, frequency, temperature, etc.) must be met to

ensure operation. If these conditions are not achieved,

the device must be held in Reset until the operating

conditions are met.

RST

VBUS

VDD

VDD

 2011-2017 Microchip Technology Inc. DS20002228D-page 9

MCP2200

1.9 Oscillator

The input clock must be 12 MHz to provide the proper

frequency for the USB module.

USB full speed is defined as 12 Mb/s. The clock input

accuracy is ±0.25% (2,500 ppm maximum).

FIGURE 1-7: QUARTZ CRYSTAL

OPERATION

FIGURE 1-8: CERAMIC RESONATOR

OPERATION

Quartz Crystal

12 MHz

OSC1

OSC2RS
(1)

RF
(2)

MCP2200

Note 1: A series resistor (RS) may be required

for quartz crystals with high drive level.

2: The value of RF is typically between

2 M to 10 M..

Example: Murata®
CSTCE12M0G15L

OSC1

OSC2

Resonator
12 MHz

MCP2200

MCP2200

DS20002228D-page 10  2011-2017 Microchip Technology Inc.

2.0 CONFIGURATION

The MCP2200 is configured by writing special

commands using the HID interface. Configuration can

be achieved using the configuration utility provided by

Microchip. Alternatively, a custom utility can be

developed by using the DLL available on the MCP2200

product page.

2.1 Configuration Utility

The configuration utility provided by Microchip allows

the user to configure the MCP2200 to custom defaults.

The configuration utility (shown in Figure 2-1) connects

to the device’s HID interface, where all of the

configurable features can be set.

2.2 Serial String

The MCP2200 is supplied from the factory with a

serialized USB serial string.

TABLE 2-1: CONFIGURATION DESCRIPTIONS

Configuration Name Description

Vendor ID (0x04D8) The USB vendor identification assigned to Microchip by the USB consortium.

Product ID (0x00DF) Device ID assigned by Microchip. The device can be used as-is, or Microchip can

assign a custom PID by request.

Baud Rate Sets the UART baud rate using a list of primary baud rates. See the UART

section for details on setting non-primary baud rates.

IO Config Individually configures the I/O to inputs or outputs.

IO Default Individually configures the output default state for pins configured as outputs.

Tx/Rx LEDs Enables/disables the GP6 and GP7 pins to function as USB traffic indicators.

Pins are active-low when configured as traffic indicators.

Hardware Flow Control Enables/disables CTS and RTS flow control.

USBCFG Pin Enables/disables the GP1 pin as a USB configuration status indicator.

Suspend Pin Enables/disables the GP0 pin as a USB suspend status pin.

Invert Sense Enables/disables the UART lines states:

- Normal – Tx/Rx idle-high; CTS/RTS active-low

- Inverted – Tx/Rx idle-low; CTS/RTS active-high

Manufacturer String USB manufacturer string.

Product String USB product string.

 2011-2017 Microchip Technology Inc. DS20002228D-page 11

MCP2200

FIGURE 2-1: CONFIGURATION UTILITY

MCP2200

DS20002228D-page 12  2011-2017 Microchip Technology Inc.

2.3 Simple Configuration and I/O DLL

To help the user develop a custom configurator,

Microchip provides a DLL that uses Microsoft®.NET

Framework 3.5. There is documentation about drivers

and utilities on the MCP2200 product page at

www.microchip.com (in the Software section) with

information on associating the DLL with a Visual C++

project.

2.3.1 SIMPLE I/O DLL CALLS

Table 2-2 lists the functions provided by the DLL to

allow the configuration of the device and control of the

I/O.

TABLE 2-2: CONFIGURATION FUNCTIONS

Category and Function Name

Initialization (Note 1)

void InitMCP2200(VID, PID)

Configuration (Note 2)

bool ConfigureIO(mask)

bool ConfigureIoDefaultOutput(mask, defaultGpioOutputValue)

bool fnRxLED (OFF/TOGGLE/BLINKSLOW/BLINKFAST)

bool fnTxLED (OFF/TOGGLE/BLINKSLOW/BLINKFAST)

bool fnHardwareFlowControl (ON/OFF)

bool fnULoad(ON/OFF)

bool fnSuspend (ON/OFF)

bool ConfigureMCP2200(mask, baudrate, RxLedMode, TxLedMode, flowCtrl, ULoad, suspend)

bool ConfigureIO(mask)

Miscellaneous

String^ GetDeviceInfo(deviceIndex)

unsigned int GetNoOfDevices()

int GetSelectedDevice()

String^ GetSelectedDeviceInfo()

bool IsConnected()

int SelectDevice(uiDeviceNo)

int ReadEEPROM(uiEEPAddress)

int WriteEEPROM(uiEEPAddress, ucValue)

I/O Control

bool ClearPin(pinnumber)

bool SetPin(pinnumber)

bool ReadPin(pinnumber, *pinvalue)

int ReadPinValue(pinnumber)

bool ReadPort(*portValue)

int ReadPortValue()

bool WritePort(portValue)

Summary

bool SimpleIOClass::ClearPin(unsigned int pin) Section 2.3.1.1

bool SimpleIOClass::ConfigureIO (unsigned char IOMap) Section 2.3.1.2

bool SimpleIOClass::ConfigureIoDefaultOutput(unsigned char ucIoMap, unsigned char ucDefValue

) Section 2.3.1.3

bool SimpleIOClass::ConfigureMCP2200 (unsigned char IOMap, unsigned long BaudRateParam, unsigned

int RxLEDMode, unsigned int TxLEDMode, bool FLOW, bool ULOAD,bool SSPND) Section 2.3.1.4

bool SimpleIOClass::fnHardwareFlowControl (unsigned int onOff) Section 2.3.1.5

Note 1: Prior to any DLL API usage, a call to the InitMCP2200() function is needed. This function is the only

initialization function in the presented DLL.

2: The configuration only needs to be set a single time – it is stored in NVM.

 2011-2017 Microchip Technology Inc. DS20002228D-page 13

MCP2200

2.3.1.1 ClearPin

Function:
bool SimpleIOClass::ClearPin (unsigned int pin)

EXAMPLE 2-1:

Summary (Continued)

bool SimpleIOClass::fnRxLED (unsigned int mode) Section 2.3.1.6

bool SimpleIOClass::fnSetBaudRate (unsigned long BaudRateParam) Section 2.3.1.7

bool SimpleIOClass::fnSuspend(unsigned int onOff) Section 2.3.1.8

bool SimpleIOClass::fnTxLED (unsigned int mode) Section 2.3.1.9

bool SimpleIOClass::fnULoad(unsigned int onOff) Section 2.3.1.10

String^ SimpleIOClass::GetDeviceInfo(unsigned int uiDeviceNo) Section 2.3.1.11

unsigned int SimpleIOClass::GetNoOfDevices(void) Section 2.3.1.12

int SimpleIOClass::GetSelectedDevice(void) Section 2.3.1.13

String^ SimpleIOClass::GetSelectedDeviceInfo(void) Section 2.3.1.14

void SimpleIOClass::InitMCP2200 (unsigned int VendorID, unsigned int ProductID) Section 2.3.1.15

bool SimpleIOClass::IsConnected() Section 2.3.1.16

int SimpleIOClass::ReadEEPROM(unsigned int uiEEPAddress) Section 2.3.1.17

bool SimpleIOClass::ReadPin(unsigned int pin, unsigned int *returnvalue) Section 2.3.1.18

int SimpleIOClass::ReadPinValue(unsigned int pin) Section 2.3.1.19

bool SimpleIOClass::ReadPort(unsigned int *returnvalue) Section 2.3.1.20

int SimpleIOClass::ReadPortValue() Section 2.3.1.21

int SimpleIOClass::SelectDevice(unsigned int uiDeviceNo) Section 2.3.1.22

bool SimpleIOClass::SetPin(unsigned int pin) Section 2.3.1.23

int SimpleIOClass::WriteEEPROM(unsigned int uiEEPAddress, unsigned char ucValue) Section 2.3.1.24

bool SimpleIOClass::WritePort(unsigned int portValue) Section 2.3.1.25

Constants

const unsigned int OFF = 0;

const unsigned int ON = 1;

const unsigned int TOGGLE = 3;

const unsigned int BLINKSLOW = 4;

const unsigned int BLINKFAST = 5;

Summary: Clears the specified pin.

Description: Clears the specified pin to logic ‘0’.

Precondition: This pin must be previously configured as an output via a ConfigureIO or

ConfigureIoDefaultOutput call.

Parameters: pin - The pin number to set (0-7).

Returns: This function returns True if the transmission is successful and returns False if the transmission fails.

Remarks: None

TABLE 2-2: CONFIGURATION FUNCTIONS (CONTINUED)

Category and Function Name

Note 1: Prior to any DLL API usage, a call to the InitMCP2200() function is needed. This function is the only

initialization function in the presented DLL.

2: The configuration only needs to be set a single time – it is stored in NVM.

if (SimpleIOClass::ClearPin (2))

{

lblStatusBar->Text = “Success”;

}

else

lblStatusBar->Text = “Invalid command ” + SimpleIOClass::LastError;

MCP2200

DS20002228D-page 14  2011-2017 Microchip Technology Inc.

2.3.1.2 ConfigureIO

Function:
bool SimpleIOClass::ConfigureIO (unsigned char IOMap)

EXAMPLE 2-2:

2.3.1.3 ConfigureIODefaultOutput

Function:
bool SimpleIOClass::ConfigureIoDefaultOutput (unsigned char ucIoMap, unsigned char ucDefValue)

EXAMPLE 2-3:

Summary: Configures the GPIO pins for Digital Input or Digital Output.

Description: GPIO Pins can be configured as Digital Input or Digital Output.

Precondition: VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters:

IOMap - a byte that represents a bitmap of the GPIO configuration:

� a bit set to ‘1’ will be a digital input

� a bit set to ‘0’ will be a digital output

� MSB – – – – – – LSB

 GP7 GP6 GP5 GP4 GP3 GP2 GP1 GP0

Returns: This function returns True if the transmission is successful and returns False if the transmission fails.

Remarks: Error code is returned in LastError.

Summary: Configures the IO pins for Digital Input, Digital Output and also the default output latch value.

Description: IO Pins can be configured as Digital Input or Digital Output. The default output latch value is received

as a parameter.

Precondition: VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters:

1. ucIoMap - a byte that represents a bitmap used to set the GPIOs as either input or output.

�‘1’ configures GPIO as input

�‘0’ configures GPIO as output

�MSB – – – – – – LSB

 GP7 GP6 GP5 GP4 GP3 GP2 GP1 GP0

2. ucDefValue - the default value that will be loaded to the output latch (affects only the pins configured as

outputs).

Returns: This function returns True if the transmission is successful and returns False if the transmission fails.

Remarks: Error code is returned in LastError.

if (SimpleIOClass::ConfigureIO(0xA5) == SUCCESS)

lblStatusBar->Text = “Success”;

else

lblStatusBar->Text = “Invalid command ” + SimpleIOClass::LastError;

if (SimpleIOClass::ConfigureIoDefaultOutput(IoMap, DefValue) == SUCCESS)

lblStatusBar->Text = “Success”;

else

lblStatusBar->Text = “Invalid command ” + SimpleIOClass::LastError;

 2011-2017 Microchip Technology Inc. DS20002228D-page 15

MCP2200

2.3.1.4 ConfigureMCP2200

Function:
bool SimpleIOClass::ConfigureIoDefaultOutput (unsigned long BaudRateParam, unsigned int RxLEDMode,

unsigned int TxLEDMode, bool FLOW, bool ULOAD, bool SSPND)

EXAMPLE 2-4:

2.3.1.5 fnHardwareFlowControl

Function:
bool SimpleIOClass::fnHardwareFlowControl (unsigned int onOff)

EXAMPLE 2-5:

Summary: Configures the device.

Description: Sets the default GPIO designation, baud rate, TX/RX LED modes, flow control.

Precondition: VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters:

1. IOMap - A byte that represents the input/output state of the pins (each bit may be either a ‘1’ for input or ‘0’ for

output.

2. BaudRateParam - the default communication baud rate.

3. RxLEDMode - can take one of the constant values (OFF, ON, TOGGLE, BLINKSLOW, BLINKFAST) to define the

behavior of the Rx LED.

�OFF = 0

�ON = 1

�TOGGLE = 3

�BLINKSLOW = 4

�BLINKFAST = 5

4. TxLEDMode - can take one of the defined values (OFF, ON, TOGGLE, BLINKSLOW, BLINKFAST) in order to define the

behavior of the Tx LED.

5. FLOW - this parameter establishes the default flow control method (False - no HW flow control, True - RTS/CTS

flow control).

6. ULOAD - this parameter establishes when the USB has loaded the configuration.

7. SSPND - this parameter establishes when the USB sends the Suspend mode signal.

Returns: This function returns True if the transmission is successful and returns False if the transmission fails.

Remarks: None.

Summary: Configures the flow control of the MCP2200. The flow control configuration will be stored in NVRAM.

Description: Sets the flow control to HW flow control (RTS/CTS) or no flow control.

Precondition: VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: onOff:

� ‘1’ if HW flow control is required

� ‘0’ if no flow control is required

Returns: This function returns True if the transmission is successful and returns False if the transmission fails.

Remarks: Error code is returned in LastError.

if (SimpleIOClass::ConfigureMCP2200(0x43, 9600, BLINKSLOW, BLINKFAST, false, false, false)

== SUCCESS)

lblStatusBar->Text = “Success”;

else

lblStatusBar->Text = “Invalid command ”

if (SimpleIOClass::fnHardwareFlowControl(1) == SUCCESS)

lblStatusBar->Text = “Success”;

else

lblStatusBar->Text = “Invalid command ” + SimpleIOClass::LastError;

MCP2200

DS20002228D-page 16  2011-2017 Microchip Technology Inc.

2.3.1.6 fnRxLED

Function:
bool SimpleIOClass::fnRxLED (unsigned int mode)

EXAMPLE 2-6:

2.3.1.7 fnSetBaudRate

Function:
bool SimpleIOClass::fnSetBaudRate (unsigned long BaudRateParam)

EXAMPLE 2-7:

2.3.1.8 fnSuspend

Function:
bool SimpleIOClass::fnSuspend (unsigned int onOff)

Summary: Configures the Rx LED mode. Rx LED configuration will be stored in NVRAM.

Description: Sets the Rx LED mode to one of the possible values.

Precondition: VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: mode (constant): OFF, TOGGLE, BLINKSLOW, BLINKFAST

Returns: This function returns True if the transmission is successful and returns False if the transmission fails.

Remarks: Error code is returned in LastError.

Summary: Configures the device’s default baud rate. The baud rate value will be stored in NVRAM.

Description: Sets the desired baud rate and it stores it into the device’s NVRAM.

Precondition: VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: BaudRateParam - the desired baud rate value

Returns: This function returns True if the transmission is successful and returns False if the transmission fails.

Remarks: Error code is returned in LastError. This function is used only to set the default power-up baud rate

value. When used with a terminal program, there is no need to call this function to change the baud

rate. Changing the baud rate from the terminal program will send the appropriate CDC packet that

will change the communication’s baud rate without the need to call this function.

Summary: Configures the GP0 pin of the MCP2200 to show the status of the USB Suspend/Resume states.

Description: When the GP0 is designated to show the USB Suspend/Resume states, the pin will go ‘low’ when the

Suspend state is issued, or will go ‘high’ when the Resume state is on.

Precondition: VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: onOff:

� ‘1’ GP0 will reflect the USB Suspend/Resume states

� ‘0’ GP0 will not reflect the USB Suspend/Resume states (can be used as GPIO)

Returns: This function returns True if the transmission is successful and returns False if the transmission fails.

Remarks: Error code is returned in LastError.

if (SimpleIOClass::fnRxLED (BLINKFAST) == SUCCESS)

lblStatusBar->Text = “Success”;

else

lblStatusBar->Text = “Invalid command ” + SimpleIOClass::LastError;

if (SimpleIOClass::fnSetBaudRate(9600) == SUCCESS)

lblStatusBar->Text = “Success”;

else

lblStatusBar->Text = “Invalid command ” + SimpleIOClass::LastError;

 2011-2017 Microchip Technology Inc. DS20002228D-page 17

MCP2200

EXAMPLE 2-8:

2.3.1.9 fnTxLED

Function:
bool SimpleIOClass::fnTxLED (unsigned int mode)

EXAMPLE 2-9:

2.3.1.10 fnULoad

Function:
bool SimpleIOClass::fnULoad (unsigned int onOff)

EXAMPLE 2-10:

Summary: Configures the Tx LED mode. Tx LED configuration will be stored in NVRAM.

Description: Sets the Tx LED mode to one of the possible values.

Precondition: VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: mode (constant): OFF, TOGGLE, BLINKSLOW, BLINKFAST

Returns: This function returns True if the transmission is successful and returns False if the transmission fails.

Remarks: Error code is returned in LastError.

Summary: Configures the GP1 pin of the MCP2200 to show the configuration status of the USB.

Description: When the GP1 is designated to show the USB configuration status, the pin will start ‘low’ (during

power-up or after Reset), and it will go ‘high’ after the MCP2200 is successfully configured by the

host.

Precondition: VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: onOff:

� ‘1’ GP1 will reflect the USB configuration status

� ‘0’ GP1 will not reflect the USB configuration status (can be used as GPIO)

Returns: This function returns True if the transmission is successful and returns False if the transmission fails.

Remarks: Error code is returned in LastError.

if (SimpleIOClass::fnSuspend(1) == SUCCESS)

lblStatusBar->Text = “Success”;

else

lblStatusBar->Text = “Invalid command ” + SimpleIOClass::LastError;

if (SimpleIOClass::fnTxLED (BLINKSLOW) == SUCCESS)

lblStatusBar->Text = “Success”;

else

lblStatusBar->Text = “Invalid command ” + SimpleIOClass::LastError;

if (SimpleIOClass::fnULoad(1) == SUCCESS)

lblStatusBar->Text = “Success”;

else

lblStatusBar->Text = “Invalid command ” + SimpleIOClass::LastError;

MCP2200

DS20002228D-page 18  2011-2017 Microchip Technology Inc.

2.3.1.11 GetDeviceInfo

Function:
String^ SimpleIOClass::GetDeviceInfo (unsigned int uiDeviceNo)

EXAMPLE 2-11:

2.3.1.12 GetNoOfDevices

Function:
unsigned int SimpleIOClass::GetNoOfDevices(void)

EXAMPLE 2-12:

2.3.1.13 GetSelectedDevice

Function:
int SimpleIOClass::GetSelectedDevice(void)

Summary: Returns the path name for one of the connected devices.

Description: The function will return the path name for the given device ID.

Precondition: At least one call to the InitMCP2200() is required in order to initiate a DLL search for the compatible

devices.

VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: uiDeviceNo: The device ID for which the path information is needed. Can have a value between 0

and the number of devices minus 1.

Returns: This function returns a string containing the path name of the given device id.

� In the case the given ID is out of range, the function will return the “Device Index Error” string.

� In the case the device for which the path name is required is not connected anymore, the return

string will be “Device Not Connected”.

Remarks: None.

Summary: The function returns the number of available devices present in the system.

Description: The function returns the number of HID devices (with the given VID/PID) connected to the system.

Precondition: At least one call to the InitMCP2200() is required in order to initiate a DLL search for the compatible

devices. Also, in order to know the actual number of devices connected to the system, call the

SimpleIOClass::IsConnected() function. VID and PID must be previously set via a call to

InitMCP2200(VID, PID).

Parameters: None.

Returns: This function returns the number of HID devices with the given VID/PID (as parameters of the

SimpleIOClass::InitMCP2200() function).

Remarks: Call the SimpleIOClass::IsConnected() function prior to the call of this function in order to have the

most recent number of devices that are present in the system.

Summary: Returns the ID of the selected device.

Description: The function returns the ID of the current selected device.

Precondition: At least one call to the InitMCP2200() is required in order to initiate a DLL search for the compatible

devices. VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: None.

Returns: This function returns the ID of the current selected device. Its value can range from 0 to the number of

devices minus 1.

Remarks: None.

lblStatusBar->Text = SimpleIOClass::GetDeviceInfo(0);

SimpleIOClass::IsConnected(); //call this function to refresh the number of

//the devices present in the system

lblStatusBar->Text = SimpleIOClass::GetNoOfDevices();

 2011-2017 Microchip Technology Inc. DS20002228D-page 19

MCP2200

EXAMPLE 2-13:

2.3.1.14 GetSelectedDeviceInfo

Function:
String^ SimpleIOClass::GetSelectedDeviceInfo(void)

EXAMPLE 2-14:

2.3.1.15 InitMCP2200

Function:
void SimpleIOClass::InitMCP2200 (unsigned int VendorID, unsigned int ProductID)

EXAMPLE 2-15:

2.3.1.16 IsConnected

Function:
bool SimpleIOClass::IsConnected()

Summary: Returns the selected device path name.

Description: The function returns a string containing the unique path name of the selected device.

Precondition: At least one call to the InitMCP2200() is required in order to initiate a DLL search for the compatible

devices. VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: None.

Returns: This function returns a string containing the unique path name of the selected device.

Remarks: The default selected device is the first one that the DLL finds. If the user wants to retrieve other

devices path names (assuming more than one device is present in the system), a call to

SimpleIOClass::SelectDevice(deviceNo) is required.

Summary: Configures the Simple IO class for a specific Vendor and Product ID.

Description: Sets the Vendor and Product ID used for the project.

Precondition: None.

Parameters: 1. Vendor ID - assigned by USB IF (www.usb.org)

2. Product ID - assigned by the Vendor ID Holder

Returns: None.

Remarks: Call this function before any other calls, to set the Vendor and Product IDs.

Summary: Checks with the OS if the current VID/PID device is connected.

Description: Checks if a MCP2200 device is connected to the computer. If so, it returns True; otherwise, the result

will be False.

Precondition: VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: None.

Returns: True - if at least one device is connected to the host.

False - if there are no devices connected to the host.

Remarks: No actual communication with the end device is occurring. The function inquires the OS if the

specified VID/PID was enumerated.

lblStatusBar->Text = SimpleIOClass::GetSelectedDevice();

lblStatusBar->Text = SimpleIOClass::GetSelectedDeviceInfo(void)

 InitMCP2200 (0x4D8, 0x00DF);

MCP2200

DS20002228D-page 20  2011-2017 Microchip Technology Inc.

EXAMPLE 2-16:

2.3.1.17 ReadEEPROM

Function:
int SimpleIOClass::ReadEEPROM (unsigned int uiEEPAddress)

EXAMPLE 2-17:

2.3.1.18 ReadPin

Function:
bool SimpleIOClass::ReadPin (unsigned int pin, unsigned int *returnvalue)

EXAMPLE 2-18:

Summary: Reads a byte from the EEPROM.

Description: Reads a byte from the EEPROM at the given address.

Precondition: At least one call to the InitMCP2200() is required in order to initiate a DLL search for the compatible

devices. VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: uiEEPAddress - the EEPROM address location we need to write to (must be from 0 to 255, inclusively).

Returns: This function returns any positive value as being the EEPROM’s location value:

� E_WRONG_ADDRESS (-3) - in case the given EEPROM address is out of range

� E_CANNOT_SEND_DATA (-4) - in case the function cannot send the command to the device

Remarks: None.

Summary: Reads the specified pin.

Description: Reads the specified pin and returns the value in returnvalue. If the pin has been configured as a

digital input, the return value will be either ‘0’ or ‘1’.

Precondition: Must be previously configured as an input via a ConfigureIO call.

VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: � pin - the pin number to set (0-7)

� returnvalue - the value read on the pin (‘0’ or ‘1’)

Returns: This function returns True if the transmission is successful and returns False if the transmission fails.

Remarks: None.

 unsigned int rv;

if (SimpleIOClass::IsConnected ())

{

lblStatusBar->Text = “Device connected”;

}

else

lblStatusBar->Text = “Device Disconnected”;

int iRetValue = SimpleIOClass::ReadEEPROM(0x01);

if (iRetValue >= 0)

{

lblStatusBar->Text = “Success”;

}

else

lblStatusBar->Text = “Error reading to EEPROM” + SimpleIOClass::LastError;

unsigned int rv;

if (SimpleIOClass::ReadGPIOn (0, &rv))

{

lblStatusBar->Text = “Success”;

}

else

lblStatusBar->Text = “Invalid command ” + SimpleIOClass::LastError;

 2011-2017 Microchip Technology Inc. DS20002228D-page 21

MCP2200

2.3.1.19 ReadPinValue

Function:
int SimpleIOClass::ReadPinValue(unsigned int pin)

EXAMPLE 2-19:

2.3.1.20 ReadPort

Function:
bool SimpleIOClass::ReadPort(unsigned int *returnvalue)

EXAMPLE 2-20:

Summary: Reads the specified pin.

Description: Reads the specified pin and returns the value as the return value. If the pin has been configured as a

digital input, the return value will be either ‘0’ or ‘1’. If an error occurs, the function will return a value

of 0x8000.

Precondition: Must be previously configured as an input via a ConfigureIO call.

VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: pin - the pin number to set (0-7)

Returns: This function returns the read value of the pin, or returns a value of 0x8000, if an error occurs.

Remarks: None.

Summary: Reads the GPIO port as digital input.

Description: Reads the GPIO port and returns the value in returnvalue. This provides a means to read all pins

simultaneously, instead of one-by-one.

Precondition: Must be previously configured as an input via a ConfigureIO call.

VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: � pin - the pin number to set (0-7)

� returnvalue - the value read on the pin (‘0’ or ‘1’)

Returns: This function returns True if the transmission is successful and returns False if the transmission fails.

Remarks: Pins configured for output return the current state of the port. Pins configured as input read as zero.

 unsigned int rv;

if (SimpleIOClass::ReadPinValue(0) != 0x8000)

{

lblStatusBar->Text = “Success”;

}

else

lblStatusBar->Text = “Invalid command ” + SimpleIOClass::LastError;

unsigned int rv;

if (SimpleIOClass::ReadGPIOPort (0, &rv))

{

lblStatusBar->Text = “Success”;

}

else

lblStatusBar->Text = “Invalid command ” + SimpleIOClass::LastError;

MCP2200

DS20002228D-page 22  2011-2017 Microchip Technology Inc.

2.3.1.21 ReadPortValue

Function:
int SimpleIOClass::ReadPortValue()

EXAMPLE 2-21:

2.3.1.22 SelectDevice

Function:
int SimpleIOClass::SelectDevice(unsigned int uiDeviceNo)

EXAMPLE 2-22:

Summary: Reads the GPIO port as digital input.

Description: Reads the GPIO port and returns the value of the port. This provides a method to read all pins

simultaneously, instead of one-by-one. In case of an error, the returned value will be 0x8000.

Precondition: Must be previously configured as an input via a ConfigureIO call.

VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: None.

Returns: This function returns True if the transmission is successful and returns False if the transmission fails.

Remarks: Pins configured for output return the current state of the port. Pins configured as input read as zero.

Summary: Selects one of the active devices in the system.

Description: The function is used to select one of the detected devices in the system as the “active device”.

Precondition: At least one call to the InitMCP2200() is required in order to initiate a DLL search for the compatible

devices. Also, in order to know the actual number of devices in the system, call the

SimpleIOClass::IsConnected() function. VID and PID must be previously set via a call to

InitMCP2200(VID, PID).

Parameters: uiDeviceNo - the ID of the device to be selected (can have a value between 0 and the number of

devices minus 1).

Returns: This function returns ‘0’ in case of selection success, otherwise it will return:

� E_WRONG_DEVICE_ID (-1) for a device ID that is out of range

� E_INACTIVE_DEVICE (-2) for an inactive device.

Remarks: Call the SimpleIOClass::IsConnected() prior to the call of this function in order to have the most

recent number of devices that are present in the system.

 int rv;

rv = SimpleIOClass::ReadPortValue()

if (rv != 0x8000)

{

lblStatusBar->Text = “Success”;

}

else

lblStatusBar->Text = “Invalid command ” + SimpleIOClass::LastError;

int iResult;

iResult = SimpleIOClass::SelectDevice(1)

if (iResult == 0)

{

lblStatusBar->Text = “Success”;

}

else

lblStatusBar->Text = “Error selecting device”;

 2011-2017 Microchip Technology Inc. DS20002228D-page 23

MCP2200

2.3.1.23 SetPin

Function:
bool SimpleIOClass::SetPin(unsigned int pin)

EXAMPLE 2-23:

2.3.1.24 WriteEEPROM

Function:
int SimpleIOClass::WriteEEPROM(unsigned int uiEEPAddress, unsigned char ucValue)

EXAMPLE 2-24:

Summary: Sets the specified pin.

Description: Sets the specified pin to logic ‘1’.

Precondition: Must be previously configured as an output via a ConfigureIO or ConfigureIoDefaultOutput call.

VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: pin - the pin number to set (0-7)

Returns: This function returns True if the transmission is successful and returns False if the transmission fails.

Remarks: None.

Summary: Writes a byte into the MCP2200 device’s EEPROM.

Description: Writes a byte at the given address into the internal 256 bytes EEPROM.

Precondition: At least one call to the InitMCP2200() is required in order to initiate a DLL search for the

compatible devices. VID and PID must be previously set via a call to InitMCP2200(VID, PID).

Parameters: � uiEEPAddress - the EEPROM address location to write to (must be from 0 to 255 inclusively).

� ucValue - the byte value required for writing to the given location.

Returns: This function returns ‘0’ if the write command was successfully sent to the device, otherwise it

returns:

� E_WRONG_ADDRESS (-3) in case the given EEPROM address is out of range

� E_CANNOT_SEND_DATA (-4) in case the function cannot send the command to the device.

Remarks: The function will send the write EEPROM command, but has no confirmation whether the EEPROM

location was actually written. In order to verify the correctness of the EEPROM write, the user can

issue a SimpleIOClass::ReadEEPROM() and check if the returned value matches the written one.

if (SimpleIOClass::SetPin (2))

{

lblStatusBar->Text = “Success”;

}

else

lblStatusBar->Text = “Invalid command ” + SimpleIOClass::LastError;

int iRetValue = SimpleIOClass::WriteEEPROM(0x01, 0xAB);

if (iRetValue == 0)

{

lblStatusBar->Text = “Success”;

}

else

lblStatusBar->Text = “Error writting to EEPROM” + SimpleIOClass::LastError;

MCP2200

DS20002228D-page 24  2011-2017 Microchip Technology Inc.

2.3.1.25 WritePort

Function:
bool SimpleIOClass::WritePort(unsigned int portValue)

EXAMPLE 2-25:

Summary: Writes a value to the GPIO port.

Description: Writes the GPIO port. This provides a means to write all pins simultaneously, instead of one-by-one.

Precondition: Must be previously configured as an output via a ConfigureIO call. VID and PID must be previously

set via a call to InitMCP2200(VID, PID).

Parameters: portValue - byte value to set on the port.

Returns: This function returns True if the transmission is successful and returns False if the transmission fails.

Remarks: None.

if (SimpleIOClass::WritePort (0x5A))

{

lblStatusBar->Text = “Success”;

}

else

lblStatusBar->Text = “Invalid command ” + SimpleIOClass::LastError;

 2011-2017 Microchip Technology Inc. DS20002228D-page 25

MCP2200

NOTES:

	Contact us
	USB 2.0 to UART Protocol Converter with GPIO
	Features
	Universal Serial Bus (USB)
	USB Driver and Software Support
	Universal Asynchronous Receiver/Transmitter (UART)
	General Purpose Input/Output (GPIO) Pins
	EEPROM
	Other
	Package Types
	Block Diagram

	1.0 Functional Description
	TABLE 1-1: Pinout Description
	1.1 Supported Operating Systems
	1.2 Control Module
	1.3 UART Interface
	TABLE 1-2: UART Configurations
	TABLE 1-3: UART Primary Baud Rates
	1.4 USB Protocol Controller
	1.5 USB Transceiver
	1.6 GPIO Module
	1.7 EEPROM Module
	1.8 RESET/POR
	1.9 Oscillator

	2.0 Configuration
	2.1 Configuration Utility
	2.2 Serial String
	TABLE 2-1: Configuration Descriptions
	2.3 Simple Configuration and I/O DLL
	TABLE 2-2: Configuration Functions
	EXAMPLE 2-1:
	EXAMPLE 2-2:
	EXAMPLE 2-3:
	EXAMPLE 2-4:
	EXAMPLE 2-5:
	EXAMPLE 2-6:
	EXAMPLE 2-7:
	EXAMPLE 2-8:
	EXAMPLE 2-9:
	EXAMPLE 2-10:
	EXAMPLE 2-11:
	EXAMPLE 2-12:
	EXAMPLE 2-13:
	EXAMPLE 2-14:
	EXAMPLE 2-15:
	EXAMPLE 2-16:
	EXAMPLE 2-17:
	EXAMPLE 2-18:
	EXAMPLE 2-19:
	EXAMPLE 2-20:
	EXAMPLE 2-21:
	EXAMPLE 2-22:
	EXAMPLE 2-23:
	EXAMPLE 2-24:
	EXAMPLE 2-25:

