imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MCP2210

USB-to-SPI Protocol Converter with GPIO (Master Mode)

Features:

Universal Serial Bus (USB)

- Supports Full-Speed USB (12 Mb/s)
- Human Interface Device (HID) device
- 128-Byte Buffer to Handle Data Throughput:
 - 64-byte transmit
 - 64-byte receive
- Fully Configurable VID, PID Assignments and String Descriptor (factory programming also available)
- Bus Powered (factory default) or Self-Powered (can be selected through special USB commands)
- USB 2.0 Compliant

USB Driver and Software Support

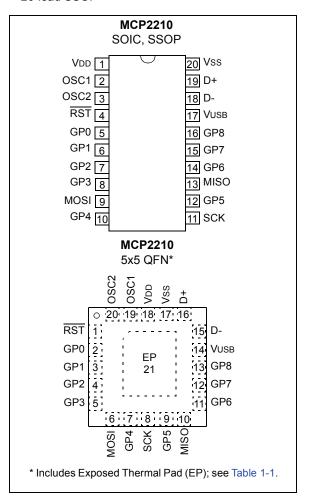
- Uses Standard HID Drivers (built-in support on Windows[®] XP, Vista, 7, Linux and Mac OS[®])
- Configuration Utility for Device's Power-up Configuration
- Utility for USB-SPI Communication, GPIO Manipulation and Miscellaneous Features Usage

SPI Master Peripheral

- Supports all Four SPI modes (Mode 0, 1, 2, 3)
- · Bit Rates from 1500 bps up to 12 Mbps
- · Configurable Delays for SPI Transactions:
 - Chip Select (assert) to 1st byte of data delay
 - Data to data delay
 - Data to Chip Select (de-assert) delay
- SPI Transactions Lengths of up to 65535 Bytes Long
- Up to 9 Chip Select lines to be used in any combination for a given SPI transaction (the Chip Select lines are shared between GPIOs and alternate function pins; certain GPs – up to 9 of them – can be assigned with the Chip Select functionality)

General Purpose Input/Output (GPIO) Pins

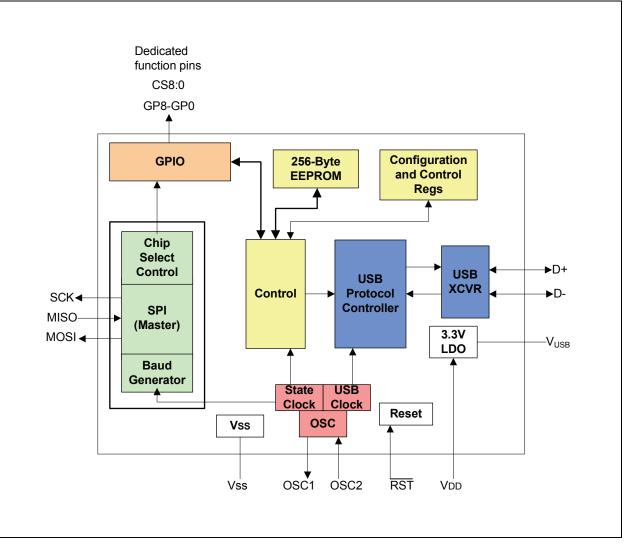
• Nine General Purpose I/O Pins


EEPROM

• 256 Bytes of User EEPROM (accessible through certain USB commands)

Package Types:

The device will be offered in the following packages:


- 20-lead QFN (5 x 5 mm)
- 20-lead SOIC
- 20-lead SSOP

Other

- USB Activity LED Output
- SSPND Output Pin (to signal USB Suspend state)
- USBCFG Output Pin (indicates when the enumeration is completed)
- Operating Voltage: 3.3-5.5V
- Oscillator Input: 12 MHz
- Industrial Operating Temperature: -40°C to +85°C

Block Diagram

1.0 FUNCTIONAL DESCRIPTION

The MCP2210 device is a USB-to-SPI Master converter which enables USB connectivity in applications that have an SPI interface. The device reduces external components by integrating the USB termination resistors.

The MCP2210 also has 256 bytes of integrated user EEPROM.

The MCP2210 has nine general purpose input/output pins. Seven pins have alternate functions to indicate USB and communication status. See Table 1-1 and **Section 1.6 "GP Module"** for details about the pin functions.

MCP2210				u	n 1	n 2 ns)	
QFN	SOIC, SSOP	Symbol	Туре	Standard Function (GPIO)	Alternate Function 1 (Chip Selects)	Alternate Function 2 (dedicated functions)	Description
1	4	RST	I			_	Reset input
2	5	GP0	I/O	GPIO0	CS0	—	General Purpose I/O
3	6	GP1	I/O	GPI01	CS1	—	General Purpose I/O
4	7	GP2	I/O	GPIO2	CS2	USB Suspend	General Purpose I/O
5	8	GP3	I/O	GPIO3	CS3	SPI Transfer Traffic LED	General Purpose I/O
6	9	MOSI	0			—	SPI Master output
7	10	GP4	I/O	GPIO4	CS4	USB Low Power	General Purpose I/O
8	11	SCK	0	—	_	—	SPI Clock output
9	12	GP5	I/O	GPIO5	CS5	USB Configured	General Purpose I/O
10	13	MISO	I	_		—	SPI Master input
11	14	GP6	I/O	GPIO6	CS6	External Interrupt	General Purpose I/O
12	15	GP7	I/O	GPIO7	CS7	SPI Bus Release ACK	General Purpose I/O
13	16	GP8	I/O	GPIO8	CS8	SPI Bus Release REQ	General Purpose I/O
14	17	VUSB	USB	—	_	—	USB Regulator output
15	18	D-	USB			—	USB D-
16	19	D+	USB				USB D+
17	20	Vss	GND				Ground
18	1	Vdd	Р			—	Power
19	2	OSC1	I				Oscillator input
20	3	OSC2	0	—	—	—	Oscillator output

1.1 Supported Operating Systems

The following operating systems are supported:

- Windows XP/Vista/7
- Linux
- Mac OS

1.1.1 ENUMERATION

The MCP2210 will enumerate as a USB device after Power-on Reset (POR). The device enumerates as a Human Interface Device (HID) only.

1.1.1.1 Human Interface Device (HID)

The MCP2210 enumerates as an HID, so the device can be configured and all the other functionalities can be controlled. A DLL package that facilitates I/O control through a custom interface is supplied by Microchip and is available on the product landing page.

1.2 Control Module

The control module is the heart of the MCP2210. All other modules are tied together and controlled via the control module. The control module manages the data transfers between the USB and the SPI, as well as command requests generated by the USB host controller, and commands for controlling the function of the SPI and I/O.

1.2.1 SPI INTERFACE

The control module interfaces to the SPI and USB modules.

1.2.2 INTERFACING TO THE DEVICE

The MCP2210 can be accessed for reading and writing via USB host commands. The device cannot be accessed and controlled via the SPI interface.

1.3 SPI Module

The MCP2210 SPI module provides the MOSI, MISO and SCK signals to the outside world. The module has the ability to control the GP pins (as Chip Select) only if these pins are configured for Chip Select operation.

1.3.1 SPI MODULE FEATURES

The SPI module has the following configurable features:

- Bit rates
- Delays
- Chip Select pin assignments (up to 9 Chip Select lines)

All the above features are available for customization using certain USB commands.

1.3.2 SPI MODULE POWER-UP CONFIGURATION

Default parameters:

- 1 Mbit
- 4 bytes to transfer per SPI transaction
- · GP1 as Chip Select line

1.4 USB Protocol Controller

The USB controller in the MCP2210 is full-speed USB 2.0 compliant.

- HID only device used for:
 - SPI transfers
 - I/O control
 - EEPROM access
 - Chip configuration manipulation
- 128-byte buffer to handle data for SPI transfers
 - 64-byte transmit
 - 64-byte receive
- Fully configurable VID, PID assignments, string descriptors (stored on-chip) and chip power-up settings (default chip settings and SPI transfer parameters)
- · Bus powered or self-powered

1.4.1 DESCRIPTORS

The string descriptors are stored internally in the MCP2210 and they can be changed so when the chip enumerates, the host gets the customer's own product and manufacturer names. They can be customized to the user's needs by using the Microchip provided configuration utility or a custom built application that will send the proper USB commands for storing the new descriptors into the chip.

1.4.2 USB EVENTS

The MCP2210 provides support for signaling important USB-related events such as:

- USB Suspend and Resume these states are signaled on the GP2, if the pin is configured for its dedicated function
 - USB Suspend mode is entered when a suspend signaling event is detected on the USB bus
 - USB Resume is signaled when one of the following events is occurring:
 - a) Resume signaling is detected or generated
 - b) A USB Reset signal is detected
 - c) A device Reset occurs
- USB device enumerated successfully (this state is signaled if the GP4 is configured for its dedicated function)
- USB Low-Power mode

1.5 USB Transceiver

The MCP2210 has a built-in, USB 2.0, full-speed transceiver internally connected to the USB module.

The USB transceiver obtains power from the VUSB pin, which is internally connected to a 3.3V internal regulator. The best electrical signal quality is obtained when VUSB is locally bypassed with a high-quality ceramic capacitor.

The internal 3.3V regulator draws power from the VDD pin. In certain scenarios, where VDD is lower than 3.3V+ internal LDO dropout, the VUSB pin must be tied to an external regulated 3.3V. This will allow the USB transceiver to work correctly, while the I/O voltage in the rest of the system can be lower than 3.3V. As an example, in a system where the MCP2210 is used and the I/O required is of 2.2V, the VDD of the chip will be tied to the 2.2V digital power rail, while the VUSB pin must be connected to a regulated 3.3V power supply.

1.5.1 INTERNAL PULL-UP RESISTORS

The MCP2210 device has built-in pull-up resistors designed to meet the requirements for full-speed USB.

1.5.2 MCP2210 POWER OPTIONS

The following are the main power options for the MCP2210:

- USB Bus Powered (5V)
- Self Powered (from 3.3V to 5V), while the VUSB pin is supplied with 3.3V (regulated). If the VDD is powered with 5V, then the VUSB will be powered by the internal regulator and the VUSB pin will need only a decoupling capacitor

1.5.2.1 Internal Power Supply Details

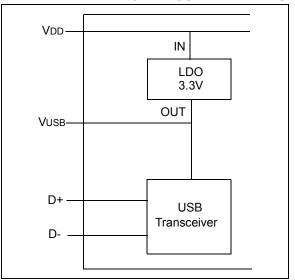
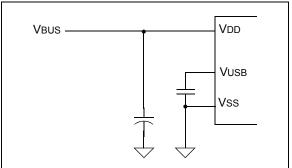

MCP2210 offers various options for power supply. To meet the required USB signaling levels, MCP2210 device incorporates an internal LDO used solely by the USB transceiver, in order to present the correct D+/D voltage levels.

Figure 1-1 shows the internal connections of the USB transceiver LDO in relation with the VDD power supply rail. The output of the USB transceiver LDO is tied to the VUSB line.

A capacitor connected to the VUSB pin is required if the USB transceiver LDO provides the 3.3V supply to the transceiver.

FIGURE 1-1:

MCP2210 INTERNAL POWER SUPPLY DETAILS


The provided VDD voltage has a direct influence on the voltage levels present on the GPIO and SPI module pins (GP8-GP0, MOSI, MISO and SCK). When VDD is 5V, all of these pins will have a logical '1' around 5V with the variations specified in Section 4.1 "DC Characteristics".

For applications that require a 3.3V logical '1' level, VDD must be connected to a power supply providing the 3.3V voltage. In this case, the internal USB transceiver LDO cannot provide the required 3.3V power. It is necessary to also connect the VUSB pin of the MCP2210 to the 3.3V power supply rail. This way, the USB transceiver is powered up directly from the 3.3V power supply.

1.5.2.2 USB Bus Powered (5V)

In Bus Power Only mode, the entire power for the application is drawn from the USB (see Figure 1-2). This is effectively the simplest power method for the device.

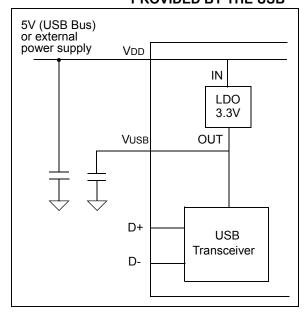
FIGURE 1-2: BUS POWER ONLY

In order to meet the inrush current requirements of the USB 2.0 specifications, the total effective capacitance appearing across VBUS and ground must be no more than 10 μ F. If it is more than 10 μ F, some kind of inrush limiting is required. For more details on Inrush Current Limiting, see the current *Universal Serial Bus Specification*.

According to the USB 2.0 specification, all USB devices must also support a Low-Power Suspend mode. In the USB Suspend mode, devices must consume no more than 500 μA (or 2.5 mA for high powered devices that are remote wake-up capable) from the 5V VBUS line of the USB cable.

The host signals the USB device to enter Suspend mode by stopping all USB traffic to that device for more than 3 ms.

The USB bus provides a 5V voltage. However, the USB transceiver requires 3.3V for the signaling (on D+ and D- lines).

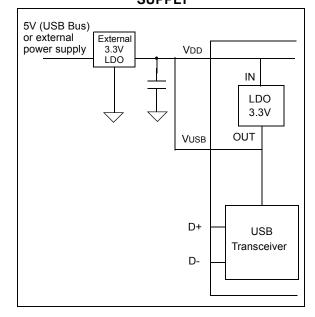

During USB Suspend mode, the D+ or D- pull-up resistor must remain active, which will consume some of the allowed suspend current budget (500 μ A/2.5 mA).

The VUSB pin is required to have an external bypass capacitor. It is recommended that the capacitor be a ceramic cap, between 0.22 and 0.47 $\mu F.$

Figure 1-3 shows a circuit where the MCP2210 internal LDO is used to provide 3.3V to the USB transceiver.

The voltage on the VDD affects the voltage levels onto the GP and SPI module pins (GP8-GP0, MOSI, MISO and SCK). With VDD at 5V, these pins will have a logic '1' of 5V with the variations specified in **Section 4.1 "DC Characteristics"**.

FIGURE 1-3: TYPICAL POWER SUPPLY OPTION USING THE 5V PROVIDED BY THE USB


1.5.2.3 3.3V – Self Powered

Typically, many embedded applications are using 3.3V or lower power supplies. When such an option is available in the target system, MCP2210 can be powered up (VDD) from the existing power supply rail. The typical connections for MCP2210 powered from 3.3V rail are shown in Figure 1-4.

In this example MCP2210 has both VDD and VUSB lines tied to the 3.3V rail. These tied connections disable the internal USB transceiver LDO of the MCP2210 to regulate the power supply on VUSB pin. Another consequence is that the '1' logical level on the GP and SPI pins will be at the 3.3V level, in accordance with the variations specified in Section 4.1 "DC Characteristics".

USING AN EXTERNALLY PROVIDED 3.3V POWER SUPPLY

1.6 GP Module

The GP module features nine I/O lines.

1.6.1 CONFIGURABLE PIN FUNCTIONS

The pins can be configured as:

- GPIO individually configurable, general purpose input or output
- Chip Select pins used by the SPI module
- Alternate function pins used for miscellaneous features such as:
 - SSPND USB Suspend and Resume states
 - USBCFG indicates USB configuration status
 - LOWPWR signals when the host does not accept the requirements (presented during enumeration) and the chip is not configured. In this mode, the whole system powered from the USB host should draw up to 100 mA.
 - External Interrupt Input used to count external events
 - SPI bus Release Request used to request SPI bus access from the MCP2210
 - SPI bus Release Acknowledge used to acknowledge when the MCP2210 has released the SPI bus
 - LED indicates SPI traffic led

1.6.1.1 GPIO Pins Function

The GP pins (if enabled for GPIO functionality) can be used as digital inputs/outputs.

These pins can be read (both inputs and outputs) and written (only the outputs).

1.6.1.2 Chip Select Pins Function

The GP pins (if enabled for the Chip Select functionality) are controlled by the SPI module. Their Idle/Active value is determined by the SPI transfer parameters.

1.6.1.3 SSPND Pin Function

The GP2 pin (if enabled for this functionality) reflects the USB state (Suspend/Resume). The pin is active 'low' when the Suspend state has been issued by the USB host.

Likewise, the pin drives 'high' after the Resume state is achieved.

This pin allows the application to go into Low-Power mode when USB communication is suspended, and switches to a full active state when USB activity is resumed.

1.6.1.4 USBCFG Pin Function

The GP5 pin (if enabled for this functionality) starts out 'high' during power-up or after Reset, and goes 'low' after the device successfully configures to the USB. The pin will go 'high' when in Suspend mode and 'low' when the USB resumes.

1.6.1.5 LOWPWR Pin Function

The GP4 pin (if enabled for this functionality) starts out 'low' during power-up or after Reset, and goes 'high' after the device successfully configures to the USB. The pin will go 'low' when in Suspend mode and 'high' when the USB resumes.

1.6.1.6 External Interrupt Input Pin Function

The GP4 pin (if enabled for this functionality) is used as an interrupt input pin and it will count interrupt events such as:

- Falling edges
- Rising edges
- Low-logic pulses
- High-logic pulses

1.6.1.7 SPI Bus Release Request Pin Function

The GP8 pin (if enabled for this functionality) is used by an external device to request the MCP2210 to release the SPI bus. This way, more than one SPI master can have access to the SPI slave chips on the bus. When this pin is driven 'low', the MCP2210 will examine the request and, based on the conditions and internal logic, it might release the SPI bus. If there is an ongoing SPI transfer taking place at the moment when an external device requests the bus, MCP2210 will release it after the transfer is completed or if the USB host cancels the current SPI transfer.

1.6.1.8 SPI Bus Release Acknowledge Pin Function

The GP7 pin (if enabled for this functionality) is used by the MCP2210 to signal back if the SPI bus was released. When a SPI bus release request is registered by the MCP2210, based on the condition and internal logic, the chip might release the bus. The bus is released immediately if there is no SPI transfer taking place, or it will do so after the current SPI transfer is finished or cancelled by the USB host.

1.6.1.9 LED Pin Function

The GP3 pin (if enabled for this functionality) is used as an SPI traffic indication. When an SPI transfer is taking place (active state for this pin), this pin will be driven 'low'. When there is no SPI traffic taking place, the pin is in its inactive state or logic 'high'.

1.7 EEPROM Module

The EEPROM module is a 256-byte array of nonvolatile memory. The memory locations are accessed for read/write operations solely via USB host commands. The memory cells for data EEPROM are rated to endure thousands of erase/write cycles, up to 100K for EEPROM.

Data retention without refresh is conservatively estimated to be greater than 40 years.

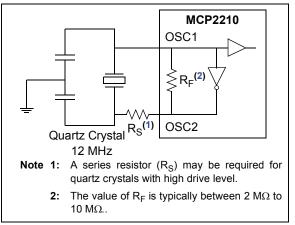
1.8 Reset/POR

1.8.1 RESET PIN

The $\overline{\text{RST}}$ pin provides a method for triggering an external Reset of the device. A Reset is generated by holding the pin low. MCP2210 has a noise filter in the Reset path which detects and ignores small pulses.

1.8.2 POR

A POR pulse is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.


To take advantage of the POR circuitry, tie the $\overline{\text{RST}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a POR delay.

When the device starts normal operation (i.e., exits the Reset condition), the device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not achieved, the device must be held in Reset until the operating conditions are met.


1.9 Oscillator

The input clock must be 12 MHz to provide the proper frequency for the USB module. USB full-speed is nominally 12 Mb/s. The clock input accuracy is $\pm 0.25\%$ (2,500 ppm maximum).

FIGURE 1-5: QUARTZ CRYSTAL OPERATION

2.0 MCP2210 FUNCTIONAL DESCRIPTION

The MCP2210 uses NVRAM to store relevant chip settings. These settings are loaded by the chip during the power-up process and they are used for GP designation and SPI transfers.

The NVRAM settings at power-up (or Reset) are loaded into the RAM portion of the chip and they can be altered through certain USB commands. This is very useful since it allows dynamic reconfiguring of the GPs or SPI transfer parameters. A practical example to illustrate this mechanism is a system which uses at least two SPI slave chips and the GPs in the MCP2210 for various GPIO purposes. The default SPI settings might be ok for one of the SPI slave chips, but not for the 2nd. At first, the PC application will make an SPI transfer to the first chip, using the NVRAM copy of the SPI settings. Then, by sending a certain USB command, the SPI transfer settings residing in RAM will be altered in order to fit the SPI transfer requirements of the second chip.

Also, if the altered SPI transfer settings are needed to be the default power-up (or Reset) settings for SPI, the user can send a series of USB commands in order to store the current (RAM) SPI settings into NVRAM. In this way, these new settings will be the power-up default SPI settings.

The NVRAM settings and EEPROM contents can be protected by password access means, or they can be permanently locked without any possible further modification.

2.1 MCP2210 NVRAM Settings

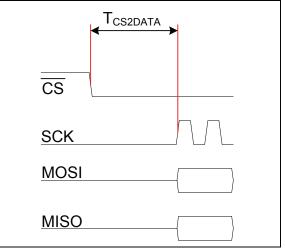
The chip settings that can be stored in the NVRAM area are as follows:

- SPI transfer parameters:
 - SPI bit rate
 - SPI mode
 - Idle Chip Select values
 - Active Chip Select values
 - SPI transfer configurable delays
 - Number of bytes to read/write for the given SPI transfer
- GP designation:
 - GPIO
 - Chip Select
 - Dedicated function
- GPIO default direction (applies only to those GPs designated as GPIOs)
- GPIO default output value (applies only to those GPs designated as output GPIOs)

- · Chip mode flags:
 - Remote wake-up capability
 - External Interrupt Pin mode (applies only when GP6 is designated for this function)
 - SPI bus release enable/disable enable/ disable the release of the SPI bus when there is no SPI transfer (useful when more than one SPI master on the bus)
- NVRAM Access mode:
 - Full access (no protection factory default)
 - Password protection
 - Permanently locked
- Password (relevant when password protection mechanism is active)

The specified settings are loaded at power-up or Reset moments, and they can be altered through certain USB commands.

When a NVRAM conditional access method is already in place, such as password protection, the NVRAM settings modification is permitted only when the user has supplied the correct password for the chip. The RAM settings can be altered even when a password protection or permanent lock mechanism are in place. This allows the user to communicate with various SPI slave chips without knowing the password, but it will not allow the modification of the power-up default settings in NVRAM.


2.2 SPI Transfers

The MCP2210 device provides advanced SPI communication features such as configurable delays and multiple Chip Select support.

The configurable delays are related to certain aspects of the SPI transfer:

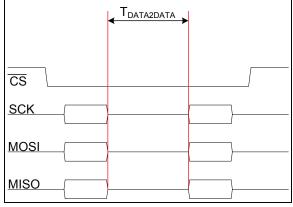

• The delay between the assertion of Chip Select(s) and the first data byte (Figure 2-1)

FIGURE 2-1: CHIP SELECT TO DATA DELAY

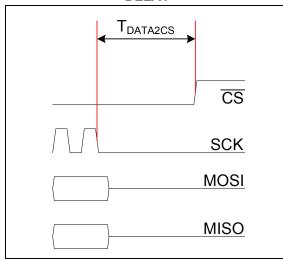

• The delay between subsequent data bytes (Figure 2-2)

FIGURE 2-2: DATA-TO-DATA DELAY

• The delay between the end of the last byte (of the SPI transfer) and the de-assertion of the Chip Select(s)

For a particular SPI transfer, the user can choose any number (out of the available ones) of Chip Select pins. The SPI transfer parameters contain two fields where the user will specify the Chip Select values when the SPI transfer is active/idle. This mechanism allows the user to specify any combination of Chip Select values for the Idle mode and some other combination for the Active mode (SPI transfer active).

3.0 USB COMMANDS/RESPONSES DESCRIPTION

MCP2210 implements the HID interface for all the device-provided functionalities. The chip uses a command/response mechanism for the USB engine. This means that for every USB command sent (by the USB host) to the MCP2210, it will always reply with a response packet.

The MCP2210 USB commands can be grouped by their provided features as follows:

NVRAM Settings

- Read/Write NVRAM related parameters
- Send access password

- Read/Write RAM Settings (copied from NVRAM at power-up or Reset):
 - Read/Write (volatile RAM stored settings) SPI transfer settings
 - Read/Write (volatile RAM stored settings) chip settings
 - Read/Write (volatile RAM stored settings) GPIO direction
 - Read/Write (volatile RAM stored settings) GPIO output values
- Read/Write EEPROM Memory
- External Interrupt Pin (GP6) Event Status
- SPI Data Transfer:
 - Read/Write SPI transfer data
 - Cancels the ongoing SPI transfer
 - SPI bus release manipulation
- Chip Status and Unsupported commands

3.1 NVRAM Settings

The commands in this category are related to the NVRAM settings manipulation.

3.1.1 SET CHIP SETTINGS POWER-UP DEFAULT

TABLE 3-1:COMMAND STRUCTURE

Byte Index	Meaning
0	0x60 – Set Chip NVRAM Parameters – command code
1	0x20 – Set Chip Settings Power-up Default – sub-command code
2	0x00 – Reserved
3	0x00 – Reserved
4	GP0 Pin Designation
	• GPIO = 0x00
	 Chip Selects = 0x01
	 Dedicated Function pin = 0x02
5	GP1 Pin Designation
	• GPIO = 0x00
	Chip Selects = 0x01
	 Dedicated Function pin = 0x02
6	GP2 Pin Designation
	• GPIO = 0x00
	Chip Selects = 0x01
	 Dedicated Function pin = 0x02
7	GP3 Pin Designation
	• GPIO = 0x00
	Chip Selects = 0x01
	 Dedicated Function pin = 0x02
8	GP4 Pin Designation
	• GPIO = 0x00
	Chip Selects = 0x01
	 Dedicated Function pin = 0x02

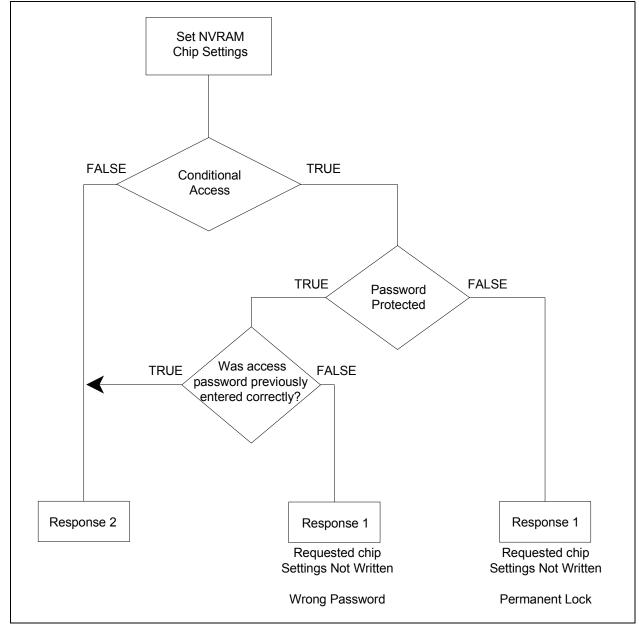
Byte Index	Meaning
9	GP5 Pin Designation
	• GPIO = 0x00
	Chip Selects = 0x01
	 Dedicated Function pin = 0x02
10	GP6 Pin Designation
	• GPIO = 0x00
	Chip Selects = 0x01
	Dedicated Function pin = 0x02
11	GP7 Pin Designation
	• GPIO = 0x00
	Chip Selects = 0x01
	Dedicated Function pin = 0x02
12	GP8 Pin Designation
	• GPIO = 0x00
	Chip Selects = 0x01
	Dedicated Function pin = 0x02
13	Default GPIO Output – 16-bit value (low byte):
	• MSB – – – – – LSB
	GP7VAL GP6VAL GP5VAL GP4VAL GP3VAL GP2VAL GP1VAL GP0VAL
14	Default GPIO Output – 16-bit value (high byte):
	• MSB LSB
	x x x x x x x GP8VAL
45	where x = Don't Care
15	Default GPIO Direction – 16-bit value (low byte):
	• MSB – – – – – LSB GP7DIR GP6DIR GP5DIR GP4DIR GP3DIR GP2DIR GP1DIR GP0DIR
16	Default GPIO Direction – 16-bit value (high byte):
10	• MSB $ -$ LSB
	x x x x x x x GP8DIR

TABLE 3-1: COMMAND STRUCTURE (CONTINUED)

Byte Index	Meaning
17	Other Chip Settings – Enable/Disable Wake-up, Interrupt Counting, SPI Bus Release Options
	Bit 7 – Don't Care
	Bit 6 – Don't Care
	Bit 5 – Don't Care
	Bit 4 – Remote Wake-up Enabled/Disabled
	- 0 – Remote Wake-up Disabled
	- 1 – Remote Wake-up Enabled
	Bit 3 – Dedicated Function – Interrupt Pin mode
	Bit 2 – Dedicated Function – Interrupt Pin mode
	Bit 1 – Dedicated Function – Interrupt Pin mode
	- b111 - Reserved
	- b110 - Reserved
	- b101 - Reserved
	- b100 – Count High Pulses
	- b011 – Count Low Pulses
	- b010 – Count Rising Edges
	- b001 – Count Falling Edges
	- b000 – No Interrupt Counting
	Bit 0 – SPI Bus Release Enable
	 0 = SPI Bus is Released Between Transfer
	 1 = SPI Bus is Not Released by the MCP2210 between transfers
18	NVRAM Chip Parameters Access Control
	0x00 – Chip settings not protected
	 0x40 – Chip settings protected by password access
	0x80 – Chip settings permanently locked
19	New Password Character 0 (Note 1)
20	New Password Character 1 (Note 1)
21	New Password Character 2 (Note 1)
22	New Password Character 3 (Note 1)
23	New Password Character 4 (Note 1)
24	New Password Character 5 (Note 1)
25	New Password Character 6 (Note 1)
26	New Password Character 7 (Note 1)
27-63	Reserved (fill with 0x00)
Note 1: Wh	en the password does not need to change, this field must be filled with 0 (it applies to (byte index 19 to 26).

TABLE 3-1: COMMAND STRUCTURE (CONTINUED)

3.1.1.1 Responses


TABLE 3-2: RESPONSE 1 STRUCTURE

Byte Index	Meaning
0	0x60 – Set Chip NVRAM Parameters – echos back the given command code
1	0xFB – Blocked Access – The provided password is not matching the one stored in the chip, or the settings are permanently locked.
2-63	Don't Care

TABLE 3-3: RESPONSE 2 STRUCTURE

Byte Index	Meaning
0	0x60 – Set Chip NVRAM Parameters – echos back the given command code
1	0x00 – Command Completed Successfully – settings written
2	0x20 – Sub-command Echoed Back for Set Chip Settings Power-up Default code
3-63	Don't Care

FIGURE 3-1: SET CHIP SETTINGS POWER-UP DEFAULT LOGIC FLOW

3.1.2 SET SPI POWER-UP TRANSFER SETTINGS

TABLE 3-4: COMMAND STRUCTURE

Byte Index	Meaning				
0	0x60 – Set Chip NVRAM Parameters – command code				
1	0x10 – Set SPI Power-up Transfer Settings – sub-command code				
2	0x00 – Reserved				
3	0x00 – Reserved				
4	Bit Rate (Byte 3) – 32-bit value (Byte 0, Byte 1, Byte 2, Byte 3) <u>Example</u> : Bit rate = 12,000,000 bps = 00B7 1B00 - This byte = 0x00				
5	Bit Rate (Byte 2) – 32-bit value (Byte 0, Byte 1, Byte 2, Byte 3) <u>Example</u> : Bit rate = 12,000,000 bps = 00B7 1B00 - This byte = 0x1B				
6	Bit Rate (Byte 1) – 32-bit value (Byte 0, Byte 1, Byte 2, Byte 3) <u>Example</u> : Bit rate = 12,000,000 bps = 00B7 1B00 - This byte = 0xB7				
7	Bit Rate (Byte 0) – 32-bit value (Byte 0, Byte 1, Byte 2, Byte 3) <u>Example</u> : Bit rate = 12,000,000 bps = 00B7 1B00 - This byte = 0x00				
8	Idle Chip Select Value – 16-bit value (low byte): • MSB – – – – LSB CS7 CS6 CS5 CS4 CS3 CS2 CS1 CS0				
9	Idle Chip Select Value – 16-bit value (high byte): • MSB – – – – LSB x x x x X				
10	Active Chip Select Value – 16-bit value (low byte): • MSB – – – – LSB CS7 CS6 CS5 CS4 CS3 CS2 CS1 CS0				
11	Active Chip Select Value – 16-bit value (high byte): • MSB – – – – LSB x x				
12	 Chip Select to Data Delay (quanta of 100 μs) – 16-bit value (low byte) Example: If a 500 μs delay between the CS being asserted and the first byte of data is required, the value will be 0x0005. Fill this byte position with: 0x05 				
13	 Chip Select to Data Delay (quanta of 100 µs) – 16-bit value (high byte) <u>Example</u>: If a 500 µs delay between the CS being asserted and the first byte of data is required, the value will be 0x0005. Fill this byte position with: 0x00 				
14	 Last Data Byte to CS (de-asserted) delay (quanta of 100 μs) – 16-bit value (low byte) Example: If a 500 μs delay between the last data byte sent and the CS being de-asserted is required, the value will be 0x0005. Fill this byte position with: 0x05 				
15	 Last Data Byte to CS (de-asserted) delay (quanta of 100 µs) – 16-bit value (high byte) <u>Example</u>: If a 500 µs delay between the last data byte sent and the CS being de-asserted is required, the value will be 0x0005. Fill this byte position with: 0x00 				
16	 Delay Between Subsequent Data Bytes (quanta of 100 μs) – 16-bit value (low byte) Example: If a 500 μs delay between two consecutive data bytes is required, the value will be 0x0005. Fill this byte position with: 0x05 				

TABLE 3-4	4: COMMAND STRUCTURE (CONTINUED)
Byte Index	Meaning
17	 Delay Between Subsequent Data Bytes (quanta of 100 μs) – 16-bit value (high byte) <u>Example</u>: If 500 μs delay between two consecutive data bytes is required, the value will be 0x0005. Fill this byte position with: 0x00
18	 Bytes to Transfer per SPI Transaction – 16-bit value (low byte) <u>Example</u>: If an SPI transaction of 1250 bytes long is required, the corresponding hex value will be 0x04E2. Fill this byte position with: 0xE2
19	 Bytes to Transfer per SPI Transaction – 16-bit value (high byte) <u>Example</u>: If an SPI transaction of 1250 bytes long is required, the corresponding hex value will be 0x04E2. Fill this byte position with: 0x04
20	SPI Mode • 0x00 – SPI mode 0 • 0x01 – SPI mode 1 • 0x02 – SPI mode 2 • 0x03 – SPI mode 3
21 - 63	Reserved – fill with 0x00

T

3.1.2.1 Responses

TABLE 3-5: **RESPONSE 1 STRUCTURE**

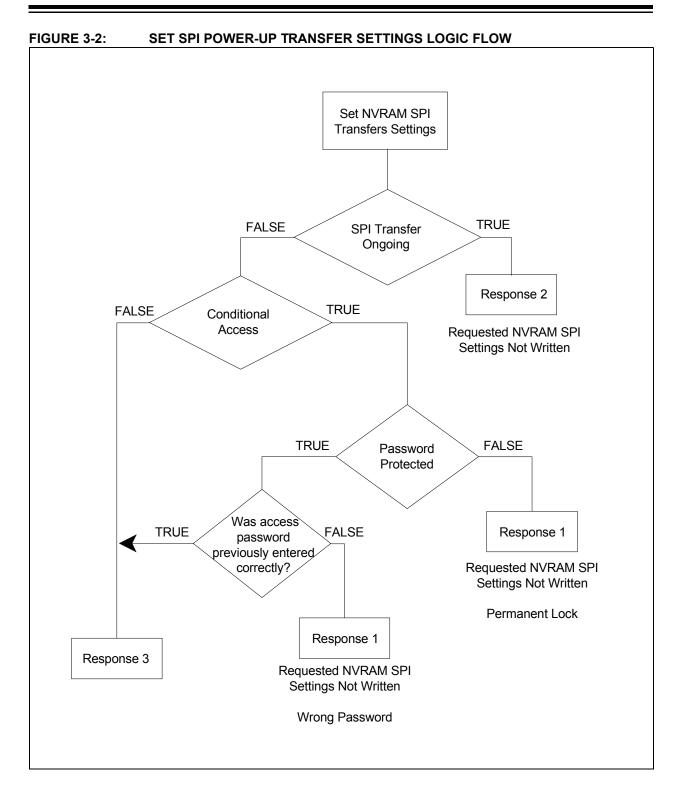

Byte Index	Meaning
0	0x60 – Set Chip NVRAM Parameters – echos back the given command code
1	0xFB – Blocked Access – Access password has not been provided or the settings are permanently locked.
2-63	Don't Care

TABLE 3-6: **RESPONSE 2 STRUCTURE**

Byte Index	Meaning
0	0x60 – Set Chip NVRAM Parameters – echos back the given command code
1	0xF8 – USB Transfer in Progress – settings not written
2	0x10 – Sub-command Echoed Back – set SPI power-up transfer settings
3-63	Don't Care

TABLE 3-7: RESPONSE 3 STRUCTURE

Byt Inde		Meaning
0)	0x60 – Set Chip NVRAM Parameters – echos back the given command code
1		0x00 – Command Completed Successfully – settings written
2	2	0x10 – Sub-command Echoed Back for Set SPI Power-up Transfer Settings code
3-6	63	Don't Care

3.1.3 SET USB POWER-UP KEY PARAMETERS

TABLE 3-8: COMMAND STRUCTURE

Byte Index	Meaning
0	0x60 – Set Chip NVRAM Parameters – command code
1	0x30 – Set USB Power-up Key Parameters – sub-command code
2	0x00 – Reserved
3	0x00 – Reserved
4	VID – 16-bit value (low byte)
5	VID – 16-bit value (high byte)
6	PID – 16-bit value (low byte)
7	VID – 16-bit value (high byte)
8	Chip Power Option (as per USB specs – Chapter 9)
	 Bit 7 – Host Powered (1 = yes; 0 = no)
	 Bit 6 – Self Powered (1 = yes; 0 = no)
	Bit 5 – Remote Wake-up Capable
	• Bit 4 – Reserved – fill with 0
	• Bit 3 – Reserved – fill with 0
	• Bit 2 – Reserved – fill with 0
	• Bit 1 – Reserved – fill with 0
	• Bit 0 – Reserved – fill with 0
	Note: Only bit 6 or bit 7 should be set, not both.
9	Requested Current Amount from USB Host (quanta of 2 mA) <u>Example</u> : For 100 mA fill this byte index with 50 (in decimal) or 0x32.
10-63	Reserved – fill with 0x00

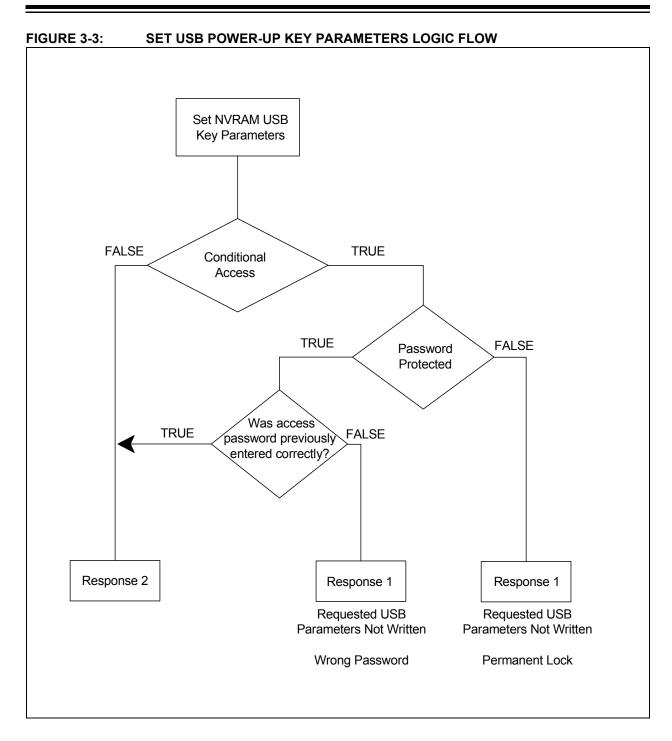

3.1.3.1 Responses

TABLE 3-9: RESPONSE 1 STRUCTURE

Byte Index	Meaning
0	0x60 - Set Chip NVRAM Parameters - echo back the given command code
1	0xFB – Blocked Access – The provided password is not matching the one stored in the chip or the settings are permanently locked.
2-63	Don't Care

TABLE 3-10: RESPONSE 2 STRUCTURE

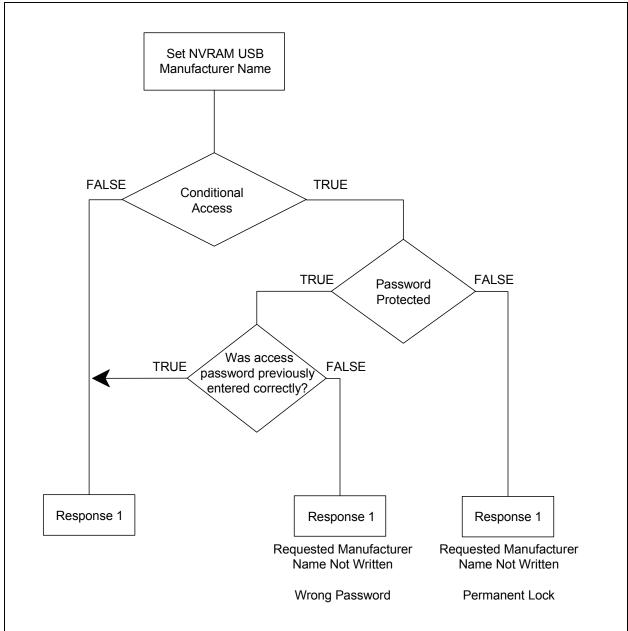
Byte Index	Meaning
0	0x60 - Set Chip NVRAM Parameters - echo back the given command code
1	0x00 – Command Completed Successfully – Settings written
2	0x30 – Sub-command Echoed Back for Set USB Power-up Key Parameters code
3-63	Don't Care

3.1.4 SET USB MANUFACTURER NAME

TABLE 3-11: COMMAND STRUCTURE

Byte Index	Meaning
0	0x60 - Set Chip NVRAM Parameters - command code
1	0x50 – Set USB Manufacturer Name – sub-command code
2	0x00 – Reserved
3	0x00 – Reserved
4	 Total USB String Descriptor Length (this is the length of the Manufacturer string, multiplied by 2 + 2) <u>Example</u>: "Microchip Technology Inc." has 25 Unicode characters. The value to be filled in is: (25 x 2) + 2 = 52 (decimal) = 0x34
5	USB String Descriptor ID – always fill with 0x03
6	 Unicode Character Low Byte <u>Example</u>: For the "Microchip Technology Inc." Unicode string, place here the low byte of the Unicode for character "M". Fill this index with 0x4D
7	 Unicode Character High Byte <u>Example</u>: For the "Microchip Technology Inc." Unicode string, place here the high byte of the Unicode for character "M". Fill this index with 0x00
8-63	Fill in the remaining Unicode characters in the string

3.1.4.1 Responses


TABLE 3-12: RESPONSE 1 STRUCTURE

Byte Index	Meaning
0	0x60 – Set Chip NVRAM Parameters – echos back the given command code
1	0xFB – Blocked Access – The provided password is not matching the one stored in the chip or the settings are permanently locked.
2-63	Don't Care

TABLE 3-13: RESPONSE 2 STRUCTURE

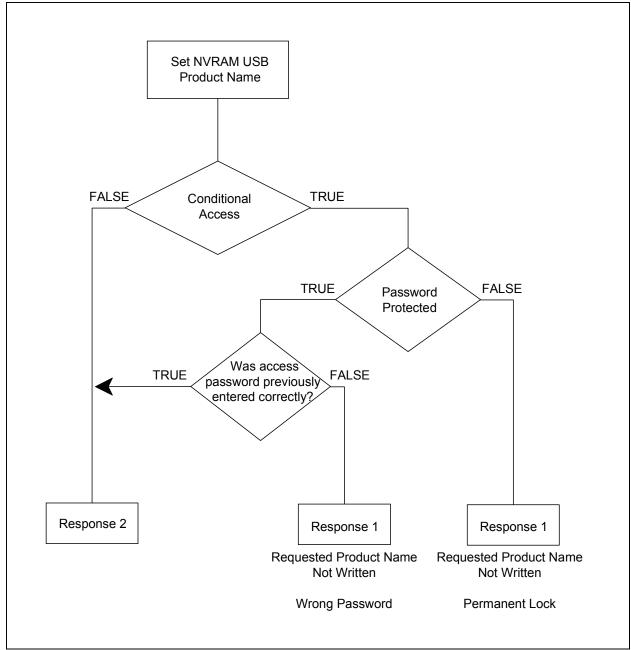
Byte Index	Meaning
0	0x60 – Set Chip NVRAM Parameters – echos back the given command code
1	0x00 – Command Completed Successfully – settings written
2	0x50 – Sub-command Echoed Back for Set USB Manufacturer Name code
3-63	Don't Care

3.1.5 SET USB PRODUCT NAME

TABLE 3-14: COMMAND STRUCTURE

Meaning
0x60 – Set Chip NVRAM Parameters – command code
0x40 – Set USB Product Name – sub-command code
0x00 – Reserved
0x00 – Reserved
Total USB String Descriptor Length (this is the length of the Product string multiplied by 2 + 2) <u>Example</u> : "MCP2210 USB to SPI Master" has 25 Unicode characters.
- The value to be filled in is: (25 * 2) + 2 = 52 (decimal) = 0x34
USB String Descriptor ID – always fill with 0x03
 Unicode Character Low Byte <u>Example</u>: For the "MCP2210 USB to SPI Master" Unicode string, place here the low byte of the Unicode for character "M". Fill this index with 0x4D
Unicode Character High Byte <u>Example</u> : For the "MCP2210 USB to SPI Master" Unicode string, place here the high byte of the Unicode for character "M".
- Fill this index with 0x00
Fill in the remaining Unicode characters in the string

3.1.5.1 Responses


TABLE 3-15: RESPONSE 1 STRUCTURE

Byte Index	Meaning
0	0x60 – Set Chip NVRAM Parameters – echos back the given command code
1	0xFB – Blocked Access – The provided password is not matching the one stored in the chip or the settings are permanently locked.
2-63	Don't Care

TABLE 3-16: RESPONSE 2 STRUCTURE

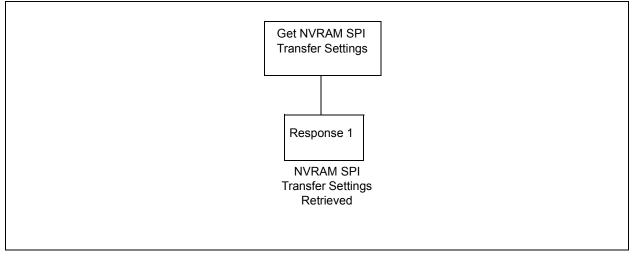
Byte Index	Meaning
0	0x60 – Set Chip NVRAM Parameters – echos back the given command code
1	0x00 – Command Completed Successfully – settings written
2	0x40 – Sub-command Echoed Back for Set USB Product Name code
3-63	Don't Care

3.1.6 GET SPI POWER-UP TRANSFER SETTINGS

TABLE 3-17: COMMAND STRUCTURE

Byte Index	Meaning
0	0x61 – Get NVRAM Settings – command code
1	0x10 – Get SPI Power-up Transfer Settings – sub-command code
2	0x00 – Reserved
3-63	0x00 – Reserved

3.1.6.1 Responses


TABLE 3-18: RESPONSE 1 STRUCTURE

Byte Index	Meaning
0	0x61 – Get NVRAM Settings – echos back the given command code
1	0x00 – Command Completed Successfully
2	0x10 – Sub-command Echoed Back for Get SPI Power-up Transfer Settings code
3	Don't Care
4	Bit Rate (Byte 3) – 32-bit value (Byte 0, Byte 1, Byte 2, Byte 3) <u>Example</u> : Bit rate = 12,000,000 bps = 00B7 1B00 - This byte position will have a value of = 0x00
5	Bit Rate (Byte 2) – 32-bit value (Byte 0, Byte 1, Byte 2, Byte 3) <u>Example</u> : Bit rate = 12,000,000 bps = 00B7 1B00 - This byte position will have a value of = 0x1B
6	Bit Rate (Byte 1) – 32-bit value (Byte 0, Byte 1, Byte 2, Byte 3) <u>Example</u> : Bit rate = 12,000,000 bps = 00B7 1B00 - This byte position will have a value of = 0xB7
7	Bit Rate (Byte 0) – 32-bit value (Byte 0, Byte 1, Byte 2, Byte 3) Example: Bit rate = 12,000,000 bps = 00B7 1B00 - This byte position will have a value of = 0x00
8	Idle Chip Select Value – 16-bit value (low byte): • MSB – – – – LSB CS7 CS6 CS5 CS4 CS3 CS2 CS1 CS0
9	Idle Chip Select Value – 16-bit value (high byte): • MSB – – – – LSB x x x x CS8
10	Active Chip Select Value – 16-bit value (low byte): • MSB – – – – LSB CS7 CS6 CS5 CS4 CS3 CS2 CS1 CS0
11	Active Chip Select Value – 16-bit value (high byte): • MSB – – – – LSB x x x x CS8
12	 Chip Select to Data Delay (quanta of 100 µs) – 16-bit value (low byte) <u>Example</u>: If a 500 µs delay between the CS being asserted and the first byte of data is required, the value will be 0x0005. This byte position will have a value of: 0x05
13	 Chip Select to Data Delay (quanta of 100 µs) – 16-bit value (high byte) <u>Example</u>: If a 500 µs delay between the CS being asserted and the first byte of data is required, the value will be 0x0005. This byte position will have a value of: 0x00

Byte Index	Meaning
14	 Last Data Byte to CS (De-asserted) Delay (quanta of 100 μs) – 16-bit value (low byte) Example: If a 500 μs delay between the last data byte sent and the CS being de-asserted is required, the value will be 0x0005. This byte position will have a value of: 0x05
15	 Last Data Byte to CS (De-asserted) Delay (quanta of 100 μs) – 16-bit value (high byte) Example: If a 500 μs delay between the last data byte sent and the CS being de-asserted is required, the value will be 0x0005. This byte position will have a value of: 0x00
16	 Delay Between Subsequent Data Bytes (quanta of 100 μs) – 16-bit value (low byte) <u>Example</u>: If a 500 μs delay between two consecutive data bytes is required, the value will be 0x0005. This byte position will have a value of: 0x05
17	 Delay Between Subsequent Data Bytes (quanta of 100 μs) – 16-bit value (high byte) <u>Example</u>: If a 500 μs delay between two consecutive data bytes is required, the value will be 0x0005. This byte position will have a value of: 0x00
18	Bytes to Transfer per SPI Transaction – 16-bit value (low byte) <u>Example</u> : If an SPI transaction of 1250 bytes long is required, the corresponding hex value will be 0x04E2.
19	 This byte position will have a value of: 0xE2 Bytes to Transfer per SPI Transaction – 16-bit value (high byte) Example: If an SPI transaction of 1250 bytes long is required, the corresponding hex value will be 0x04E2 This byte position will have a value of: 0x04
20	SPI Mode • 0x00 – SPI mode 0 • 0x01 – SPI mode 1 • 0x02 – SPI mode 2 • 0x03 – SPI mode 3
21 - 63	Don't care

TABLE 3-18: RESPONSE 1 STRUCTURE (CONTINUED)

FIGURE 3-6: GET SPI POWER-UP TRANSFER SETTINGS LOGIC FLOW

