
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

© 2007 Microchip Technology Inc. DS21291F-page 1

MCP2510

Features

• Implements Full CAN V2.0A and V2.0B at 1 Mb/s:

- 0 - 8 byte message length

- Standard and extended data frames

- Programmable bit rate up to 1 Mb/s

- Support for remote frames

- Two receive buffers with prioritized message

storage

- Six full acceptance filters

- Two full acceptance filter masks

- Three transmit buffers with prioritization and

abort features

- Loop-back mode for self test operation

• Hardware Features:

- High Speed SPI Interface

(5 MHz at 4.5V I temp)

- Supports SPI modes 0,0 and 1,1

- Clock out pin with programmable prescaler

- Interrupt output pin with selectable enables

- ‘Buffer full’ output pins configureable as inter-

rupt pins for each receive buffer or as general

purpose digital outputs

- ‘Request to Send’ input pins configureable as

control pins to request immediate message

transmission for each transmit buffer or as

general purpose digital inputs

- Low Power Sleep mode

• Low power CMOS technology:

- Operates from 3.0V to 5.5V

- 5 mA active current typical

- 10 µA standby current typical at 5.5V

• 18-pin PDIP/SOIC and 20-pin TSSOP packages

• Temperature ranges supported:

Description

The Microchip Technology Inc. MCP2510 is a Full Con-

troller Area Network (CAN) protocol controller imple-

menting CAN specification V2.0 A/B. It supports CAN

1.2, CAN 2.0A, CAN 2.0B Passive, and CAN 2.0B

Active versions of the protocol, and is capable of trans-

mitting and receiving standard and extended mes-

sages. It is also capable of both acceptance filtering

and message management. It includes three transmit

buffers and two receive buffers that reduce the amount

of microcontroller (MCU) management required. The

MCU communication is implemented via an industry

standard Serial Peripheral Interface (SPI) with data

rates up to 5 Mb/s.

Package Types

- Industrial (I): -40°C to +85°C

- Extended (E): -40°C to +125°C

TXCAN

RXCAN

VDD

RESET

CS

SO

M
C

P
2
5

1
0

1

2

3

4

18

17

16

15

SI

SCK

INT

RX0BF

14

13

12

11

RX1BF10

OSC2

OSC1

CLKOUT

TX2RTS

5

6

7

8

VSS 9

 M
C

P
2
5

1
0

TXCAN

RXCAN

TX0RTS

OSC1

CLKOUT

OSC2

CS

VDD

RESET

SO

SCK

INT

SI

RX0BF

RX1BFVSS

TX0RTS

TX1RTS

TX1RTS

TX2RTS

NC NC

13

12

1

2

3

4

5

6

7

8

9

20

19

18

17

16

15

14

1110

18 LEAD PDIP/SOIC

20 LEAD TSSOP

Stand-Alone CAN Controller with SPI
™

 Interface

MCP2510

DS21291F-page 2 © 2007 Microchip Technology Inc.

Table of Contents

1.0 Device Functionality . 3

2.0 Can Message Frames. 7

3.0 Message Transmission . 15

4.0 Message Reception . 21

5.0 Bit Timing . 35

6.0 Error Detection . 41

7.0 Interrupts. 45

8.0 Oscillator . 49

9.0 Modes of Operation . 51

10.0 Register Map. 55

11.0 SPI Interface . 57

12.0 Electrical Characteristics. 61

13.0 Packaging Information . 65

Index . 69

On-Line Support . 71

Reader Response . 72

Product Identification System . 73

Worldwide Sales and Service . 76

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Micro-

chip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined

and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via

E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We

welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for cur-
rent devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revi-
sion of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip’s Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

© 2007 Microchip Technology Inc. DS21291F-page 3

MCP2510

1.0 DEVICE FUNCTIONALITY

1.1 Overview

The MCP2510 is a stand-alone CAN controller devel-

oped to simplify applications that require interfacing

with a CAN bus. A simple block diagram of the

MCP2510 is shown in Figure 1-1. The device consists

of three main blocks:

1. The CAN protocol engine.

2. The control logic and SRAM registers that are

used to configure the device and its operation.

3. The SPI protocol block.

A typical system implementation using the device is

shown in Figure 1-2.

The CAN protocol engine handles all functions for

receiving and transmitting messages on the bus. Mes-

sages are transmitted by first loading the appropriate

message buffer and control registers. Transmission is

initiated by using control register bits, via the SPI inter-

face, or by using the transmit enable pins. Status and

errors can be checked by reading the appropriate reg-

isters. Any message detected on the CAN bus is

checked for errors and then matched against the user

defined filters to see if it should be moved into one of

the two receive buffers.

The MCU interfaces to the device via the SPI interface.

Writing to and reading from all registers is done using

standard SPI read and write commands.

Interrupt pins are provided to allow greater system flex-

ibility. There is one multi-purpose interrupt pin as well

as specific interrupt pins for each of the receive regis-

ters that can be used to indicate when a valid message

has been received and loaded into one of the receive

buffers. Use of the specific interrupt pins is optional,

and the general purpose interrupt pin as well as status

registers (accessed via the SPI interface) can also be

used to determine when a valid message has been

received.

There are also three pins available to initiate immediate

transmission of a message that has been loaded into

one of the three transmit registers. Use of these pins is

optional and initiating message transmission can also

be done by utilizing control registers accessed via the

SPI interface.

Table 1-1 gives a complete list of all of the pins on the

MCP2510.

FIGURE 1-1: BLOCK DIAGRAM

3 TX

Buffers

2 RX Buffers

Message Assembly

6 Acceptance

Filters

SPI

Interface

Logic

SPI
Bus

INT

Buffer

CS

SCK

SI

SO

CAN
Protocol
Engine

RXCAN

TXCAN

Control Logic

RX0BF

RX1BF

TX0RTS

TX1RTS

TX2RTS

MCP2510

DS21291F-page 4 © 2007 Microchip Technology Inc.

FIGURE 1-2: TYPICAL SYSTEM IMPLEMENTATION

TABLE 1-1: PIN DESCRIPTIONS

Name

DIP/

SOIC

Pin #

TSSOP

Pin #

I/O/P

Type
Description

TXCAN 1 1 O Transmit output pin to CAN bus

RXCAN 2 2 I Receive input pin from CAN bus

CLKOUT 3 3 O Clock output pin with programmable prescaler

TX0RTS 4 4 I Transmit buffer TXB0 request to send or general purpose digital input. 100 kΩ

internal pullup to VDD

TX1RTS 5 5 I Transmit buffer TXB1 request to send or general purpose digital input. 100 kΩ

internal pullup to VDD

TX2RTS 6 7 I Transmit buffer TXB2 request to send or general purpose digital input. 100 kΩ

internal pullup to VDD

OSC2 7 8 O Oscillator output

OSC1 8 9 I Oscillator input

VSS 9 10 P Ground reference for logic and I/O pins

RX1BF 10 11 O Receive buffer RXB1 interrupt pin or general purpose digital output

RX0BF 11 12 O Receive buffer RXB0 interrupt pin or general purpose digital output

INT 12 13 O Interrupt output pin

SCK 13 14 I Clock input pin for SPI interface

SI 14 16 I Data input pin for SPI interface

SO 15 17 O Data output pin for SPI interface

CS 16 18 I Chip select input pin for SPI interface

RESET 17 19 I Active low device reset input

VDD 18 20 P Positive supply for logic and I/O pins

NC — 6,15 — No internal connection

Note: Type Identification: I=Input; O=Output; P=Power

MCP2510

SPI

MCP2510 MCP2510 MCP2510

INTERFACE

CAN
BUS

MCP2510

Main
System

Controller

CAN
Transceiver

CAN
Transceiver

CAN
Transceiver

CAN
Transceiver

CAN
Transceiver

Node
Controller

Node
Controller

Node
Controller

Node
Controller

© 2007 Microchip Technology Inc. DS21291F-page 5

MCP2510

1.2 Transmit/Receive Buffers

The MCP2510 has three transmit and two receive buffers, two acceptance masks (one for each receive buffer), and a

total of six acceptance filters. Figure 1-3 is a block diagram of these buffers and their connection to the protocol engine.

FIGURE 1-3: CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM

Acceptance Filter
RXF2

R
X
B
1

Identifier

Data Field Data Field

Identifier

Acceptance Mask
RXM1

Acceptance Filter
RXF3

Acceptance Filter
RXF4

Acceptance Filter
RXF5

M
A
B

Acceptance Filter
RXF0

Acceptance Filter
RXF1

R
X
B
0

T
X

R
E

Q

TXB2

A
B

T
F

M
L

O
A

T
X

E
R

R

M
E

S
S

A
G

E
Message
Queue
Control

Transmit Byte Sequencer

T
X

R
E

Q

TXB0

A
B

T
F

M
L

O
A

T
X

E
R

R

M
E

S
S

A
G

E

CRC<14:0>

Comparator

Receive<7:0>Transmit<7:0>

Receive
Error

Transmit
Error

Protocol

REC

TEC

ErrPas

BusOff

Finite
State

Machine

Counter

Counter

Shift<14:0>
{Transmit<5:0>, Receive<8:0>}

Transmit

Logic

Bit
Timing
Logic

TX RX
Configuration

Registers

Clock
Generator

PROTOCOL
ENGINE

BUFFERS
T

X
R

E
Q

TXB1

A
B

T
F

M
L

O
A

T
X

E
R

R

M
E

S
S

A
G

E

Acceptance Mask
RXM0A

c
c
e
p
t

A
c
c
e
p
t

MCP2510

DS21291F-page 6 © 2007 Microchip Technology Inc.

1.3 CAN Protocol Engine

The CAN protocol engine combines several functional

blocks, shown in Figure 1-4. These blocks and their

functions are described below.

1.4 Protocol Finite State Machine

The heart of the engine is the Finite State Machine

(FSM). This state machine sequences through mes-

sages on a bit by bit basis, changing states as the fields

of the various frame types are transmitted or received.

The FSM is a sequencer controlling the sequential data

stream between the TX/RX Shift Register, the CRC

Register, and the bus line. The FSM also controls the

Error Management Logic (EML) and the parallel data

stream between the TX/RX Shift Registers and the

buffers. The FSM insures that the processes of recep-

tion, arbitration, transmission, and error signaling are

performed according to the CAN protocol. The auto-

matic retransmission of messages on the bus line is

also handled by the FSM.

1.5 Cyclic Redundancy Check

The Cyclic Redundancy Check Register generates the

Cyclic Redundancy Check (CRC) code which is trans-

mitted after either the Control Field (for messages with

0 data bytes) or the Data Field, and is used to check the

CRC field of incoming messages.

1.6 Error Management Logic

The Error Management Logic is responsible for the

fault confinement of the CAN device. Its two counters,

the Receive Error Counter (REC) and the Transmit

Error Counter (TEC), are incremented and decre-

mented by commands from the Bit Stream Processor.

According to the values of the error counters, the CAN

controller is set into the states error-active, error-pas-

sive or bus-off.

1.7 Bit Timing Logic

The Bit Timing Logic (BTL) monitors the bus line input

and handles the bus related bit timing according to the

CAN protocol. The BTL synchronizes on a recessive to

dominant bus transition at Start of Frame (hard syn-

chronization) and on any further recessive to dominant

bus line transition if the CAN controller itself does not

transmit a dominant bit (resynchronization). The BTL

also provides programmable time segments to com-

pensate for the propagation delay time, phase shifts,

and to define the position of the Sample Point within the

bit time. The programming of the BTL depends upon

the baud rate and external physical delay times.

FIGURE 1-4: CAN PROTOCOL ENGINE BLOCK DIAGRAM

Bit Timing Logic

CRC<14:0>

Comparator

Receive<7:0> Transmit<7:0>

Sample<2:0>

Majority
Decision

StuffReg<5:0>

Comparator

Transmit Logic

Receive

Error Counter

Transmit

Error Counter

Protocol
FSM

RX

SAM

BusMon

Rec/Trm Addr.

RecData<7:0> TrmData<7:0>

Shift<14:0>
(Transmit<5:0>, Receive<7:0>)

TX

REC

TEC

ErrPas

BusOff

Interface to Standard Buffer

© 2007 Microchip Technology Inc. DS21291F-page 7

MCP2510

2.0 CAN MESSAGE FRAMES

The MCP2510 supports Standard Data Frames,

Extended Data Frames, and Remote Frames (Stan-

dard and Extended) as defined in the CAN 2.0B speci-

fication.

2.1 Standard Data Frame

The CAN Standard Data Frame is shown in Figure 2-1.

In common with all other frames, the frame begins with

a Start Of Frame (SOF) bit, which is of the dominant

state, which allows hard synchronization of all nodes.

The SOF is followed by the arbitration field, consisting

of 12 bits; the 11-bit ldentifier and the Remote Trans-

mission Request (RTR) bit. The RTR bit is used to dis-

tinguish a data frame (RTR bit dominant) from a remote

frame (RTR bit recessive).

Following the arbitration field is the control field, con-

sisting of six bits. The first bit of this field is the Identifier

Extension (IDE) bit which must be dominant to specify

a standard frame. The following bit, Reserved Bit Zero

(RB0), is reserved and is defined to be a dominant bit

by the can protocol. the remaining four bits of the con-

trol field are the Data Length Code (DLC) which speci-

fies the number of bytes of data contained in the

message.

After the control field is the data field, which contains

any data bytes that are being sent, and is of the length

defined by the DLC above (0-8 bytes).

The Cyclic Redundancy Check (CRC) Field follows the

data field and is used to detect transmission errors. The

CRC Field consists of a 15-bit CRC sequence, followed

by the recessive CRC Delimiter bit.

The final field is the two-bit acknowledge field. During

the ACK Slot bit, the transmitting node sends out a

recessive bit. Any node that has received an error free

frame acknowledges the correct reception of the frame

by sending back a dominant bit (regardless of whether

the node is configured to accept that specific message

or not). The recessive acknowledge delimiter com-

pletes the acknowledge field and may not be overwrit-

ten by a dominant bit.

2.2 Extended Data Frame

In the Extended CAN Data Frame, the SOF bit is fol-

lowed by the arbitration field which consists of 32 bits,

as shown in Figure 2-2. The first 11 bits are the most

significant bits (Base-lD) of the 29-bit identifier. These

11 bits are followed by the Substitute Remote Request

(SRR) bit which is defined to be recessive. The SRR bit

is followed by the lDE bit which is recessive to denote

an extended CAN frame.

It should be noted that if arbitration remains unresolved

after transmission of the first 11 bits of the identifier, and

one of the nodes involved in the arbitration is sending

a standard CAN frame (11-bit identifier), then the stan-

dard CAN frame will win arbitration due to the assertion

of a dominant lDE bit. Also, the SRR bit in an extended

CAN frame must be recessive to allow the assertion of

a dominant RTR bit by a node that is sending a stan-

dard CAN remote frame.

The SRR and lDE bits are followed by the remaining 18

bits of the identifier (Extended lD) and the remote trans-

mission request bit.

To enable standard and extended frames to be sent

across a shared network, it is necessary to split the 29-

bit extended message identifier into 11-bit (most signif-

icant) and 18-bit (least significant) sections. This split

ensures that the lDE bit can remain at the same bit

position in both standard and extended frames.

Following the arbitration field is the six-bit control field.

the first two bits of this field are reserved and must be

dominant. the remaining four bits of the control field are

the Data Length Code (DLC) which specifies the num-

ber of data bytes contained in the message.

The remaining portion of the frame (data field, CRC

field, acknowledge field, end of frame and lntermission)

is constructed in the same way as for a standard data

frame (see Section 2.1).

2.3 Remote Frame

Normally, data transmission is performed on an auton-

omous basis by the data source node (e.g. a sensor

sending out a data frame). It is possible, however, for a

destination node to request data from the source. To

accomplish this, the destination node sends a remote

frame with an identifier that matches the identifier of the

required data frame. The appropriate data source node

will then send a data frame in response to the remote

frame request.

There are two differences between a remote frame

(shown in Figure 2-3) and a data frame. First, the RTR

bit is at the recessive state, and second, there is no

data field. In the event of a data frame and a remote

frame with the same identifier being transmitted at the

same time, the data frame wins arbitration due to the

dominant RTR bit following the identifier. In this way,

the node that transmitted the remote frame receives

the desired data immediately.

2.4 Error Frame

An Error Frame is generated by any node that detects

a bus error. An error frame, shown in Figure 2-4, con-

sists of two fields, an error flag field followed by an error

delimiter field. There are two types of error flag fields.

Which type of error flag field is sent depends upon the

error status of the node that detects and generates the

error flag field.

If an error-active node detects a bus error then the

node interrupts transmission of the current message by

generating an active error flag. The active error flag is

composed of six consecutive dominant bits. This bit

MCP2510

DS21291F-page 8 © 2007 Microchip Technology Inc.

sequence actively violates the bit stuffing rule. All other

stations recognize the resulting bit stuffing error and in

turn generate error frames themselves, called error

echo flags. The error flag field, therefore, consists of

between six and twelve consecutive dominant bits

(generated by one or more nodes). The error delimiter

field completes the error frame. After completion of the

error frame, bus activity returns to normal and the inter-

rupted node attempts to resend the aborted message.

If an error-passive node detects a bus error then the

node transmits an error-passive flag followed by the

error delimiter field. The error-passive flag consists of

six consecutive recessive bits, and the error frame for

an error-passive node consists of 14 recessive bits.

From this, it follows that unless the bus error is

detected by the node that is actually transmitting, the

transmission of an error frame by an error-passive

node will not affect any other node on the network. If

the transmitting node generates an error-passive flag

then this will cause other nodes to generate error

frames due to the resulting bit stuffing violation. After

transmission of an error frame, an error-passive node

must wait for six consecutive recessive bits on the bus

before attempting to rejoin bus communications.

The error delimiter consists of eight recessive bits and

allows the bus nodes to restart bus communications

cleanly after an error has occurred.

2.5 Overload Frame

An Overload Frame, shown in Figure 2-5, has the

same format as an active error frame. An overload

frame, however can only be generated during an lnter-

frame space. In this way an overload frame can be dif-

ferentiated from an error frame (an error frame is sent

during the transmission of a message). The overload

frame consists of two fields, an overload flag followed

by an overload delimiter. The overload flag consists of

six dominant bits followed by overload flags generated

by other nodes (and, as for an active error flag, giving

a maximum of twelve dominant bits). The overload

delimiter consists of eight recessive bits. An overload

frame can be generated by a node as a result of two

conditions. First, the node detects a dominant bit during

the interframe space which is an illegal condition. Sec-

ond, due to internal conditions the node is not yet able

to start reception of the next message. A node may

generate a maximum of two sequential overload

frames to delay the start of the next message.

2.6 Interframe Space

The lnterframe Space separates a preceeding frame

(of any type) from a subsequent data or remote frame.

The interframe space is composed of at least three

recessive bits called the Intermission. This is provided

to allow nodes time for internal processing before the

start of the next message frame. After the intermission,

the bus line remains in the recessive state (bus idle)

until the next transmission starts.

©
 2

0
0

7
 M

ic
ro

c
h

ip
 T

e
c
h

n
o

lo
g

y
 In

c
.

D
S

2
1

2
9

1
F

-p
a

g
e

 9

M
C

P
2
5

1
0

FIGURE 2-1: STANDARD DATA FRAME

0

S
ta

rt
 o

f
F

ra
m

e

Data Frame (number of bits = 44 + 8N)

12

Arbitration Field

ID
 1

0

11

ID
3

ID
0

Identifier

Message

Filtering

Stored in Buffers

R
T

R
ID

E
R

B
0

D
L

C
3

D
L

C
0

6

4

Control

Field

Data

Length

Code

R
e

s
e

rv
e

d
 B

it

8N (0≤N≤8)

Data Field

8 8

Stored in Transmit/Receive Buffers

Bit Stuffing

16

CRC Field

15

CRC

7

End of

Frame

C
R

C
 D

e
l

A
c
k
 S

lo
t

B
it

A
C

K
 D

e
l

IFS

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

©
 2

0
0

7
 M

ic
ro

c
h

ip
 T

e
c
h

n
o

lo
g

y
 In

c
.

D
S

2
1

2
9

1
F

-p
a

g
e

 1
0

M
C

P
2
5

1
0

FIGURE 2-2: EXTENDED DATA FRAME

0 1 1 0 0 0 1

S
ta

rt
 o

f
F

ra
m

e Arbitration Field

32

11

ID
1

0

ID
3

ID
0

ID
E

Identifier

Message
Filtering

Stored in Buffers

S
R

R

E
ID

1
7

E
ID

0
R

T
R

R
B

1
R

B
0

D
L

C
3

18

D
L

C
0

6
Control
Field

4

R
e

s
e

rv
e

d
 b

it
s

Data
Length
Code

Stored in Transmit/Receive Buffers

8 8

Data Frame (number of bits = 64 + 8N)

8N (0≤N≤8)

Data Field

1 1 1 1 1 1 1 1

16

CRC Field

15

CRC

C
R

C
 D

e
l

A
c
k
 S

lo
t

B
it

A
C

K
 D

e
l

End of
Frame

7

Bit Stuffing

IFS

Extended Identifier

1 1 1

©
 2

0
0

7
 M

ic
ro

c
h

ip
 T

e
c
h

n
o

lo
g

y
 In

c
.

D
S

2
1

2
9

1
F

-p
a

g
e

 1
1

M
C

P
2
5

1
0

FIGURE 2-3: REMOTE DATA FRAME

0 1 1 1 0 0

S
ta

rt
 o

f
F

ra
m

e Arbitration Field

32

11

ID
1
0

ID
3

ID
0

ID
E

Identifier

Message
Filtering

S
R

R

E
ID

1
7

E
ID

0
R

T
R

R
B

1
R

B
0

D
L
C

3

18

D
L
C

0

6

Control
Field

4

R
e

s
e

rv
e

d
 b

its Data
Length
Code

Extended Identifier

1 1 1 1 1 1 1 1 1

16

CRC Field

15

CRC

C
R

C
 D

e
l

A
c
k
 S

lo
t

B
it

A
C

K
 D

e
l

End of
Frame

7

1 1 1

IFS

Remote Data Frame with Extended Identifier

©
 2

0
0

7
 M

ic
ro

c
h

ip
 T

e
c
h

n
o

lo
g

y
 In

c
.

D
S

2
1

2
9

1
F

-p
a

g
e

 1
2

M
C

P
2
5

1
0

FIGURE 2-4: ERROR DATA FRAME

0 0 0 0

S
ta

rt
 o

f
F

ra
m

e

Interrupted Data Frame

12

Arbitration Field

ID
 1

0

11

ID
3

ID
0

Identifier

Message

Filtering

R
T

R
ID

E
R

B
0

D
L

C
3

D
L

C
0

6

4

Control

Field

Data

Length

Code

R
e

s
e

rv
e

d
 B

it

8N (0≤N≤8)

Data Field

8 8

Bit Stuffing

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

Data Frame or

Remote Frame

Error Frame

6

Error

Flag

≤ 6

Echo

Error

Flag

8

Error

Delimiter

Inter-Frame Space or

Overload Frame

©
 2

0
0

7
 M

ic
ro

c
h

ip
 T

e
c
h

n
o

lo
g

y
 In

c
.

D
S

2
1

2
9

1
F

-p
a

g
e

 1
3

M
C

P
2
5

1
0

FIGURE 2-5: OVERLOAD FRAME

0 1 0 0 1 1 1 1 1 1 1 1 1

S
ta

rt
 o

f
F

ra
m

e

Remote Frame (number of bits = 44)

12

Arbitration Field

ID
 1

0

11

ID
0

R
T

R
ID

E
R

B
0

D
L

C
3

D
L

C
0

6

4

Control

Field

16

CRC Field

15

CRC

7

End of

Frame

C
R

C
 D

e
l

A
c
k
 S

lo
t

B
it

A
C

K
 D

e
l

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Overload Frame

End of Frame or

Error Delimiter or

Overload Delimiter

6

Overload

Flag

Overload

Delimiter

8
Inter-Frame Space or

Error Frame

MCP2510

DS21291F-page 14 © 2007 Microchip Technology Inc.

NOTES:

© 2007 Microchip Technology Inc. DS21291F-page 15

MCP2510

3.0 MESSAGE TRANSMISSION

3.1 Transmit Buffers

The MCP2510 implements three Transmit Buffers.

Each of these buffers occupies 14 bytes of SRAM and

are mapped into the device memory maps. The first

byte, TXBNCTRL, is a control register associated with

the message buffer. The information in this register

determines the conditions under which the message

will be transmitted and indicates the status of the mes-

sage transmission. (see Register 3-2). Five bytes are

used to hold the standard and extended identifiers and

other message arbitration information (see Register 3-

3 through Register 3-8). The last eight bytes are for the

eight possible data bytes of the message to be trans-

mitted (see Register 3-8).

For the MCU to have write access to the message

buffer, the TXBNCTRL.TXREQ bit must be clear, indi-

cating that the message buffer is clear of any pending

message to be transmitted. At a minimum, the TXBN-

SIDH, TXBNSIDL, and TXBNDLC registers must be

loaded. If data bytes are present in the message, the

TXBNDm registers must also be loaded. If the message

is to use extended identifiers, the TXBNEIDm registers

must also be loaded and the TXBNSIDL.EXIDE bit set.

Prior to sending the message, the MCU must initialize

the CANINTE.TXINE bit to enable or disable the gener-

ation of an interrupt when the message is sent. The

MCU must also initialize the TXBNCTRL.TXP priority

bits (see Section 3.2).

3.2 Transmit Priority

Transmit priority is a prioritization, within the MCP2510,

of the pending transmittable messages. This is inde-

pendent from, and not necessarily related to, any prior-

itization implicit in the message arbitration scheme built

into the CAN protocol. Prior to sending the SOF, the pri-

ority of all buffers that are queued for transmission is

compared. The transmit buffer with the highest priority

will be sent first. For example, if transmit buffer 0 has a

higher priority setting than transmit buffer 1, buffer 0 will

be sent first. If two buffers have the same priority set-

ting, the buffer with the highest buffer number will be

sent first. For example, if transmit buffer 1 has the same

priority setting as transmit buffer 0, buffer 1 will be sent

first. There are four levels of transmit priority. If TXBNC-

TRL.TXP<1:0> for a particular message buffer is set to

11, that buffer has the highest possible priority. If

TXBNCTRL.TXP<1:0> for a particular message buffer

is 00, that buffer has the lowest possible priority.

3.3 Initiating Transmission

To initiate message transmission the TXBNC-

TRL.TXREQ bit must be set for each buffer to be trans-

mitted. This can be done by writing to the register via

the SPI interface or by setting the TXNRTS pin low for

the particular transmit buffer(s) that are to be transmit-

ted. If transmission is initiated via the SPI interface, the

TXREQ bit can be set at the same time as the TXP pri-

ority bits.

When TXBNCTRL.TXREQ is set, the

TXBNCTRL.ABTF, TXBNCTRL.MLOA and

TXBNCTRL.TXERR bits will be cleared.

Setting the TXBNCTRL.TXREQ bit does not initiate a

message transmission, it merely flags a message

buffer as ready for transmission. Transmission will start

when the device detects that the bus is available. The

device will then begin transmission of the highest prior-

ity message that is ready.

When the transmission has completed successfully the

TXBNCTRL.TXREQ bit will be cleared, the CAN-

INTF.TXNIF bit will be set, and an interrupt will be gen-

erated if the CANINTE.TXNIE bit is set.

If the message transmission fails, the TXBNC-

TRL.TXREQ will remain set indicating that the mes-

sage is still pending for transmission and one of the

following condition flags will be set. If the message

started to transmit but encountered an error condition,

the TXBNCTRL. TXERR and the CANINTF.MERRF

bits will be set and an interrupt will be generated on the

INT pin if the CANINTE.MERRE bit is set. If the mes-

sage lost arbitration the TXBNCTRL.MLOA bit will be

set.

3.4 TXnRTS Pins

The TXNRTS Pins are input pins that can be configured

as request-to-send inputs, which provides a secondary

means of initiating the transmission of a message from

any of the transmit buffers, or as standard digital inputs.

Configuration and control of these pins is accomplished

using the TXRTSCTRL register (see Register 3-2). The

TXRTSCTRL register can only be modified when the

MCP2510 is in configuration mode (see Section 9.0). If

configured to operate as a request to send pin, the pin

is mapped into the respective TXBNCTRL.TXREQ bit

for the transmit buffer. The TXREQ bit is latched by the

falling edge of the TXNRTS pin. The TXNRTS pins are

designed to allow them to be tied directly to the RXNBF

pins to automatically initiate a message transmission

when the RXNBF pin goes low. The TXNRTS pins have

internal pullup resistors of 100 kΩ (nominal).

3.5 Aborting Transmission

The MCU can request to abort a message in a specific

message buffer by clearing the associated TXBnC-

TRL.TXREQ bit. Also, all pending messages can be

requested to be aborted by setting the CAN-

CTRL.ABAT bit. If the CANCTRL.ABAT bit is set to

abort all pending messages, the user MUST reset this

bit (typically after the user verifies that all TXREQ bits

have been cleared) to continue trasmit messages. The

CANCTRL.ABTF flag will only be set if the abort was

requested via the CANCTRL.ABAT bit. Aborting a mes-

sage by resetting the TXREQ bit does cause the ATBF

bit to be set.

MCP2510

DS21291F-page 16 © 2007 Microchip Technology Inc.

Only messages that have not already begun to be

transmitted can be aborted. Once a message has

begun transmission, it will not be possible for the user

to reset the TXBnCTRL.TXREQ bit. After transmission

of a message has begun, if an error occurs on the bus

or if the message loses arbitration, the message will be

retransmitted regardless of a request to abort.

FIGURE 3-1: TRANSMIT MESSAGE FLOWCHART

Start

Is
CAN Bus available

to start transmission

No

Examine TXBnCTRL.TXP <1:0> to

Are any
TXBnCTRL.TXREQ

?
bits = 1

The message transmission
sequence begins when the
device determines that the
TXBnCTRL.TXREQ for any of
the transmit registers has been
set.

Clear:

TXBnCTRL.ABTF
TXBnCTRL.MLOA
TXBnCTRL.TXERR

Yes

?

is
TXBnCTRL.TXREQ=0

CANCTRL.ABAT=1

Clearing the TxBnCTRL.TXREQ
bit while it is set, or setting the
CANCTRL.ABAT bit before the
message has started transmission
will abort the message.

No

Transmit Message

Was
Message Transmitted

Successfully?

No

Yes

Set TxBnCTRL.TXREQ=0

CANINTE.TXnIE=1?Generate
Interrupt

Yes

Yes

Yes

Set

Did
a message error

occur?

Was
Arbitration lost during

transmission?

Set
TxBnCTRL.TXERR=1

Yes

No

No

Determine Highest Priority Message

No

?

TxBnCTRL.MLOA=1

The CANINTE.TXnIE bit
determines if an interrupt
should be generated when
a message is successfully
transmitted.

GOTO START

CANTINF.TXnIF=1

Yes

No

© 2007 Microchip Technology Inc. DS21291F-page 17

MCP2510

REGISTER 3-1: TXBNCTRL Transmit Buffer N Control Register
(ADDRESS: 30h, 40h, 50h)

U-0 R-0 R-0 R-0 R/W-0 U-0 R/W-0 R/W-0

— ABTF MLOA TXERR TXREQ — TXP1 TXP0

bit 7 bit 0

bit 7 Unimplemented: Read as '0'

bit 6 ABTF: Message Aborted Flag

1 = Message was aborted

0 = Message completed transmission successfully

bit 5 MLOA: Message Lost Arbitration

1 = Message lost arbitration while being sent

0 = Message did not lose arbitration while being sent

bit 4 TXERR: Transmission Error Detected

1 = A bus error occurred while the message was being transmitted

0 = No bus error occurred while the message was being transmitted

bit 3 TXREQ: Message Transmit Request

1 = Buffer is currently pending transmission

(MCU sets this bit to request message be transmitted - bit is automatically cleared when

the message is sent)

0 = Buffer is not currently pending transmission

(MCU can clear this bit to request a message abort)

bit 2 Unimplemented: Read as '0'

bit 1-0 TXP<1:0>: Transmit Buffer Priority

11 = Highest Message Priority

10 = High Intermediate Message Priority

11 = Low Intermediate Message Priority

00 = Lowest Message Priority

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown

MCP2510

DS21291F-page 18 © 2007 Microchip Technology Inc.

REGISTER 3-2: TXRTSCTRL - TXNRTS PIN CONTROL AND STATUS REGISTER
(ADDRESS: 0Dh)

REGISTER 3-3: TXBNSIDH - TRANSMIT BUFFER N STANDARD IDENTIFIER HIGH
(ADDRESS: 31h, 41h, 51h)

U-0 U-0 R-x R-x R-x R/W-0 R/W-0 R/W-0

— — B2RTS B1RTS B0RTS B2RTSM B1RTSM B0RTSM

bit 7 bit 0

bit 7 Unimplemented: Read as '0'

bit 6 Unimplemented: Read as '0'

bit 5 B2RTS: TX2RTS Pin State

- Reads state of TX2RTS pin when in digital input mode

- Reads as ‘0’ when pin is in ‘request to send’ mode

bit 4 B1RTS: TX1RTX Pin State

- Reads state of TX1RTS pin when in digital input mode

- Reads as ‘0’ when pin is in ‘request to send’ mode

bit 3 B0RTS: TX0RTS Pin State

- Reads state of TX0RTS pin when in digital input mode

- Reads as ‘0’ when pin is in ‘request to send’ mode

bit 2 B2RTSM: TX2RTS Pin Mode

1 = Pin is used to request message transmission of TXB2 buffer (on falling edge)

0 = Digital input

bit 1 B1RTSM: TX1RTS Pin Mode

1 = Pin is used to request message transmission of TXB1 buffer (on falling edge)

0 = Digital input

bit 0 B0RTSM: TX0RTS Pin Mode

1 = Pin is used to request message transmission of TXB0 buffer (on falling edge)

0 = Digital input

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3

bit 7 bit 0

bit 7-0 SID<10:3>: Standard Identifier Bits <10:3>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown

© 2007 Microchip Technology Inc. DS21291F-page 19

MCP2510

REGISTER 3-4: TXBNSIDL - Transmit Buffer N Standard Identifier Low
(ADDRESS: 32h, 42h, 52h)

REGISTER 3-5: TXBNEID8 - TRANSMIT BUFFER N EXTENDED IDENTIFIER HIGH
(ADDRESS: 33h, 43h, 53h)

REGISTER 3-6: TXBNEID0 - TRANSMIT BUFFER N EXTENDED IDENTIFIER LOW
(ADDRESS: 34h, 44h, 54h)

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

SID2 SID1 SID0 — EXIDE — EID17 EID16

bit 7 bit 0

bit 7-5 SID<2:0>: Standard Identifier Bits <2:0>

bit 4 Unimplemented: Reads as '0’

bit 3 EXIDE: Extended Identifier Enable

1 = Message will transmit extended identifier

0 = Message will transmit standard identifier

bit 2 Unimplemented: Reads as '0’

bit 1-0 EID<17:16>: Extended Identifier Bits <17:16>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8

bit 7 bit 0

bit 7-0 EID<15:8>: Extended Identifier Bits <15:8>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0

bit 7 bit 0

bit 7-0 EID<7:0>: Extended Identifier Bits <7:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown

MCP2510

DS21291F-page 20 © 2007 Microchip Technology Inc.

REGISTER 3-7: TXBNDLC - Transmit Buffer N Data Length Code
(ADDRESS: 35h, 45h, 55h)

REGISTER 3-8: TXBNDM - Transmit Buffer N Data Field Byte m
(ADDRESS: 36h-3Dh, 46h-4Dh, 56h-5Dh)

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

— RTR — — DLC3 DLC2 DLC1 DLC0

bit 7 bit 0

bit 7 Unimplemented: Reads as '0’

bit 6 RTR: Remote Transmission Request Bit

1 = Transmitted Message will be a Remote Transmit Request

0 = Transmitted Message will be a Data Frame

bit 5-4 Unimplemented: Reads as '0’

bit 3-0 DLC<3:0>: Data Length Code

Sets the number of data bytes to be transmitted (0 to 8 bytes)

Note: It is possible to set the DLC to a value greater than 8, however only 8 bytes are trans-

mitted

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

TXBNDm

7

TXBNDm

6

TXBNDm

5

TXBNDm

4

TXBNDm

3

TXBNDm

2

TXBNDm

1

TXBNDm

0

bit 7 bit 0

bit 7-0 TXBNDM7:TXBNDM0: Transmit Buffer N Data Field Byte m

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown

© 2007 Microchip Technology Inc. DS21291F-page 21

MCP2510

4.0 MESSAGE RECEPTION

4.1 Receive Message Buffering

The MCP2510 includes two full receive buffers with

multiple acceptance filters for each. There is also a

separate Message Assembly Buffer (MAB) which acts

as a third receive buffer (see Figure 4-1).

4.2 Receive Buffers

Of the three Receive Buffers, the MAB is always com-

mitted to receiving the next message from the bus. The

remaining two receive buffers are called RXB0 and

RXB1 and can receive a complete message from the

protocol engine. The MCU can access one buffer while

the other buffer is available for message reception or

holding a previously received message.

The MAB assembles all messages received. These

messages will be transferred to the RXBN buffers (See

Register 4-4 to Register 4-9) only if the acceptance fil-

ter criteria are met.

When a message is moved into either of the receive

buffers the appropriate CANINTF.RXNIF bit is set. This

bit must be cleared by the MCU, when it has completed

processing the message in the buffer, in order to allow

a new message to be received into the buffer. This bit

provides a positive lockout to ensure that the MCU has

finished with the message before the MCP2510

attempts to load a new message into the receive buffer.

If the CANINTE.RXNIE bit is set an interrupt will be gen-

erated on the INT pin to indicate that a valid message

has been received.

4.3 Receive Priority

RXB0 is the higher priority buffer and has two message

acceptance filters associated with it. RXB1 is the lower

priority buffer and has four acceptance filters associ-

ated with it. The lower number of acceptance filters

makes the match on RXB0 more restrictive and implies

a higher priority for that buffer. Additionally, the

RXB0CTRL register can be configured such that if

RXB0 contains a valid message, and another valid

message is received, an overflow error will not occur

and the new message will be moved into RXB1 regard-

less of the acceptance criteria of RXB1. There are also

two programmable acceptance filter masks available,

one for each receive buffer (see Section 4.5).

When a message is received, bits <3:0> of the RXBNC-

TRL Register will indicate the acceptance filter number

that enabled reception, and whether the received mes-

sage is a remote transfer request.

The RXBNCTRL.RXM bits set special receive modes.

Normally, these bits are set to 00 to enable reception of

all valid messages as determined by the appropriate

acceptance filters. In this case, the determination of

whether or not to receive standard or extended mes-

sages is determined by the RFXNSIDL.EXIDE bit in the

acceptance filter register. If the RXBNCTRL.RXM bits

are set to 01 or 10, the receiver will accept only mes-

sages with standard or extended identifiers respec-

tively. If an acceptance filter has the RFXNSIDL.EXIDE

bit set such that it does not correspond with the

RXBNCTRL.RXM mode, that acceptance filter is ren-

dered useless. These two modes of RXBNCTRL.RXM

bits can be used in systems where it is known that only

standard or extended messages will be on the bus. If

the RXBNCTRL.RXM bits are set to 11, the buffer will

receive all messages regardless of the values of the

acceptance filters. Also, if a message has an error

before the end of frame, that portion of the message

assembled in the MAB before the error frame will be

loaded into the buffer. This mode has some value in

debugging a CAN system and would not be used in an

actual system environment.

4.4 RX0BF and RX1BF Pins

In addition to the INT pin which provides an interrupt

signal to the MCU for many different conditions, the

receive buffer full pins (RX0BF and RX1BF) can be

used to indicate that a valid message has been loaded

into RXB0 or RXB1, respectively.

The RXBNBF full pins can be configured to act as buffer

full interrupt pins or as standard digital outputs. Config-

uration and status of these pins is available via the

BFPCTRL register (Register 4-3). When set to operate

in interrupt mode (by setting BFPCTRL.BxBFE and

BFPCTRL.BxBFM bits to a 1), these pins are active low

and are mapped to the CANINTF.RXNIF bit for each

receive buffer. When this bit goes high for one of the

receive buffers, indicating that a valid message has

been loaded into the buffer, the corresponding RXNBF

pin will go low. When the CANINTF.RXNIF bit is cleared

by the MCU, then the corresponding interrupt pin will

go to the logic high state until the next message is

loaded into the receive buffer.

When used as digital outputs, the BFPCTRL.BxBFM

bits must be cleared to a ‘0’ and BFPCTRL.BxBFE bits

must be set to a ‘1’ for the associated buffer. In this

mode the state of the pin is controlled by the BFPC-

TRL.BxBFS bits. Writting a ‘1’ to the BxBFS bit will

cause a high level to be driven on the assicated buffer

full pin, and a ‘0’ will cause the pin to drive low. When

using the pins in this mode the state of the pin should

be modified only by using the Bit Modify SPI command

to prevent glitches from occuring on either of the buffer

full pins.

Note: The entire contents of the MAB is moved

into the receive buffer once a message is

accepted. This means that regardless of

the type of identifier (standard or extended)

and the number of data bytes received, the

entire receive buffer is overwritten with the

MAB contents. Therefore the contents of

all registers in the buffer must be assumed

to have been modified when any message

is received.

MCP2510

DS21291F-page 22 © 2007 Microchip Technology Inc.

FIGURE 4-1: RECEIVE BUFFER BLOCK DIAGRAM

Acceptance Mask
RXM1

Acceptance Filter
RXF2

Acceptance Filter
RXF3

Acceptance Filter
RXF4

Acceptance Filter
RXF5

Acceptance Mask
RXM0

Acceptance Filter
RXF0

Acceptance Filter
RXF1

Identifier

Data Field Data Field

Identifier

A
c
c
e
p
t

A
c
c
e
p
t

R
X
B
0

R
X
B
1

M
A
B

© 2007 Microchip Technology Inc. DS21291F-page 23

MCP2510

FIGURE 4-2: MESSAGE RECEPTION FLOWCHART

Set RXBF0

Start

Detect
Start of

Message
?

Valid
Message
Received

?

Generate
Error

Message
Identifier meets
a filter criteria

?

Is
CANINTF.RX0IF=0

?

Go to Start

Move message into RXB0

Set RXB0CTRL.FILHIT <2:0>

Is
CANINTF.RX1IF = 0

?

Move message into RXB1

Set CANINTF.RX1IF=1

Yes, meets criteria
for RXBO

No

Generate
Interrupt on INT

Yes Yes

No
No

Yes

Yes

No

No

Yes

Yes

Frame

The CANINTF.RXnIF bit
determines if the receive
register is empty and able
to accept a new message

No Yes

No

Begin Loading Message into
Message Assembly Buffer (MAB)

according to which filter criteria
was met

Set RXB0CTRL.FILHIT <0>
according to which filter criteria

Set CANSTAT <3:0> accord-
ing to which receive buffer
the message was loaded into

Is
RXB0CTRL.BUKT=1

?

The RXB0CTRL.BUKT
bit determines if RXB0
can roll over into RXB1
if it is full

Generate Overflow Error:
Set EFLG.RX1OVR

Is
CANINTE.ERRIE=1

?

No

Go to Start

Yes

No

ARE

BFPCTRL.B0BFM=1

?

BF1CTRL.B0BFE=1

AND
Pin = 0

No

Set RXBF1
Pin = 0

No

Yes
Yes

CANINTE.RX0IE=1? CANINTE.RX1IE=1?

RXB1RXB0

Yes, meets criteria
for RXB1

Set EFLG.RX0OVR
Generate Overflow Error:

Set CANINTF.RX0IF=1

ARE

BFPCTRL.B1BFM=1

?

BF1CTRL.B1BFE=1

AND

MCP2510

DS21291F-page 24 © 2007 Microchip Technology Inc.

REGISTER 4-1: RXB0CTRL - RECEIVE BUFFER 0 CONTROL REGISTER
(ADDRESS: 60h)

U-0 R/W-0 R/W-0 U-0 R-0 R/W-0 R-0 R-0

— RXM1 RXM0 — RXRTR BUKT BUKT1 FILHIT0

bit 7 bit 0

bit 7 Unimplemented: Read as '0'

bit 6-5 RXM<1:0>: Receive Buffer Operating Mode

11 =Turn mask/filters off; receive any message

10 =Receive only valid messages with extended identifiers that meet filter criteria

01 =Receive only valid messages with standard identifiers that meet filter criteria

00 =Receive all valid messages using either standard or extended identifiers that meet filter

criteria

bit 4 Unimplemented: Read as '0'

bit 3 RXRTR: Received Remote Transfer Request

1 = Remote Transfer Request Received

0 = No Remote Transfer Request Received

bit 2 BUKT: Rollover Enable

1 = RXB0 message will rollover and be written to RXB1 if RXB0 is full

0 = Rollover disabled

bit 1 BUKT1: Read Only Copy of BUKT Bit (used internally by the MCP2510).

bit 0 FILHIT<0>: Filter Hit - indicates which acceptance filter enabled reception of message

1 = Acceptance Filter 1 (RXF1)

0 = Acceptance Filter 0 (RXF0)

Note: If a rollover from RXB0 to RXB1 occurs, the FILHIT bit will reflect the filter that accepted

the message that rolled over

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown

© 2007 Microchip Technology Inc. DS21291F-page 25

MCP2510

REGISTER 4-2: RXB1CTRL - RECEIVE BUFFER 1 CONTROL REGISTER
(ADDRESS: 70h)

U-0 R/W-0 R/W-0 U-0 R-0 R-0 R-0 R-0

— RXM1 RXM0 — RXRTR FILHIT2 FILHIT1 FILHIT0

bit 7 bit 0

bit 7 Unimplemented: Read as '0'

bit 6-5 RXM<1:0>: Receive Buffer Operating Mode

11 =Turn mask/filters off; receive any message

10 =Receive only valid messages with extended identifiers that meet filter criteria

01 =Receive only valid messages with standard identifiers that meet filter criteria

00 =Receive all valid messages using either standard or extended identifiers that meet filter

criteria

bit 4 Unimplemented: Read as '0'

bit 3 RXRTR: Received Remote Transfer Request

1 = Remote Transfer Request Received

0 = No Remote Transfer Request Received

bit 2-0 FILHIT<2:0>: Filter Hit - indicates which acceptance filter enabled reception of message

101 = Acceptance Filter 5 (RXF5)

100 = Acceptance Filter 4 (RXF4)

011 = Acceptance Filter 3 (RXF3)

010 = Acceptance Filter 2 (RXF2)

001 = Acceptance Filter 1 (RXF1) (Only if BUKT bit set in RXB0CTRL)

000 = Acceptance Filter 0 (RXF0) (Only if BUKT bit set in RXB0CTRL)

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown

	Contact us
	Features
	Description
	Package Types�
	Most Current Data Sheet
	Errata
	Customer Notification System
	1.0 Device Functionality
	1.1 Overview
	FIGURE 1-1: block diagram��
	FIGURE 1-2: typical system implementation��
	TABLE 1-1: pin descriptions�

	1.2 Transmit/Receive Buffers
	FIGURE 1-3: CAN Buffers and Protocol Engine Block Diagram��

	1.3 CAN Protocol Engine
	1.4 Protocol Finite State Machine
	1.5 Cyclic Redundancy Check
	1.6 Error Management Logic
	1.7 Bit Timing Logic
	FIGURE 1-4: CAN Protocol Engine Block Diagram�

	2.0 Can Message Frames
	2.1 Standard Data Frame
	2.2 Extended Data Frame
	2.3 Remote Frame
	2.4 Error Frame
	2.5 Overload Frame
	2.6 Interframe Space
	FIGURE 2-1: Standard data frame�
	FIGURE 2-2: extended Data Frame�
	FIGURE 2-3: remote Data Frame�
	FIGURE 2-4: error Data Frame�
	FIGURE 2-5: overload Frame�

	3.0 Message Transmission
	3.1 Transmit Buffers
	3.2 Transmit Priority
	3.3 Initiating Transmission
	3.4 TXnRTS Pins
	3.5 Aborting Transmission
	FIGURE 3-1: transmit mesSage flowchart�

	4.0 Message Reception
	4.1 Receive Message Buffering
	4.2 Receive Buffers
	4.3 Receive Priority
	4.4 RX0BF and RX1BF Pins
	FIGURE 4-1: Receive Buffer Block Diagram�
	FIGURE 4-2: Message Reception Flowchart�

