
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

 2003-2016 Microchip Technology Inc. DS20001801H-page 1

MCP2515

Features

• Implements CAN V2.0B at 1 Mb/s:

- 0 to 8-byte length in the data field

- Standard and extended data and remote

frames

• Receive Buffers, Masks and Filters:

- Two receive buffers with prioritized message

storage

- Six 29-bit filters

- Two 29-bit masks

• Data Byte Filtering on the First Two Data Bytes

(applies to standard data frames)

• Three Transmit Buffers with Prioritization and

Abort Features

• High-Speed SPI Interface (10 MHz):

- SPI modes 0,0 and 1,1

• One-Shot mode Ensures Message Transmission

is Attempted Only One Time

• Clock Out Pin with Programmable Prescaler:

- Can be used as a clock source for other

device(s)

• Start-of-Frame (SOF) Signal is Available for

Monitoring the SOF Signal:

- Can be used for time slot-based protocols

and/or bus diagnostics to detect early bus

degradation

• Interrupt Output Pin with Selectable Enables

• Buffer Full Output Pins Configurable as:

- Interrupt output for each receive buffer

- General purpose output

• Request-to-Send (RTS) Input Pins Individually

Configurable as:

- Control pins to request transmission for each

transmit buffer

- General purpose inputs

• Low-Power CMOS Technology:

- Operates from 2.7V-5.5V

- 5 mA active current (typical)

- 1 µA standby current (typical) (Sleep mode)

• Temperature Ranges Supported:

- Industrial (I): -40°C to +85°C

- Extended (E): -40°C to +125°C

Description

Microchip Technology’s MCP2515 is a stand-alone

Controller Area Network (CAN) controller that imple-

ments the CAN specification, Version 2.0B. It is capable

of transmitting and receiving both standard and

extended data and remote frames. The MCP2515 has

two acceptance masks and six acceptance filters that

are used to filter out unwanted messages, thereby

reducing the host MCU’s overhead. The MCP2515

interfaces with microcontrollers (MCUs) via an industry

standard Serial Peripheral Interface (SPI).

Package Types

16

5

TXCAN

RXCAN

VDD

RESET

CS

SO

M
C

P
2

5
1
5

1

2

3

4

18

17

16

15

SI

SCK

INT

RX0BF

14

13

12

11

RX1BF10

OSC2

OSC1

CLKOUT/SOF

TX2RTS

5

6

7

8

VSS 9

TX0RTS

TX1RTS

TXCAN

RXCAN

TX0RTS

OSC1

CLKOUT/SOF

OSC2

CS

VDD

RESET

SO

SCK

INT

SI

RX0BF
RX1BFVSS

TX1RTS

TX2RTS

NC NC

18-Lead PDIP/SOIC

20-Lead TSSOP

2

NC

TX2RTS

TX0RTS

SO

SI

O
S

C
2

NC

O
S

C
1

G
N

D

R
X

1
B

F

SCK

R
X

C
A

N

T
X

C
A

N

V
D

D

R
E

S
E

T

TX1RTS
EP

20

1

19 18 17

3

4

14

13

12

11

6 7 8 9

21

10

15CLKOUT

C
S

INT

R
X

0
B

F

* Includes Exposed Thermal Pad (EP); see Table 1-1.

13

12

1

2

3
4
5

6

7
8
9

20

19

18
17
16

15

14

1110

M
C

P
2

5
1

5

20-Lead QFN*

Stand-Alone CAN Controller with SPI Interface

MCP2515

DS20001801H-page 2  2003-2016 Microchip Technology Inc.

NOTES:

 2003-2016 Microchip Technology Inc. DS20001801H-page 3

MCP2515

1.0 DEVICE OVERVIEW

The MCP2515 is a stand-alone CAN controller devel-

oped to simplify applications that require interfacing

with a CAN bus. A simple block diagram of the

MCP2515 is shown in Figure 1-1. The device consists

of three main blocks:

1. The CAN module, which includes the CAN

protocol engine, masks, filters, transmit and

receive buffers.

2. The control logic and registers that are used to

configure the device and its operation.

3. The SPI protocol block.

An example system implementation using the device is

shown in Figure 1-2.

1.1 CAN Module

The CAN module handles all functions for receiving and

transmitting messages on the CAN bus. Messages are

transmitted by first loading the appropriate message buf-

fer and control registers. Transmission is initiated by

using control register bits via the SPI interface or by

using the transmit enable pins. Status and errors can be

checked by reading the appropriate registers. Any

message detected on the CAN bus is checked for errors

and then matched against the user-defined filters to see

if it should be moved into one of the two receive buffers.

1.2 Control Logic

The control logic block controls the setup and operation

of the MCP2515 by interfacing to the other blocks in

order to pass information and control.

Interrupt pins are provided to allow greater system

flexibility. There is one multipurpose interrupt pin (as

well as specific interrupt pins) for each of the receive

registers that can be used to indicate a valid message

has been received and loaded into one of the receive

buffers. Use of the specific interrupt pins is optional.

The general purpose interrupt pin, as well as status

registers (accessed via the SPI interface), can also be

used to determine when a valid message has been

received.

Additionally, there are three pins available to initiate

immediate transmission of a message that has been

loaded into one of the three transmit registers. Use of

these pins is optional, as initiating message transmis-

sions can also be accomplished by utilizing control

registers accessed via the SPI interface.

1.3 SPI Protocol Block

The MCU interfaces to the device via the SPI interface.

Writing to, and reading from, all registers is

accomplished using standard SPI read and write

commands, in addition to specialized SPI commands.

FIGURE 1-1: BLOCK DIAGRAM

SPI
Interface

Logic

SPI
Bus

INT

CS

SCK

SI

SO

CAN
Protocol
Engine

RXCAN

TXCAN

Control Logic

RX0BF

RX1BF

TX0RTS

TX1RTS

TX2RTS

TX and RX Buffers

Masks and Filters

CAN Module

RESET

Timing
Generation

OSC1

OSC2

CLKOUT

Control
and

Interrupt
Registers

MCP2515

DS20001801H-page 4  2003-2016 Microchip Technology Inc.

FIGURE 1-2: EXAMPLE SYSTEM IMPLEMENTATION

TABLE 1-1: PINOUT DESCRIPTION

Name

PDIP/

SOIC

Pin #

TSSOP

Pin #

QFN

Pin #

I/O/P

Type
Description Alternate Pin Function

TXCAN 1 1 19 O Transmit output pin to CAN bus —

RXCAN 2 2 20 I Receive input pin from CAN bus —

CLKOUT 3 3 1 O Clock output pin with programmable

prescaler

Start-of-Frame signal

TX0RTS 4 4 2 I Transmit buffer TXB0 Request-to-Send;

100 kinternal pull-up to VDD

General purpose digital input,

100 kinternal pull-up to VDD

TX1RTS 5 5 3 I Transmit buffer TXB1 Request-to-Send;

100 kinternal pull-up to VDD

General purpose digital input,

100 kinternal pull-up to VDD

TX2RTS 6 7 5 I Transmit buffer TXB2 Request-to-Send;

100 kinternal pull-up to VDD

General purpose digital input,

100 kinternal pull-up to VDD

OSC2 7 8 6 O Oscillator output —

OSC1 8 9 7 I Oscillator input External clock input

VSS 9 10 8 P Ground reference for logic and I/O

pins

—

RX1BF 10 11 9 O Receive buffer RXB1 interrupt pin or

general purpose digital output

General purpose digital output

RX0BF 11 12 10 O Receive buffer RXB0 interrupt pin or

general purpose digital output

General purpose digital output

INT 12 13 11 O Interrupt output pin —

SCK 13 14 12 I Clock input pin for SPI interface —

SI 14 16 14 I Data input pin for SPI interface —

SO 15 17 15 O Data output pin for SPI interface —

CS 16 18 16 I Chip select input pin for SPI interface —

RESET 17 19 17 I Active-low device Reset input —

VDD 18 20 18 P Positive supply for logic and I/O pins —

NC — 6,15 4,13 — No internal connection —

Legend: I = Input; O = Output; P = Power

XCVR

SPI

TX RX

CANH

CANL

XCVR

SPI

TX RX

XCVR

SPI

TX RX

Node
Controller

MCP2515

Node
Controller

MCP2515

Node
Controller

MCP2515

 2003-2016 Microchip Technology Inc. DS20001801H-page 5

MCP2515

1.4 Transmit/Receive Buffers/Masks/
Filters

The MCP2515 has three transmit and two receive

buffers, two acceptance masks (one for each receive

buffer) and a total of six acceptance filters. Figure 1-3

shows a block diagram of these buffers and their

connection to the protocol engine.

FIGURE 1-3: CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM

Acceptance Filter
RXF2

R
X
B
1

Identifier

Data Field Data Field

Identifier

Acceptance Mask
RXM1

Acceptance Filter
RXF3

Acceptance Filter
RXF4

Acceptance Filter
RXF5

M
A
B

Acceptance Filter
RXF0

Acceptance Filter
RXF1

R
X
B
0

T
X

R
E

Q

TXB2
A

B
T

F
M

L
O

A
T

X
E

R
R

M
E

S
S

A
G

E

Message
Queue
Control

T
X

R
E

Q

TXB0

A
B

T
F

M
L

O
A

T
X

E
R

R

M
E

S
S

A
G

E

Comparator

Receive
Error

Transmit
Error

Protocol

REC

TEC

ErrPas

BusOff

Finite
State

Machine

Counter

Counter

Shift<14:0>
{Transmit<5:0>, Receive<8:0>}

Transmit

Logic

TX RX
Configuration

Registers

Clock
Generator

PROTOCOL
ENGINE

BUFFERS

T
X

R
E

Q

TXB1

A
B

T
F

M
L

O
A

T
X

E
R

R

M
E

S
S

A
G

E

Acceptance Mask
RXM0

A
c
c
e
p
t

A
c
c
e
p
t

SOF

Bit
Timing
Logic

Receive<7:0>Transmit<7:0>

Transmit Byte Sequencer

CRC<14:0>

MCP2515

DS20001801H-page 6  2003-2016 Microchip Technology Inc.

1.5 CAN Protocol Engine

The CAN protocol engine combines several functional

blocks, shown in Figure 1-4 and described below.

1.5.1 PROTOCOL FINITE STATE MACHINE

The heart of the engine is the Finite State Machine

(FSM). The FSM is a sequencer that controls the

sequential data stream between the TX/RX Shift

register, the CRC register and the bus line. The FSM

also controls the Error Management Logic (EML) and

the parallel data stream between the TX/RX Shift

registers and the buffers. The FSM ensures that the

processes of reception, arbitration, transmission and

error signaling are performed according to the CAN

protocol. The automatic retransmission of messages

on the bus line is also handled by the FSM.

1.5.2 CYCLIC REDUNDANCY CHECK

The Cyclic Redundancy Check register generates the

Cyclic Redundancy Check (CRC) code, which is

transmitted after either the Control Field (for messages

with 0 data bytes) or the Data Field and is used to

check the CRC field of incoming messages.

1.5.3 ERROR MANAGEMENT LOGIC

The Error Management Logic (EML) is responsible for

the Fault confinement of the CAN device. Its two count-

ers, the Receive Error Counter (REC) and the Transmit

Error Counter (TEC), are incremented and decremented

by commands from the bit stream processor. Based on

the values of the error counters, the CAN controller is set

into the states: error-active, error-passive or bus-off.

1.5.4 BIT TIMING LOGIC

The Bit Timing Logic (BTL) monitors the bus line input

and handles the bus related bit timing according to the

CAN protocol. The BTL synchronizes on a recessive-

to-dominant bus transition at the Start-of-Frame (hard

synchronization) and on any further recessive-to-

dominant bus line transition if the CAN controller itself

does not transmit a dominant bit (resynchronization).

The BTL also provides programmable Time Segments

to compensate for the propagation delay time, phase

shifts and to define the position of the sample point

within the bit time. The programming of the BTL

depends on the baud rate and external physical delay

times.

FIGURE 1-4: CAN PROTOCOL ENGINE BLOCK DIAGRAM

Bit Timing Logic

CRC<14:0>

Comparator

Receive<7:0> Transmit<7:0>

Sample<2:0>

Majority
Decision

StuffReg<5:0>

Comparator

Transmit Logic

Receive

Error Counter

Transmit

Error Counter

Protocol
FSM

RX

SAM

BusMon

Rec/Trm Addr.
RecData<7:0> TrmData<7:0>

Shift<14:0>
(Transmit<5:0>, Receive<7:0>)

TX

REC

TEC

ErrPas

BusOff

Interface to Standard Buffer

SOF

 2003-2016 Microchip Technology Inc. DS20001801H-page 7

MCP2515

2.0 CAN MESSAGE FRAMES

The MCP2515 supports standard data frames, extended

data frames and remote frames (standard and

extended), as defined in the CAN 2.0B specification.

2.1 Standard Data Frame

The CAN standard data frame is shown in Figure 2-1.

As with all other frames, the frame begins with a Start-

of-Frame (SOF) bit, which is of the dominant state and

allows hard synchronization of all nodes.

The SOF is followed by the arbitration field, consisting

of 12 bits: the 11-bit identifier and the Remote

Transmission Request (RTR) bit. The RTR bit is used

to distinguish a data frame (RTR bit dominant) from a

remote frame (RTR bit recessive).

Following the arbitration field is the control field,

consisting of six bits. The first bit of this field is the

Identifier Extension (IDE) bit, which must be dominant

to specify a standard frame. The following bit, Reserved

Bit Zero (RB0), is reserved and is defined as a dominant

bit by the CAN protocol. The remaining four bits of the

control field are the Data Length Code (DLC), which

specifies the number of bytes of data (0-8 bytes)

contained in the message.

After the control field, is the data field, which contains

any data bytes that are being sent, and is of the length

defined by the DLC (0-8 bytes).

The Cyclic Redundancy Check (CRC) field follows the

data field and is used to detect transmission errors. The

CRC field consists of a 15-bit CRC sequence, followed

by the recessive CRC Delimiter bit.

The final field is the two-bit Acknowledge (ACK) field.

During the ACK Slot bit, the transmitting node sends

out a recessive bit. Any node that has received an

error-free frame Acknowledges the correct reception of

the frame by sending back a dominant bit (regardless

of whether the node is configured to accept that

specific message or not). The recessive Acknowledge

delimiter completes the Acknowledge field and may not

be overwritten by a dominant bit.

2.2 Extended Data Frame

In the extended CAN data frame, shown in Figure 2-2,

the SOF bit is followed by the arbitration field, which

consists of 32 bits. The first 11 bits are the Most

Significant bits (MSb) (Base-lD) of the 29-bit identifier.

These 11 bits are followed by the Substitute Remote

Request (SRR) bit, which is defined to be recessive.

The SRR bit is followed by the lDE bit, which is

recessive to denote an extended CAN frame.

It should be noted that if arbitration remains unresolved

after transmission of the first 11 bits of the identifier, and

one of the nodes involved in the arbitration is sending

a standard CAN frame (11-bit identifier), the standard

CAN frame will win arbitration due to the assertion of a

dominant lDE bit. Also, the SRR bit in an extended

CAN frame must be recessive to allow the assertion of

a dominant RTR bit by a node that is sending a

standard CAN remote frame.

The SRR and lDE bits are followed by the remaining

18 bits of the identifier (Extended lD) and the Remote

Transmission Request bit.

To enable standard and extended frames to be sent

across a shared network, the 29-bit extended message

identifier is split into 11-bit (Most Significant) and 18-bit

(Least Significant) sections. This split ensures that the

lDE bit can remain at the same bit position in both the

standard and extended frames.

Following the arbitration field is the six-bit control field.

The first two bits of this field are reserved and must be

dominant. The remaining four bits of the control field

are the DLC, which specifies the number of data bytes

contained in the message.

The remaining portion of the frame (data field, CRC

field, Acknowledge field, End-of-Frame and intermis-

sion) is constructed in the same way as a standard data

frame (see Section 2.1 “Standard Data Frame”).

2.3 Remote Frame

Normally, data transmission is performed on an

autonomous basis by the data source node (e.g., a

sensor sending out a data frame). It is possible,

however, for a destination node to request data from the

source. To accomplish this, the destination node sends

a remote frame with an identifier that matches the iden-

tifier of the required data frame. The appropriate data

source node will then send a data frame in response to

the remote frame request.

There are two differences between a remote frame

(shown in Figure 2-3) and a data frame. First, the RTR

bit is at the recessive state, and second, there is no

data field. In the event of a data frame and a remote

frame with the same identifier being transmitted at the

same time, the data frame wins arbitration due to the

dominant RTR bit following the identifier. In this way,

the node that transmitted the remote frame receives

the desired data immediately.

2.4 Error Frame

An error frame is generated by any node that detects a

bus error. An error frame, shown in Figure 2-4, consists

of two fields: an error flag field followed by an error

delimiter field. There are two types of error flag fields.

The type of error flag field sent depends upon the error

status of the node that detects and generates the error

flag field.

MCP2515

DS20001801H-page 8  2003-2016 Microchip Technology Inc.

2.4.1 ACTIVE ERRORS

If an error-active node detects a bus error, the node

interrupts transmission of the current message by

generating an active error flag. The active error flag is

composed of six consecutive dominant bits. This bit

sequence actively violates the bit-stuffing rule. All other

stations recognize the resulting bit-stuffing error, and in

turn, generate error frames themselves, called error

echo flags.

The error flag field, therefore, consists of between six

and twelve consecutive dominant bits (generated by

one or more nodes). The error delimiter field (eight

recessive bits) completes the error frame. Upon

completion of the error frame, bus activity returns to

normal and the interrupted node attempts to resend the

aborted message.

2.4.2 PASSIVE ERRORS

If an error-passive node detects a bus error, the node

transmits an error-passive flag followed by the error

delimiter field. The error-passive flag consists of six

consecutive recessive bits. The error frame for an error-

passive node consists of 14 recessive bits. From this, it

follows that unless the bus error is detected by an error-

active node or the transmitting node, the message will

continue transmission because the error-passive flag

does not interfere with the bus.

If the transmitting node generates an error-passive flag,

it will cause other nodes to generate error frames due to

the resulting bit-stuffing violation. After transmission of

an error frame, an error-passive node must wait for six

consecutive recessive bits on the bus before attempting

to rejoin bus communications.

The error delimiter consists of eight recessive bits, and

allows the bus nodes to restart bus communications

cleanly after an error has occurred.

2.5 Overload Frame

An overload frame, shown in Figure 2-5, has the same

format as an active-error frame. An overload frame,

however, can only be generated during an interframe

space. In this way, an overload frame can be

differentiated from an error frame (an error frame is

sent during the transmission of a message). The

overload frame consists of two fields: an overload flag

followed by an overload delimiter. The overload flag

consists of six dominant bits followed by overload flags

generated by other nodes (and, as for an active error

flag, giving a maximum of twelve dominant bits). The

overload delimiter consists of eight recessive bits. An

overload frame can be generated by a node as a result

of two conditions:

1. The node detects a dominant bit during the inter-

frame space, an illegal condition. Exception: The

dominant bit is detected during the third bit of IFS.

In this case, the receivers will interpret this as a

SOF.

2. Due to internal conditions, the node is not yet

able to begin reception of the next message. A

node may generate a maximum of two sequential

overload frames to delay the start of the next

message.

2.6 Interframe Space

The interframe space separates a preceding frame (of

any type) from a subsequent data or remote frame.

The interframe space is composed of at least three

recessive bits, called the ‘Intermission’. This allows

nodes time for internal processing before the start of

the next message frame. After the intermission, the

bus line remains in the recessive state (Bus Idle) until

the next transmission starts.

Note: Error echo flags typically occur when a

localized disturbance causes one or more

(but not all) nodes to send an error flag.

The remaining nodes generate error flags

in response (echo) to the original error flag.

Note: Case 2 should never occur with the

MCP2515 due to very short internal

delays.


 2

0
0

3
-2

0
1

6
 M

ic
ro

c
h

ip
 T

e
c
h

n
o

lo
g

y
 In

c
.

D
S

2
0

0
0

1
8

0
1

H
-p

a
g

e
 9

M
C

P
2
5
1
5

F
IG

U
R

E
 2

-1
:

S
T

A
N

D
A

R
D

 D
A

T
A

 F
R

A
M

E

0 0 0 0 1 1 1 1 1 1 1 1

S
ta

rt
-o

f-
F

ra
m

e

Data Frame (number of bits = 44 + 8N)

12
Arbitration Field

ID
 1

0

11

ID
3

ID
0

Identifier

Message

Filtering

Stored in Buffers

R
T

R
ID

E
R

B
0

D
L

C
3

D
L

C
0

6

4

Control

Field

Data

Length

Code

R
e

s
e

rv
e

d
 B

it

8N (0N8)

Data Field

8 8

Stored in Transmit/Receive Buffers

Bit-Stuffing

16

CRC Field

15

CRC

7

End-of-

Frame

C
R

C
 D

e
l

A
c
k
 S

lo
t

B
it

A
C

K
 D

e
l

IFS

1 1 11

M
C

P
2
5
1
5

D
S

2
0

0
0

1
8

0
1

H
-p

a
g

e
 1

0


 2
0

0
3

-2
0

1
6

 M
ic

ro
c
h

ip
 T

e
c
h

n
o

lo
g

y
 In

c
.

F
IG

U
R

E
 2

-2
:

E
X

T
E

N
D

E
D

 D
A

T
A

 F
R

A
M

E

0 1 1 0 0 0 1

S
ta

rt
-o

f-
F

ra
m

e Arbitration Field

32

11

ID
1

0

ID
3

ID
0

ID
E

Identifier

Message
Filtering

Stored in Buffers

S
R

R

E
ID

1
7

E
ID

0
R

T
R

R
B

1
R

B
0

D
L

C
3

18

D
L

C
0

6

Control
Field

4

R
e

s
e

rv
e

d
 B

it
s

Data
Length
Code

Stored in Transmit/Receive Buffers

8 8

Data Frame (number of bits = 64 + 8N)

8N (0 N 8)

Data Field

1 1 1 1 1 1 1 1

16

CRC Field

15

CRC

C
R

C
 D

e
l

A
c
k
 S

lo
t

B
it

A
C

K
 D

e
l

End-of-
Frame

7

Bit-Stuffing

IFS

Extended Identifier

1 1 1


 2

0
0

3
-2

0
1

6
 M

ic
ro

c
h

ip
 T

e
c
h

n
o

lo
g

y
 In

c
.

D
S

2
0

0
0

1
8

0
1

H
-p

a
g

e
 1

1

M
C

P
2
5
1
5

F
IG

U
R

E
 2

-3
:

R
E

M
O

T
E

 F
R

A
M

E

0 1 1 1 0 0

S
ta

rt
-o

f-
F

ra
m

e Arbitration Field

32

11

ID
1

0

ID
3

ID
0

ID
E

Identifier

Message

Filtering

S
R

R

E
ID

1
7

E
ID

0
R

T
R

R
B

1
R

B
0

D
L

C
3

18

D
L

C
0

6

Control

Field

4

R
e

s
e

rv
e

d
 B

it
s

Data

Length

Code

Extended Identifier

1 1 1 1 1 1 1 1 1

16

CRC Field

15

CRC

C
R

C
 D

e
l

A
c
k
 S

lo
t

B
it

A
C

K
 D

e
l

End-of-

Frame

7

Remote Frame with Extended Identifier

1 1 1

IFS

No Data Field

M
C

P
2
5
1
5

D
S

2
0

0
0

1
8

0
1

H
-p

a
g

e
 1

2


 2
0

0
3

-2
0

1
6

 M
ic

ro
c
h

ip
 T

e
c
h

n
o

lo
g

y
 In

c
.

F
IG

U
R

E
 2

-4
:

A
C

T
IV

E
 E

R
R

O
R

 F
R

A
M

E

0 0 0 0

S
ta

rt
-o

f-
F

ra
m

e

Interrupted Data Frame

12
Arbitration Field

ID
 1

0

11

ID
3

ID
0

Identifier

Message

Filtering

R
T

R
ID

E
R

B
0

D
L

C
3

D
L

C
0

6

4

Control

Field

Data

Length

Code

R
e

s
e

rv
e

d
 B

it

8N (0 N 8)

Data Field

8 8

Bit-Stuffing

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

Data Frame or

Remote Frame

Error Frame

6

Error

Flag

£ 6

Echo

Error

Flag

8

Error

Delimiter

Inter-Frame Space or
Overload Frame


 2

0
0

3
-2

0
1

6
 M

ic
ro

c
h

ip
 T

e
c
h

n
o

lo
g

y
 In

c
.

D
S

2
0

0
0

1
8

0
1

H
-p

a
g

e
 1

3

M
C

P
2
5
1
5

F
IG

U
R

E
 2

-5
:

O
V

E
R

L
O

A
D

 F
R

A
M

E

0 1 0 0 1 1 1 1 1 1 1 1 1

S
ta

rt
-o

f-
F

ra
m

e

Remote Frame (number of bits = 44)

12

Arbitration Field

ID
 1

0

11

ID
0

R
T

R
ID

E
R

B
0

D
L

C
3

D
L

C
0

6

4

Control

Field

16

CRC Field

15

CRC

7

End-of-

Frame

C
R

C
 D

e
l

A
c
k
 S

lo
t

B
it

A
C

K
 D

e
l

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Overload Frame

End-of-Frame or

Error Delimiter or

Overload Delimiter

6

Overload

Flag

Overload

Delimiter

8 Inter-Frame Space or

Error Frame

MCP2515

DS20001801H-page 14  2003-2016 Microchip Technology Inc.

NOTES:

 2003-2016 Microchip Technology Inc. DS20001801H-page 15

MCP2515

3.0 MESSAGE TRANSMISSION

3.1 Transmit Buffers

The MCP2515 implements three transmit buffers. Each

of these buffers occupies 14 bytes of SRAM and are

mapped into the device memory map.

The first byte, TXBnCTRL, is a control register

associated with the message buffer. The information in

this register determines the conditions under which the

message will be transmitted and indicates the status of

the message transmission (see Register 3-1).

Five bytes are used to hold the Standard and Extended

Identifiers, as well as other message arbitration infor-

mation (see Register 3-3 through Register 3-6). The

last eight bytes are for the eight possible data bytes of

the message to be transmitted (see Register 3-8).

At a minimum, the TXBnSIDH, TXBnSIDL and TXBnDLC

registers must be loaded. If data bytes are present in the

message, the TXBnDm registers must also be loaded.

If the message is to use Extended Identifiers, the

TXBnEIDm registers must also be loaded and the

EXIDE (TXBnSIDL<3>) bit set.

Prior to sending the message, the MCU must initialize

the TXnIE bit in the CANINTE register to enable or

disable the generation of an interrupt when the message

is sent.

3.2 Transmit Priority

Transmit priority is a prioritization within the MCP2515

of the pending transmittable messages. This is

independent from, and not necessarily related to, any

prioritization implicit in the message arbitration scheme

built into the CAN protocol.

Prior to sending the SOF, the priority of all buffers that

are queued for transmission is compared. The transmit

buffer with the highest priority will be sent first. For

example, if Transmit Buffer 0 has a higher priority

setting than Transmit Buffer 1, Transmit Buffer 0 will be

sent first.

If two buffers have the same priority setting, the buffer

with the highest buffer number will be sent first. For

example, if Transmit Buffer 1 has the same priority

setting as Transmit Buffer 0, Transmit Buffer 1 will be

sent first.

There are four levels of transmit priority. If the

TXP<1:0> bits (TXBnCTRL<1:0>) for a particular mes-

sage buffer are set to ‘11’, that buffer has the highest

possible priority. If the TXP<1:0> bits for a particular

message buffer are ‘00’, that buffer has the lowest

possible priority.

3.3 Initiating Transmission

In order to initiate message transmission, the TXREQ

bit (TXBnCTRL<3>) must be set for each buffer to be

transmitted. This can be accomplished by:

• Writing to the register via the SPI write command

• Sending the SPI RTS command

• Setting the TXnRTS pin low for the particular

transmit buffer(s) that are to be transmitted

If transmission is initiated via the SPI interface, the

TXREQ bit can be set at the same time as the TXPx

priority bits.

When TXREQ is set, the ABTF, MLOA and TXERR bits

(TXBnCTRL<5:4>) will be cleared automatically.

Once the transmission has completed successfully, the

TXREQ bit will be cleared, the TXnIF bit (CANINTF) will

be set and an interrupt will be generated if the TXnIE bit

(CANINTE) is set.

If the message transmission fails, the TXREQ bit will

remain set. This indicates that the message is still

pending for transmission and one of the following

condition flags will be set:

• If the message started to transmit but

encountered an error condition, the TXERR

(TXBnCTRL<4>) and MERRF bits (CANINTF<7>)

will be set, and an interrupt will be generated on

the INT pin if the MERRE bit (CANINTE<7>) is set

• If the message is lost, arbitration at the

MLOA bit (TXBnCTRL<5>) will be set

3.4 One-Shot Mode

One-Shot mode ensures that a message will only

attempt to transmit one time. Normally, if a CAN

message loses arbitration, or is destroyed by an error

frame, the message is retransmitted. With One-Shot

mode enabled, a message will only attempt to transmit

one time, regardless of arbitration loss or error frame.

One-Shot mode is required to maintain time slots in

deterministic systems, such as TTCAN.

Note: The TXREQ bit (TXBnCTRL<3>) must be

clear (indicating the transmit buffer is not

pending transmission) before writing to

the transmit buffer.

Note: Setting the TXREQ bit (TXBnCTRL<3>)

does not initiate a message transmission.

It merely flags a message buffer as being

ready for transmission. Transmission will

start when the device detects that the bus

is available.

Note: If One-Shot mode is enabled (OSM bit

(CANCTRL<3>)), the above conditions will

still exist. However, the TXREQ bit will be

cleared and the message will not attempt

transmission a second time.

MCP2515

DS20001801H-page 16  2003-2016 Microchip Technology Inc.

3.5 TXnRTS Pins

The TXnRTS pins are input pins that can be configured

as:

• Request-to-Send inputs, which provide an

alternative means of initiating the transmission of

a message from any of the transmit buffers

• Standard digital inputs

Configuration and control of these pins is accomplished

using the TXRTSCTRL register (see Register 3-2). The

TXRTSCTRL register can only be modified when the

MCP2515 is in Configuration mode (see Section 10.0

“Modes of Operation”). If configured to operate as a

Request-to-Send pin, the pin is mapped into the

respective TXREQ bit (TXBnCTRL<3>) for the transmit

buffer. The TXREQ bit is latched by the falling edge of

the TXnRTS pin. The TXnRTS pins are designed to

allow them to be tied directly to the RXnBF pins to

automatically initiate a message transmission when the

RXnBF pin goes low.

The TXnRTS pins have internal pull-up resistors of

100 k (nominal).

3.6 Aborting Transmission

The MCU can request to abort a message in a specific

message buffer by clearing the associated TXREQ bit.

In addition, all pending messages can be requested to

be aborted by setting the ABAT bit (CANCTRL<4>).

This bit MUST be reset (typically after the TXREQ bits

have been verified to be cleared) to continue transmit-

ting messages. The ABTF flag (TXBnCTRL<6>) will

only be set if the abort was requested via the ABAT bit.

Aborting a message by resetting the TXREQ bit does

NOT cause the ABTF bit to be set.

Note 1: Messages that were transmitting when

the abort was requested will continue to

transmit. If the message does not suc-

cessfully complete transmission (i.e., lost

arbitration or was interrupted by an error

frame), it will then be aborted.

2: When One-Shot mode is enabled, if the

message is interrupted due to an error

frame or loss of arbitration, the ABTF bit

will set.

 2003-2016 Microchip Technology Inc. DS20001801H-page 17

MCP2515

FIGURE 3-1: TRANSMIT MESSAGE FLOWCHART

Start

Is
CAN bus available

to start transmission?

No

Examine TXP<1:0> (TXBnCTRL<1:0>)

Are any
TXREQ (TXBnCTRL<3>)

bits = 1?

The message transmission
sequence begins when the
device determines that the
TXREQ bit (TXBnCTRL<3>)
for any of the transmit registers
has been set.

Clear:
ABTF (TXBnCTRL<6>)
MLOA (TXBnCTRL<5>)
TXERR (TXBnCTRL<4>)

Yes

Is
TXREQ = 0

or ABAT = 1?

Clearing the TXREQ bit while it is set,
or setting the ABAT bit (CANCTRL<4>)
before the message has started
transmission, will abort the message.

No

Transmit Message

Was
Message Transmitted

Successfully?

No

Yes

Clear TXREQ bit

TXnIE (CANINTE) = 1?Generate
Interrupt

Yes

Message

Yes

Set

Set
TXERR (TXBnCTRL<4>)

Lost

to Determine Highest Priority Message

No

Set
MLOA (TXBnCTRL<5>)

The TXnIE bit determines
if an interrupt should be
generated when a
message is successfully
transmitted.

GOTO START

TXnIF (CANTINF)

Yes

No

Message error
or

lost arbitration

Arbitration

Error

MERRE (CANINTE)?

No
Generate
Interrupt

Yes

Set
MERRF (CANTINF)

?

MCP2515

DS20001801H-page 18  2003-2016 Microchip Technology Inc.

REGISTER 3-1: TXBnCTRL: TRANSMIT BUFFER n CONTROL REGISTER

(ADDRESS: 30h, 40h, 50h)

U-0 R-0 R-0 R-0 R/W-0 U-0 R/W-0 R/W-0

— ABTF MLOA TXERR TXREQ — TXP1 TXP0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 Unimplemented: Read as ‘0’

bit 6 ABTF: Message Aborted Flag bit

1 = Message was aborted

0 = Message completed transmission successfully

bit 5 MLOA: Message Lost Arbitration bit

1 = Message lost arbitration while being sent

0 = Message did not lose arbitration while being sent

bit 4 TXERR: Transmission Error Detected bit

1 = A bus error occurred while the message was being transmitted

0 = No bus error occurred while the message was being transmitted

bit 3 TXREQ: Message Transmit Request bit

1 = Buffer is currently pending transmission

(MCU sets this bit to request message be transmitted – bit is automatically cleared when the

message is sent)

0 = Buffer is not currently pending transmission

(MCU can clear this bit to request a message abort)

bit 2 Unimplemented: Read as ‘0’

bit 1-0 TXP<1:0>: Transmit Buffer Priority bits

11 = Highest message priority

10 = High intermediate message priority

01 = Low intermediate message priority

00 = Lowest message priority

 2003-2016 Microchip Technology Inc. DS20001801H-page 19

MCP2515

REGISTER 3-2: TXRTSCTRL: TXnRTS PIN CONTROL AND STATUS REGISTER

(ADDRESS: 0Dh)

U-0 U-0 R-x R-x R-x R/W-0 R/W-0 R/W-0

— — B2RTS B1RTS B0RTS B2RTSM B1RTSM B0RTSM

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-6 Unimplemented: Read as ‘0’

bit 5 B2RTS: TX2RTS Pin State bit

- Reads state of TX2RTS pin when in Digital Input mode

- Reads as ‘0’ when pin is in Request-to-Send mode

bit 4 B1RTS: TX1RTS Pin State bit

- Reads state of TX1RTS pin when in Digital Input mode

- Reads as ‘0’ when pin is in Request-to-Send mode

bit 3 B0RTS: TX0RTS Pin State bit

- Reads state of TX0RTS pin when in Digital Input mode

- Reads as ‘0’ when pin is in Request-to-Send mode

bit 2 B2RTSM: TX2RTS Pin mode bit

1 = Pin is used to request message transmission of TXB2 buffer (on falling edge)

0 = Digital input

bit 1 B1RTSM: TX1RTS Pin mode bit

1 = Pin is used to request message transmission of TXB1 buffer (on falling edge)

0 = Digital input

bit 0 B0RTSM: TX0RTS Pin mode bit

1 = Pin is used to request message transmission of TXB0 buffer (on falling edge)

0 = Digital input

MCP2515

DS20001801H-page 20  2003-2016 Microchip Technology Inc.

REGISTER 3-3: TXBnSIDH: TRANSMIT BUFFER n STANDARD IDENTIFIER REGISTER HIGH

(ADDRESS: 31h, 41h, 51h)

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 SID<10:3>: Standard Identifier bits

REGISTER 3-4: TXBnSIDL: TRANSMIT BUFFER n STANDARD IDENTIFIER REGISTER LOW

(ADDRESS: 32h, 42h, 52h)

R/W-x R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x

SID2 SID1 SID0 — EXIDE — EID17 EID16

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-5 SID<2:0>: Standard Identifier bits

bit 4 Unimplemented: Read as ‘0’

bit 3 EXIDE: Extended Identifier Enable bit

1 = Message will transmit Extended Identifier

0 = Message will transmit Standard Identifier

bit 2 Unimplemented: Read as ‘0’

bit 1-0 EID<17:16>: Extended Identifier bits

 2003-2016 Microchip Technology Inc. DS20001801H-page 21

MCP2515

REGISTER 3-5: TXBnEID8: TRANSMIT BUFFER n EXTENDED IDENTIFIER 8 REGISTER HIGH

(ADDRESS: 33h, 43h, 53h)

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 EID<15:8>: Extended Identifier bits

REGISTER 3-6: TXBnEID0: TRANSMIT BUFFER n EXTENDED IDENTIFIER 0 REGISTER LOW

(ADDRESS: 34h, 44h, 54h)

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 EID<7:0>: Extended Identifier bits

MCP2515

DS20001801H-page 22  2003-2016 Microchip Technology Inc.

REGISTER 3-7: TXBnDLC: TRANSMIT BUFFER n DATA LENGTH CODE REGISTER

(ADDRESS: 35h, 45h, 55h)

U-0 R/W-x U-0 U-0 R/W-x R/W-x R/W-x R/W-x

— RTR — — DLC3(1) DLC2(1) DLC1(1) DLC0(1)

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 Unimplemented: Read as ‘0’

bit 6 RTR: Remote Transmission Request bit

1 = Transmitted message will be a remote transmit request

0 = Transmitted message will be a data frame

bit 5-4 Unimplemented: Reads as ‘0’

bit 3-0 DLC<3:0>: Data Length Code bits(1)

Sets the number of data bytes to be transmitted (0 to 8 bytes).

Note 1: It is possible to set the DLC<3:0> bits to a value greater than eight; however, only eight bytes are

transmitted.

REGISTER 3-8: TXBnDm: TRANSMIT BUFFER n DATA BYTE m REGISTER

(ADDRESS: 36h-3Dh, 46h-4Dh, 56h-5Dh)

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

TXBnDm7 TXBnDm6 TXBnDm5 TXBnDm4 TXBnDm3 TXBnDm2 TXBnDm1 TXBnDm0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 TXBnDm<7:0>: Transmit Buffer n Data Field Byte m bits

 2003-2016 Microchip Technology Inc. DS20001801H-page 23

MCP2515

4.0 MESSAGE RECEPTION

4.1 Receive Message Buffering

The MCP2515 includes two full receive buffers with

multiple acceptance filters for each. There is also a

separate Message Assembly Buffer (MAB) that acts as

a third receive buffer (see Figure 4-2).

4.1.1 MESSAGE ASSEMBLY BUFFER

Of the three receive buffers, the MAB is always

committed to receiving the next message from the bus.

The MAB assembles all messages received. These

messages will be transferred to the RXBn buffers (see

Register 4-4 to Register 4-9) only if the acceptance

filter criteria is met.

4.1.2 RXB0 AND RXB1

The remaining two receive buffers, called RXB0 and

RXB1, can receive a complete message from the

protocol engine via the MAB. The MCU can access one

buffer, while the other buffer is available for message

reception, or for holding a previously received

message.

4.1.3 RECEIVE FLAGS/INTERRUPTS

When a message is moved into either of the receive

buffers, the appropriate RXnIF bit (CANINTF) is set.

This bit must be cleared by the MCU in order to allow a

new message to be received into the buffer. This bit

provides a positive lockout to ensure that the MCU has

finished with the message before the MCP2515

attempts to load a new message into the receive buffer.

If the RXnIE bit (CANINTE) is set, an interrupt will be

generated on the INT pin to indicate that a valid

message has been received. In addition, the associ-

ated RXnBF pin will drive low if configured as a receive

buffer full pin. See Section 4.4 “RX0BF and RX1BF

Pins” for details.

4.2 Receive Priority

RXB0, the higher priority buffer, has one mask and two

message acceptance filters associated with it. The

received message is applied to the mask and filters for

RXB0 first.

RXB1 is the lower priority buffer, with one mask and

four acceptance filters associated with it.

In addition to the message being applied to the RXB0

mask and filters first, the lower number of acceptance

filters makes the match on RXB0 more restrictive and

implies a higher priority for that buffer.

When a message is received, the RXBnCTRL<3:0>

register bits will indicate the acceptance filter number

that enabled reception and whether the received

message is a Remote Transfer Request.

4.2.1 ROLLOVER

Additionally, the RXB0CTRL register can be configured

such that, if RXB0 contains a valid message and

another valid message is received, an overflow error

will not occur and the new message will be moved into

RXB1, regardless of the acceptance criteria of RXB1.

4.2.2 RXM BITS

The RXM<1:0> bits (RXBnCTRL<6:5>) set special

Receive modes. Normally, these bits are cleared to ‘00’

to enable reception of all valid messages as deter-

mined by the appropriate acceptance filters. In this

case, the determination of whether or not to receive

standard or extended messages is determined by the

EXIDE bit (RFXnSIDL<3>) in the Filter n Standard

Identifier Low register.

If the RXM<1:0> bits are set to ‘11’, the buffer will

receive all messages, regardless of the values of the

acceptance filters. Also, if a message has an error

before the EOF, that portion of the message assembled

in the MAB, before the error frame, will be loaded into

the buffer. This mode has some value in debugging a

CAN system and would not be used in an actual

system environment.

Setting the RXM<1:0> bits to ‘01’ or ‘10’ is not

recommended.

Note: The entire content of the MAB is moved

into the receive buffer once a message is

accepted. This means, that regardless of

the type of identifier (Standard or

Extended) and the number of data bytes

received, the entire receive buffer is

overwritten with the MAB contents.

Therefore, the contents of all registers in

the buffer must be assumed to have been

modified when any message is received.

MCP2515

DS20001801H-page 24  2003-2016 Microchip Technology Inc.

4.3 Start-of-Frame Signal

If enabled, the Start-of-Frame signal is generated on

the SOF pin at the beginning of each CAN message

detected on the RXCAN pin.

The RXCAN pin monitors an Idle bus for a recessive-

to-dominant edge. If the dominant condition remains

until the sample point, the MCP2515 interprets this as

a SOF and a SOF pulse is generated. If the dominant

condition does not remain until the sample point, the

MCP2515 interprets this as a glitch on the bus and no

SOF signal is generated. Figure 4-1 illustrates SOF

signaling and glitch filtering.

As with One-Shot mode, one use for SOF signaling is

for TTCAN-type systems. In addition, by monitoring

both the RXCAN pin and the SOF pin, an MCU can

detect early physical bus problems by detecting small

glitches before they affect the CAN communications.

4.4 RX0BF and RX1BF Pins

In addition to the INT pin, which provides an interrupt

signal to the MCU for many different conditions, the

Receive Buffer Full pins (RX0BF and RX1BF) can be

used to indicate that a valid message has been loaded

into RXB0 or RXB1, respectively. The pins have three

different configurations (Table 4-1):

1. Disabled

2. Buffer Full Interrupt

3. Digital Output

4.4.1 DISABLED

The RXnBF pins can be disabled to the high-impedance

state by clearing the BnBFE bits (BFPCTRL<3:2>).

4.4.2 CONFIGURED AS BUFFER FULL

The RXnBF pins can be configured to act as either buf-

fer full interrupt pins or as standard digital outputs.

Configuration and status of these pins are available via

the BFPCTRL register (Register 4-3). When set to

operate in Interrupt mode, by setting the BnBFE and

BnBFM bits (BFPCTRL<3:0>), these pins are active-

low and are mapped to the RXnIF bit (CANINTF) for

each receive buffer. When this bit goes high for one of

the receive buffers (indicating that a valid message has

been loaded into the buffer), the corresponding RXnBF

pin will go low. When the RXnIF bit is cleared by the

MCU, the corresponding interrupt pin will go to the logic

high state until the next message is loaded into the

receive buffer.

FIGURE 4-1: START-OF-FRAME SIGNALING

START-OF-FRAME BIT

Sample
Point

ID Bit

RXCAN

SOF

EXPECTED START-OF-FRAME BIT

Sample
Point Bus Idle

RXCAN

SOF

Expected

Normal SOF Signaling

Glitch Filtering

 2003-2016 Microchip Technology Inc. DS20001801H-page 25

MCP2515

4.4.3 CONFIGURED AS DIGITAL OUTPUT

When used as digital outputs, the BnBFM bits

(BFPCTRL<1:0>) must be cleared and the BnBFE bits

(BFPCTRL<3:2>) must be set for the associated buffer.

In this mode, the state of the pin is controlled by the

BnBFS bits (BFPCTRL<5:4>). Writing a ‘1’ to a BnBFS

bit will cause a high level to be driven on the associated

buffer full pin, while a ‘0’ will cause the pin to drive low.

When using the pins in this mode, the state of the pin

should be modified only by using the SPI BIT MODIFY

command to prevent glitches from occurring on either

of the buffer full pins.

TABLE 4-1: CONFIGURING RXnBF PINS

FIGURE 4-2: RECEIVE BUFFER BLOCK DIAGRAM

BnBFE BnBFM BnBFS Pin Status

0 X X Disabled, high-impedance

1 1 X Receive buffer interrupt

1 0 0 Digital output = 0

1 0 1 Digital output = 1

Acceptance Mask
RXM1

Acceptance Filter
RXF2

Acceptance Filter
RXF3

Acceptance Filter
RXF4

Acceptance Filter
RXF5

Acceptance Mask
RXM0

Acceptance Filter
RXF0

Acceptance Filter
RXF1

Identifier

Data Field Data Field

Identifier

Note: Messages received in the MAB are initially

applied to the mask and filters of RXB0. In

addition, only one filter match occurs (e.g.,

if the message matches both RXF0 and

RXF2, the match will be for RXF0 and the

message will be moved into RXB0).

A
c
c
e
p
t

A
c
c
e
p
t

R
X
B
0

R
X
B
1

M
A
B

	Contact us
	Features
	Description
	Package Types
	1.0 Device Overview
	1. The CAN module, which includes the CAN protocol engine, masks, filters, transmit and receive buffers.
	2. The control logic and registers that are used to configure the device and its operation.
	3. The SPI protocol block.
	1.1 CAN Module
	1.2 Control Logic
	1.3 SPI Protocol Block
	FIGURE 1-1: Block Diagram
	FIGURE 1-2: Example System Implementation
	TABLE 1-1: Pinout Description

	Legend: I = Input; O = Output; P = Power
	1.4 Transmit/Receive Buffers/Masks/ Filters
	FIGURE 1-3: CAN Buffers and Protocol Engine Block Diagram

	1.5 CAN Protocol Engine
	1.5.1 Protocol Finite State Machine
	1.5.2 Cyclic Redundancy Check
	1.5.3 Error Management Logic
	1.5.4 Bit Timing Logic
	FIGURE 1-4: CAN Protocol Engine Block Diagram

	2.0 Can Message Frames
	2.1 Standard Data Frame
	2.2 Extended Data Frame
	2.3 Remote Frame
	2.4 Error Frame
	2.4.1 Active Errors
	2.4.2 Passive Errors

	2.5 Overload Frame
	1. The node detects a dominant bit during the interframe space, an illegal condition. Exception: The dominant bit is detected during the third bit of IFS. In this case, the receivers will interpret this as a SOF.
	2. Due to internal conditions, the node is not yet able to begin reception of the next message. A node may generate a maximum of two sequential overload frames to delay the start of the next message.

	2.6 Interframe Space
	FIGURE 2-1: Standard Data Frame
	FIGURE 2-2: Extended Data Frame
	FIGURE 2-3: Remote Frame
	FIGURE 2-4: Active Error Frame
	FIGURE 2-5: Overload Frame

	Notes:

	3.0 Message Transmission
	3.1 Transmit Buffers
	3.2 Transmit Priority
	3.3 Initiating Transmission
	3.4 One-Shot Mode
	3.5 TXnRTS Pins
	3.6 Aborting Transmission
	Note 1: Messages that were transmitting when the abort was requested will continue to transmit. If the message does not successfully complete transmission (i.e., lost arbitration or was interrupted by an error frame), it will then be aborted.
	2: When One-Shot mode is enabled, if the message is interrupted due to an error frame or loss of arbitration, the ABTF bit will set.
	FIGURE 3-1: Transmit Message Flowchart

	Register 3-1: TXBnCTRL: Transmit Buffer n Control Register (Address: 30h, 40h, 50h)
	Legend:

	Register 3-2: TXRTSCTRL: TXnRTS Pin Control and Status Register (Address: 0Dh)
	Legend:

	Register 3-3: TXBnSIDH: Transmit Buffer n Standard Identifier Register High (Address: 31h, 41h, 51h)
	Legend:

	Register 3-4: TXBnSIDL: Transmit Buffer n Standard Identifier Register Low (Address: 32h, 42h, 52h)
	Legend:

	Register 3-5: TXBnEID8: Transmit Buffer n Extended Identifier 8 Register High (Address: 33h, 43h, 53h)
	Legend:

	Register 3-6: TXBnEID0: Transmit Buffer n Extended Identifier 0 Register Low (Address: 34h, 44h, 54h)
	Legend:

	Register 3-7: TXBnDLC: Transmit Buffer n Data Length Code Register (Address: 35h, 45h, 55h)
	Legend:

	Register 3-8: TXBnDm: Transmit Buffer n Data Byte m Register (Address: 36h-3Dh, 46h-4Dh, 56h-5Dh)
	Legend:

	4.0 Message Reception
	4.1 Receive Message Buffering
	4.1.1 Message Assembly Buffer
	4.1.2 RXB0 and RXB1
	4.1.3 Receive Flags/Interrupts

	4.2 Receive Priority
	4.2.1 Rollover
	4.2.2 RXM Bits

	4.3 Start-of-Frame Signal
	4.4 RX0BF and RX1BF Pins
	1. Disabled
	2. Buffer Full Interrupt
	3. Digital Output
	4.4.1 Disabled
	4.4.2 Configured as Buffer Full
	FIGURE 4-1: Start-of-Frame Signaling

