
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

 2014-2017 Microchip Technology Inc. DS20005282B-page 1

MCP25625

General Features

• Stand-Alone CAN 2.0B Controller with Integrated

CAN Transceiver and Serial Peripheral

Interface (SPI)

• Up to 1 Mb/s Operation

• Very Low Standby Current (10 µA, typical)

• Up to 10 MHz SPI Clock Speed

• Interfaces Directly with Microcontrollers with 2.7V

to 5.5V I/Os

• Available in SSOP-28L and 6x6 QFN-28L

• Temperature Ranges:

- Extended (E): -40°C to +125°C

CAN Controller Features

• VDD: 2.7 to 5.5V

• Implements CAN 2.0B (ISO11898-1)

• Three Transmit Buffers with Prioritization and

Abort Features

• Two Receive Buffers

• Six Filters and Two Masks with Optional Filtering

on the First Two Data Bytes

• Supports SPI Modes 0,0 and 1,1

• Specific SPI Commands to Reduce SPI Overhead

• Buffer Full and Request-to-Send Pins are

Configurable as General Purpose I/Os

• One Interrupt Output Pin

CAN Transceiver Features

• VDDA: 4.5V to 5.5V

• Implements ISO-11898-2 and ISO-11898-5

Standard Physical Layer Requirements

• CAN Bus Pins are Disconnected when Device is

Unpowered:

- An unpowered node or brown-out event will

not load the CAN bus

• Detection of Ground Fault:

- Permanent Dominant detection on TXD

- Permanent Dominant detection on bus

• Power-on Reset and Voltage Brown-Out

Protection on VDDA Pin

• Protection Against Damage Due to Short-Circuit

Conditions (Positive or Negative Battery Voltage)

• Protection Against High-Voltage Transients in

Automotive Environments

• Automatic Thermal Shutdown Protection

• Suitable for 12V and 24V Systems

• Meets or Exceeds Stringent Automotive Design

Requirements, Including “Hardware Require-

ments for LIN, CAN and FlexRay Interfaces in

Automotive Applications”, Version 1.3, May 2012

• High Noise Immunity Due to Differential Bus

Implementation

• High-ESD Protection on CANH and CANL, Meets

IEC61000-4-2 up to ±8 kV

Description

The MCP25625 is a complete, cost-effective and small

footprint CAN solution that can be easily added to a

microcontroller with an available SPI interface.

The MCP25625 interfaces directly with microcontrollers

operating at 2.7V to 5.5V; there are no external level

shifters required. In addition, the MCP25625 connects

directly to the physical CAN bus, supporting all

requirements for CAN high-speed transceivers.

The MCP25625 meets the automotive requirements for

high-speed (up to 1 Mb/s), low quiescent current,

Electromagnetic Compatibility (EMC) and Electrostatic

Discharge (ESD).

CAN Controller with Integrated Transceiver

MCP25625

DS20005282B-page 2  2014-2017 Microchip Technology Inc.

Package Types

VDD

TxCAN

T
x
2

R
T

S

V
IO

R
X

D

RESET

CS

RxCAN

CLKOUT

C
A

N
H

S
O

T
x
1

R
T

S

N
C

STBY

TXD

NC

VSS

VDDA

OSC2

S
C

K

IN
T

R
x
0

B
F

R
x
1

B
F

G
N

D

Tx0RTS

C
A

N
L

OSC1

S
I

1

2

3

4

5

6

7 15
8 9 1

0

1
1

1
2

1
3

1
4

16

17

18

19

20

21

2
6

2
5

2
4

2
3

2
2

2
8

2
7

EXP-29

28

16

27

26

25

24

23

22

21

20

19

18

17

15

1

13

2

3

4

5

6

7

8

9

10

11

12

14

VIO

GND

Rx1BF

Rx0BF

INT

SCK

CANL

NC

CANH

STBY

Tx1RTS

Tx2RTS

OSC2

OSC1

RXD

VDD

RESET

CS

SO

SI

VSS

VDDA

NC

TXD

Tx0RTS

CLKOUT

RxCAN

TxCAN

MCP25625

6x6 QFN*

MCP25625

SSOP

* Includes Exposed Thermal Pad (EP); see Table 1-1.

 2014-2017 Microchip Technology Inc. DS20005282B-page 3

MCP25625

1.0 DEVICE OVERVIEW

A typical CAN solution consists of a CAN controller that

implements the CAN protocol, and a CAN transceiver

that serves as the interface to the physical CAN bus.

The MCP25625 integrates both the CAN controller and

the CAN transceiver. Therefore, it is a complete CAN

solution that can be easily added to a microcontroller

with an SPI interface.

1.1 Block Diagram

Figure 1-1 shows the block diagram of the MCP25625.

The CAN transceiver is illustrated in the top half of the

block diagram, see Section 6.0 “CAN Transceiver”

for more details.

The CAN controller is depicted at the bottom half of the

block diagram, and described in more detail in

Section 3.0 “CAN Controller”.

FIGURE 1-1: MCP25625 BLOCK DIAGRAM

V
DDA

CANH

CANL

T
XD

R
XD

Driver

and

Slope Control

Thermal

Protection

POR

UVLO

Digital I/O

Supply

V
IO

V
SS

STBY

Permanent

Dominant Detect

V
IO

V
IO

Mode

Control

Wake-up

Filter

CANH

CANL

CANH

CANL

Receiver

LP_RX

HS_RX

SPI IF

CAN

Protocol

Engine

Tx Handler

Tx

Prioritization

Control Logic

Registers: Configuration, Control and Interrupts

Rx Handler
Acceptance
Filters and
Masks

TxCAN

RxCAN

CS

SCK

SI

SO

OSC1

OSC2

CLKOUT

INT

Rx0BF

RESET

Crystal

Oscillator

Rx1BF

Tx0RTS

Tx1RTS

Tx2RTS

V
DD

GND

MCP25625

DS20005282B-page 4  2014-2017 Microchip Technology Inc.

1.2 Pin Out Description

The descriptions of the pins are listed in Table 1-1.

TABLE 1-1: MCP25625 PIN DESCRIPTION

Pin Name
6x6

QFN
SSOP Block(1) Pin Type Description

VIO 11 1 CAN Transceiver P Digital I/O Supply Pin for CAN Transceiver

NC 14 2 — — No Connection

CANL 12 3 CAN Transceiver HV I/O CAN Low-Level Voltage I/O

CANH 13 4 CAN Transceiver HV I/O CAN High-Level Voltage I/O

STBY 15 5 CAN Transceiver I Standby Mode Input

Tx1RTS 8 6 CAN Controller I TXB1 Request-to-Send

Tx2RTS 9 7 CAN Controller I TXB2 Request-to-Send

OSC2 20 8 CAN Controller O External Oscillator Output

OSC1 21 9 CAN Controller I External Oscillator Input

GND 22 10 CAN Controller P Ground

Rx1BF 23 11 CAN Controller O RxB1 Interrupt

Rx0BF 24 12 CAN Controller O RxB0 Interrupt

INT 25 13 CAN Controller O Interrupt Output

SCK 26 14 CAN Controller I SPI Clock Input

SI 27 15 CAN Controller I SPI Data Input

SO 28 16 CAN Controller O SPI Data Output

CS 1 17 CAN Controller I SPI Chip Select Input

RESET 2 18 CAN Controller I Reset Input

VDD 3 19 CAN Controller P Power for CAN Controller

TxCAN 4 20 CAN Controller O Transmit Output to CAN Transceiver

RXCAN 5 21 CAN Controller I Receive Input from CAN Transceiver

CLKOUT 6 22 CAN Controller O Clock Output/SOF

Tx0RTS 7 23 CAN Controller I TXB0 Request-to-Send

TXD 16 24 CAN Transceiver I Transmit Data Input from CAN Controller

NC 17 25 — — No Connection

VSS 18 26 CAN Transceiver P Ground

VDDA 19 27 CAN Transceiver P Power for CAN Transceiver

RXD 10 28 CAN Transceiver O Receive Data Output to CAN Controller

EP 29 — — — Exposed Thermal Pad

Legend: P = Power, I = Input, O = Output, HV = High Voltage.

Note 1: See Section 3.0 “CAN Controller” and Section 6.0 “CAN Transceiver” for further information.

 2014-2017 Microchip Technology Inc. DS20005282B-page 5

MCP25625

1.3 Typical Application

Figure 1-2 shows an example of a typical application

of the MCP25625. In this example, the microcontroller

operates at 3.3V.

VDDA supplies the CAN transceiver and must be

connected to 5V.

VDD, VIO of the MCP25625 are connected to the VDD

of the microcontroller. The digital supply can range

from 2.7V to 5.5V. Therefore, the I/O of the MCP25625

is connected directly to the microcontroller, no level

shifters are required.

The TXD and RXD pins of the CAN transceiver must be

externally connected to the TxCAN and RxCAN pins of

the CAN controller.

The SPI interface is used to configure and control the

CAN controller.

The INT pin of the MCP25625 signals an interrupt to

the microcontroller. Interrupts need to be cleared by

the microcontroller through SPI.

The usage of RxnBF and TxnRTS is optional, since

the functions of these pins can be accessed through

SPI. The RESET pin can optionally be pulled up to the

VDD of the MCP25625 using a 10 k resistor.

The CLKOUT pin provides the clock to the

microcontroller.

FIGURE 1-2: MCP25625 INTERFACING WITH A 3.3V MICROCONTROLLER

3.3V LDO

V
DD

V
DDA

T
XD

R
XD

STBYRA0

V
SS V

SS

P
IC

®
M
ic
r
o
c
o
n
tr
o
ll
e
r

M
C
P
2
5
6
2
5

5V LDOV
BAT

V
DD

0.1 µF0.1 µF

CANH

CANL

120

RxCAN

TxCAN

V
IO

0.1 µF

GND

OSC2

OSC1CLKOUT

CS

SCK

INT

SI

SO

Rx1BF

Rx0BF

Tx0RTS

Tx0RTS

Tx0RTS

RESET

OSC1

RA1

SCK

SDI

SDO

INT0

INT1

INT2

RA2

RA3

RA4

RA5

CANH

CANL

0.1 µF

22 pF

22 pF

Optional

MCP25625

DS20005282B-page 6  2014-2017 Microchip Technology Inc.

NOTES:

 2014-2017 Microchip Technology Inc. DS20005282B-page 7

MCP25625

2.0 MODES OF OPERATION

2.1 CAN Controller Modes of
Operation

The CAN controller has five modes of operation:

• Configuration mode

• Normal mode

• Sleep mode

• Listen-Only mode

• Loopback mode

The operational mode is selected via the

REQOP<2:0> bits in the CANCTRL register (see

Register 4-34).

When changing modes, the mode will not actually

change until all pending message transmissions are

complete. The requested mode must be verified by

reading the OPMOD<2:0> bits in the CANSTAT

register (see Register 4-35).

2.2 CAN Transceiver Modes of
Operation

The CAN transceiver has two modes of operation:

• Normal mode

• Standby mode

Normal mode is selected by applying a low level to the

STBY pin. The driver block is operational and can drive

the bus pins. The slopes of the output signals on CANH

and CANL are optimized to produce minimal Electro-

magnetic Emissions (EME). The high-speed differential

receiver is active.

Standby mode is selected by applying a high level to

the STBY pin. In Standby mode, the transmitter and the

high-speed part of the receiver are switched off to min-

imize power consumption. The low-power receiver and

the wake-up filter are enabled in order to monitor the

bus for activity. The receive pin (RXD) will show a

delayed representation of the CAN bus, due to the

wake-up filter.

2.3 Configuration Mode

The MCP25625 must be initialized before activation. This

is only possible if the device is in Configuration mode.

Configuration mode is automatically selected after power-

up, a Reset or can be entered from any other mode by

setting the REQOPx bits in the CANCTRL register. When

Configuration mode is entered, all error counters are

cleared. Configuration mode is the only mode where the

following registers are modifiable:

• CNF1, CNF2, CNF3

• TXRTSCTRL

• Acceptance Filter registers

2.4 Normal Mode

Normal mode is the standard operating mode of the

MCP25625. In this mode, the device actively monitors

all bus messages and generates Acknowledge bits,

error frames, etc. This is also the only mode in which

the MCP25625 transmits messages over the CAN bus.

Both the CAN controller and the CAN transceiver must

be in Normal mode.

2.5 Sleep/Standby Mode

The CAN controller has an internal Sleep mode that is

used to minimize the current consumption of the

device. The SPI interface remains active for reading

even when the MCP25625 is in Sleep mode, allowing

access to all registers.

Sleep mode is selected via the REQOPx bits in the

CANCTRL register. The OPMODx bits in the CANSTAT

register indicate the operation mode. These bits should

be read after sending the SLEEP command to the

MCP25625. The MCP25625 is active and has not yet

entered Sleep mode until these bits indicate that Sleep

mode has been entered.

When in Sleep mode, the MCP25625 stops its internal

oscillator. The MCP25625 will wake-up when bus

activity occurs or when the microcontroller sets via the

SPI interface. The WAKIF bit in the CANINTF register

will “generate” a wake-up attempt (the WAKIE bit in the

CANINTE register must also be set in order for the

wake-up interrupt to occur).

The CAN transceiver must be in Standby mode in order

to take advantage of the low standby current of the

transceiver. After a wake-up, the microcontroller must

put the transceiver back into Normal mode using the

STBY pin.

MCP25625

DS20005282B-page 8  2014-2017 Microchip Technology Inc.

2.5.1 WAKE-UP FUNCTIONS

The CAN transceiver will monitor the CAN bus for activity.

The wake-up filter inside the transceiver is enabled to

avoid a wake-up due to noise. In case there is activity on

the CAN bus, the RXD pin will go low. The CAN bus wake-

up function requires both CAN transceiver supply volt-

ages to be in a valid range: VDDA and VIO.

The CAN controller will detect a falling edge on the

RxCAN pin and interrupt the microcontroller if the

wake-up interrupt is enabled.

Since the internal oscillator is shut down while in Sleep

mode, it will take some amount of time for the oscillator

to start-up and the device to enable itself to receive

messages. This Oscillator Start-up Timer (OST) is

defined as 128 TOSC.

The device will ignore the message that caused the

wake-up from Sleep mode, as well as any messages

that occur while the device is “waking up”. The device

will wake-up in Listen-Only mode.

The microcontroller must set both the CAN controller

and CAN transceiver to Normal mode before the

MCP25625 will be able to communicate on the bus.

2.6 Listen-Only Mode

Listen-Only mode provides a means for the MCP25625

to receive all messages (including messages with

errors) by configuring the RXM<1:0> bits in the

RXBxCTRL register. This mode can be used for bus

monitor applications or for detecting the baud rate in

“hot plugging” situations.

For Auto-Baud Detection (ABD), it is necessary that at

least two other nodes are communicating with each

other. The baud rate can be detected empirically by

testing different values until valid messages are

received.

Listen-Only mode is a silent mode, meaning no

messages will be transmitted while in this mode

(including error flags or Acknowledge signals). In

Listen-Only mode, both valid and invalid messages will

be received regardless of filters and masks or

RXM<1:0> bits in the RXBxCTRL registers. The error

counters are reset and deactivated in this state. The

Listen-Only mode is activated by setting the REQOPx

bits in the CANCTRL register.

2.7 Loopback Mode

Loopback mode will allow internal transmission of

messages from the transmit buffers to the receive

buffers without actually transmitting messages on the

CAN bus. This mode can be used in system

development and testing.

In this mode, the ACK bit is ignored and the device will

allow incoming messages from itself, just as if they

were coming from another node. The Loopback mode

is a silent mode, meaning no messages will be trans-

mitted while in this state (including error flags or

Acknowledge signals). The TxCAN pin will be in a

Recessive state.

The filters and masks can be used to allow only

particular messages to be loaded into the receive

registers. The masks can be set to all zeros to provide

a mode that accepts all messages. The Loopback

mode is activated by setting the REQOPx bits in the

CANCTRL register.

 2014-2017 Microchip Technology Inc. DS20005282B-page 9

MCP25625

3.0 CAN CONTROLLER

The CAN controller implements the CAN protocol

Version 2.0B. It is compatible with the ISO 11898-1

standard.

Figure 3-1 illustrates the block diagram of the CAN

controller. The CAN controller consists of the following

major blocks:

• CAN protocol engine

• TX handler

• RX handler

• SPI interface

• Control logic with registers and interrupt logic

• I/O pins

• Crystal oscillator

3.1 CAN Module

The CAN protocol engine, together with the TX and RX

handlers, provide all the functions required to receive and

transmit messages on the CAN bus. Messages are trans-

mitted by first loading the appropriate message buffers

and control registers. Transmission is initiated by using

control register bits via the SPI interface or by using the

transmit enable pins. Status and errors can be checked by

reading the appropriate registers. Any message detected

on the CAN bus is checked for errors and then matched

against the user-defined filters to see if it should be moved

into one of the two receive buffers.

3.2 Control Logic

The control logic block controls the setup and operation

of the MCP25625 and contains the registers.

Interrupt pins are provided to allow greater system

flexibility. There is one multipurpose interrupt pin (as

well as specific interrupt pins) for each of the receive

registers that can be used to indicate a valid message

has been received and loaded into one of the receive

buffers. Use of the specific interrupt pins is optional.

The general purpose interrupt pin, as well as Status

registers (accessed via the SPI interface), can also be

used to determine when a valid message has been

received.

Additionally, there are three pins available to initiate

immediate transmission of a message that has been

loaded into one of the three transmit registers. Use of

these pins is optional, as initiating message transmis-

sions can also be accomplished by utilizing control

registers accessed via the SPI interface.

3.3 SPI Protocol Block

The microcontroller interfaces to the device via the SPI

interface. Registers can be accessed using the SPI

READ and WRITE commands. Specialized SPI

commands reduce the SPI overhead.

FIGURE 3-1: CAN CONTROLLER BLOCK DIAGRAM

SPI IF

CAN

Protocol

Engine

Tx Handler

Tx

Prioritization

Control Logic

Registers: Configuration, Control and Interrupts

Rx Handler
Acceptance
Filters and
Masks

TxCAN

RxCAN

CS

SCK

SI

SO

OSC1

OSC2

CLKOUT

INT

Rx0BF

RESET

Crystal

Oscillator

Rx1BF

Tx0RTS

Tx1RTS

Tx2RTS

V
DD

GND

MCP25625

DS20005282B-page 10  2014-2017 Microchip Technology Inc.

3.4 CAN Buffers and Filters

Figure 3-2 shows the CAN buffers and filters in more

detail. The MCP25625 has three transmit and two

receive buffers, two acceptance masks (one per

receive buffer) and a total of six acceptance filters.

FIGURE 3-2: CAN BUFFERS AND PROTOCOL ENGINE

Acceptance Filter
RXF2

R
X
B
1

Identifier

Data Field Data Field

Identifier

Acceptance Mask
RXM1

Acceptance Filter
RXF3

Acceptance Filter
RXF4

Acceptance Filter
RXF5

M
A
B

Acceptance Filter
RXF0

Acceptance Filter
RXF1

R
X
B
0

T
X

R
E

Q
TXB2

A
B

T
F

M
L

O
A

T
X

E
R

R

M
E

S
S

A
G

E

Message
Queue
Control

Transmit Byte Sequencer

T
X

R
E

Q

TXB0

A
B

T
F

M
L

O
A

T
X

E
R

R

M
E

S
S

A
G

E

CRC<14:0>

Comparator

Receive<7:0>Transmit<7:0>

Receive
Error

Transmit
Error

Protocol

REC

TEC

ErrPas

BusOff

Finite
State

Machine

Counter

Counter

Shift<14:0>
{Transmit<5:0>, Receive<8:0>}

Transmit

Logic

Bit
Timing
Logic

TX RX
Configuration

Registers

Clock
Generator

PROTOCOL
ENGINE

BUFFERS

T
X

R
E

Q

TXB1

A
B

T
F

M
L

O
A

T
X

E
R

R

M
E

S
S

A
G

E

Acceptance Mask
RXM0

A
c
c
e
p
t

A
c
c
e
p
t

SOF

 2014-2017 Microchip Technology Inc. DS20005282B-page 11

MCP25625

3.5 CAN Protocol Engine

The CAN protocol engine combines several functional

blocks, shown in Figure 3-3 and described below.

3.5.1 PROTOCOL FINITE STATE MACHINE

The heart of the engine is the Finite State Machine

(FSM). The FSM is a sequencer that controls the

sequential data stream between the TX/RX Shift

register, the CRC register and the bus line. The FSM

also controls the Error Management Logic (EML) and

the parallel data stream between the TX/RX Shift

registers and the buffers. The FSM ensures that the

processes of reception, arbitration, transmission and

error signaling are performed according to the CAN

protocol. The automatic retransmission of messages

on the bus line is also handled by the FSM.

3.5.2 CYCLIC REDUNDANCY CHECK

The Cyclic Redundancy Check register generates the

Cyclic Redundancy Check (CRC) code, which is

transmitted after either the control field (for messages

with 0 data bytes) or the data field and is used to check

the CRC field of incoming messages.

3.5.3 ERROR MANAGEMENT LOGIC

The Error Management Logic (EML) is responsible for

the Fault confinement of the CAN device. Its two count-

ers, the Receive Error Counter (REC) and the Transmit

Error Counter (TEC), are incremented and decremented

by commands from the bit stream processor. Based on

the values of the error counters, the CAN controller is set

into the states: error-active, error-passive or bus-off.

3.5.4 BIT TIMING LOGIC

The Bit Timing Logic (BTL) monitors the bus line input

and handles the bus-related bit timing according to the

CAN protocol. The BTL synchronizes on a Recessive-

to-Dominant bus transition at Start-of-Frame (hard

synchronization) and on any further Recessive-to-

Dominant bus line transition if the CAN controller itself

does not transmit a Dominant bit (resynchronization).

The BTL also provides programmable time segments

to compensate for the propagation delay time, phase

shifts and to define the position of the sample point

within the bit time. The programming of the BTL

depends on the baud rate and external physical delay

times.

FIGURE 3-3: CAN PROTOCOL ENGINE BLOCK DIAGRAM

Bit Timing Logic

CRC<14:0>

Comparator

Receive<7:0> Transmit<7:0>

Sample<2:0>

Majority
Decision

StuffReg<5:0>

Comparator

Transmit Logic

Receive

Error Counter

Transmit

Error Counter

Protocol
FSM

RX

SAM

BusMon

Rec/Trm Addr.

RecData<7:0> TrmData<7:0>

Shift<14:0>
(Transmit<5:0>, Receive<7:0>)

TX

REC

TEC

ErrPas

BusOff

Interface to Standard Buffer

SOF

MCP25625

DS20005282B-page 12  2014-2017 Microchip Technology Inc.

3.6 Message Transmission

The transmit registers are described in Section 4.1

“Message Transmit Registers”.

3.6.1 TRANSMIT BUFFERS

The MCP25625 implements three transmit buffers.

Each of these buffers occupies 14 bytes of SRAM and

is mapped into the device memory map.

The first byte, TXBxCTRL, is a control register

associated with the message buffer. The information in

this register determines the conditions under which the

message will be transmitted and indicates the status of

the message transmission (see Register 4-1).

Five bytes are used to hold the Standard and Extended

Identifiers, as well as other message arbitration

information (see Registers 4-3 through 4-7). The last

eight bytes are for the eight possible data bytes of the

message to be transmitted (see Register 4-8).

At a minimum, the TXBxSIDH, TXBxSIDL and

TXBxDLC registers must be loaded. If data bytes are

present in the message, the TXBxDn registers must also

be loaded. If the message is to use Extended Identifiers,

the TXBxEIDn registers must also be loaded and the

EXIDE bit in the TXBxSIDL register should be set.

Prior to sending the message, the microcontroller must

initialize the TXxIE bit in the CANINTE register to

enable or disable the generation of an interrupt when

the message is sent.

3.6.2 TRANSMIT PRIORITY

Transmit priority is a prioritization within the CAN

controller of the pending transmittable messages. This

is independent from, and not necessarily related to, any

prioritization implicit in the message arbitration scheme

built into the CAN protocol.

Prior to sending the Start-of-Frame (SOF), the priority

of all buffers that are queued for transmission are com-

pared. The transmit buffer with the highest priority will

be sent first. For example, if Transmit Buffer 0 has a

higher priority setting than Transmit Buffer 1, Buffer 0

will be sent first.

If two buffers have the same priority setting, the buffer

with the highest buffer number will be sent first. For

example, if Transmit Buffer 1 has the same priority

setting as Transmit Buffer 0, Buffer 1 will be sent first.

The TXP<1:0> bits in the TXBxCTRL register (see

Register 4-1) allow the selection of four levels of transmit

priority for each transmit buffer individually. A buffer with

the TXPx bits equal to ‘11’ has the highest possible

priority, while a buffer with the TXPx bits equal to ‘00’ has

the lowest possible priority.

3.6.3 INITIATING TRANSMISSION

In order to initiate message transmission, the TXREQ

bit in the TXBxCTRL register must be set for each

buffer to be transmitted. This can be accomplished by:

• Writing to the register via the SPI WRITE

command

• Sending the SPI RTS command

• Setting the TxnRTS pin low for the particular

transmit buffer(s) that is to be transmitted

If transmission is initiated via the SPI interface, the

TXREQ bit can be set at the same time as the TXPx

priority bits.

When the TXREQ is set, the ABTF, MLOA and TXERR

bits in the TXBxCTRL register will be cleared

automatically.

Once the transmission has completed successfully, the

TXREQ bit will be cleared, the TXxIF bit in the

CANINTF register will be set and an interrupt will be

generated if the TXxIE bit in the CANINTE register is

set.

If the message transmission fails, the TXREQ bit will

remain set. This indicates that the message is still

pending for transmission and one of the following

condition flags will be set:

• If the message started to transmit but

encountered an error condition, the TXERR bit in

the TXBxCTRL register and the MERRF bit in the

CANINTF register will be set, and an interrupt will

be generated on the INT pin if the MERRE bit in

the CANINTE register is set.

• If arbitration is lost, the MLOA bit in the

TXBxCTRL register will be set.

Note: The TXREQ bit in the TXBxCTRL register

must be clear (indicating the transmit buf-

fer is not pending transmission) before

writing to the transmit buffer.

Note: Setting the TXREQ bit in the TXBxCTRL

register does not initiate a message

transmission. It merely flags a message

buffer as being ready for transmission.

Transmission will start when the device

detects that the bus is available.

Note: If One-Shot mode is enabled (OSM bit in

the CANCTRL register), the above condi-

tions will still exist. However, the TXREQ bit

will be cleared and the message will not

attempt transmission a second time.

 2014-2017 Microchip Technology Inc. DS20005282B-page 13

MCP25625

3.6.4 ONE-SHOT MODE

One-Shot mode ensures that a message will only

attempt to transmit one time. Normally, if a CAN

message loses arbitration or is destroyed by an error

frame, the message is retransmitted. With One-Shot

mode enabled, a message will only attempt to transmit

one time, regardless of arbitration loss or error frame.

One-Shot mode is required to maintain time slots in

deterministic systems, such as TTCAN.

3.6.5 TxnRTS PINS

The TxnRTS pins are input pins that can be configured

as:

• Request-to-Send inputs, which provide an

alternative means of initiating the transmission of

a message from any of the transmit buffers

• Standard digital inputs

Configuration and control of these pins is accomplished

using the TXRTSCTRL register (see Register 4-2). The

TXRTSCTRL register can only be modified when

the CAN controller is in Configuration mode (see

Section 2.0 “Modes of Operation”). If configured to

operate as a Request-to-Send pin, the pin is mapped

into the respective TXREQ bit in the TXBxCTRL regis-

ter for the transmit buffer. The TXREQ bit is latched by

the falling edge of the TxnRTS pin. The TxnRTS pins

are designed to allow them to be tied directly to the

RxnBF pins to automatically initiate a message

transmission when the RxnBF pin goes low.

The TxnRTS pins have internal pull-up resistors of

100 k (nominal).

3.6.6 ABORTING TRANSMISSION

The MCU can request to abort a message in a specific

message buffer by clearing the associated TXREQ bit.

In addition, all pending messages can be requested to

be aborted by setting the ABAT bit in the CANCTRL

register. This bit MUST be reset (typically, after the

TXREQ bits have been verified to be cleared) to con-

tinue transmitting messages. The ABTF flag in the

TXBxCTRL register will only be set if the abort was

requested via the ABAT bit in the CANCTRL register.

Aborting a message by resetting the TXREQ bit does

NOT cause the ABTF bit to be set.

Note 1: Messages that were transmitting when

the abort was requested will continue to

transmit. If the message does not suc-

cessfully complete transmission (i.e., lost

arbitration or was interrupted by an error

frame), it will then be aborted.

2: When One-Shot mode is enabled, if the

message is interrupted due to an error

frame or loss of arbitration, the ABTF bit

in the TXBxCTRL register will be set.

MCP25625

DS20005282B-page 14  2014-2017 Microchip Technology Inc.

FIGURE 3-4: TRANSMIT MESSAGE FLOWCHART

Start

Is
CAN Bus Available to
Start Transmission?

No

Examine TXP<1:0> in the TXBxCTRL Register

Are Any TXREQ
Bits = 1?

The message transmission
sequence begins when the
device determines that the
TXREQ bit in the TXBxCTRL
register for any of the transmit
registers has been set.

Clear:
ABTF
MLOA
TXERR

Yes

Is
TXREQ = 0

or ABAT = 1?

Clearing the TXREQ bit in TXBxCTRL
register while it is set, or setting the
ABAT bit in the CANCTRL register
before the message has started
transmission, will abort the message.

No

Transmit Message

Was
Message Transmitted

Successfully?

No

Yes

Clear TXREQ

TXxIE = 1?
Generate
Interrupt

Yes

Message

Yes

Set

Set TXERR

Lost

to Determine Highest Priority Message

No

Set MLOA

The TXxIE bit in the CANINTE
register determines if an
interrupt should be generated
when a message is
successfully transmitted.

GO TO START

TXxIF in CANTINF Register

Yes

No

Message Error or
Lost Arbitration?

Arbitration

Error

MERRE = 1 in

No
Generate
Interrupt

Yes

Set MERRF in
CANTINF Register

in TXBxCTRL Register

CANINTE Register?

 2014-2017 Microchip Technology Inc. DS20005282B-page 15

MCP25625

3.7 Message Reception

The registers required for message reception

are described in Section 4.2 “Message Receive

Registers”.

3.7.1 RECEIVE MESSAGE BUFFERING

The MCP25625 includes two full receive buffers with

multiple acceptance filters for each. There is also a

separate Message Assembly Buffer (MAB) that acts as

a third receive buffer (see Figure 3-6).

3.7.1.1 Message Assembly Buffer

Of the three receive buffers, the MAB is always

committed to receiving the next message from the bus.

The MAB assembles all messages received. These

messages will be transferred to the RXBx buffers (see

Registers 4-12 to 4-17) only if the acceptance filter

criteria is met.

3.7.1.2 RXB0 and RXB1

The remaining two receive buffers, called RXB0 and

RXB1, can receive a complete message from the

protocol engine via the MAB. The MCU can access one

buffer, while the other buffer is available for message

reception, or for holding a previously received

message.

3.7.1.3 Receive Flags/interrupts

When a message is moved into either of the receive

buffers, the appropriate RXxIF bit in the CANINTF reg-

ister is set. This bit must be cleared by the MCU in

order to allow a new message to be received into the

buffer. This bit provides a positive lockout to ensure

that the MCU has finished with the message before the

CAN controller attempts to load a new message into

the receive buffer.

If the RXxIE bit in the CANINTE register is set, an inter-

rupt will be generated on the INT pin to indicate that a

valid message has been received. In addition, the

associated RxnBF pin will drive low if configured as a

receive buffer full pin. See Section 3.7.4 “Rx0BF and

Rx1BF Pins” for details.

3.7.2 RECEIVE PRIORITY

RXB0, the higher priority buffer, has one mask and two

message acceptance filters associated with it. The

received message is applied to the mask and filters for

RXB0 first.

RXB1 is the lower priority buffer, with one mask and

four acceptance filters associated with it.

In addition to the message being applied to the RB0

mask and filters first, the lower number of acceptance

filters makes the match on RXB0 more restrictive and

implies a higher priority for that buffer.

When a message is received, the RXBxCTRL<3:0>

bits will indicate the acceptance filter number that

enabled reception and whether the received message

is a remote transfer request.

3.7.2.1 Rollover

Additionally, the RXB0CTRL register can be configured

such that, if RXB0 contains a valid message and

another valid message is received, an overflow error

will not occur and the new message will be moved into

RXB1, regardless of the acceptance criteria of RXB1.

3.7.2.2 RXM<1:0> Bits

The RXM<1:0> bits in the RXBxCTRL register set

special Receive modes. Normally, these bits are

cleared to ‘00’ to enable reception of all valid messages

as determined by the appropriate acceptance filters. In

this case, the determination of whether or not to receive

standard or extended messages is determined by the

EXIDE bit in the RFXxSIDL register.

If the RXMx bits are set to ‘11’, the buffer will receive all

messages, regardless of the values of the acceptance

filters. Also, if a message has an error before the End-

of-Frame (EOF), that portion of the message

assembled in the MAB before the error frame will be

loaded into the buffer. This mode has some value in

debugging a CAN system and would not be used in an

actual system environment.

Setting the RXMx bits to ‘01’ or ‘10’ is not

recommended.

Note: The entire content of the MAB is moved

into the receive buffer once a message is

accepted. This means that regardless of

the type of identifier (Standard or

Extended) and the number of data bytes

received, the entire receive buffer is

overwritten with the MAB contents.

Therefore, the contents of all registers in

the buffer must be assumed to have been

modified when any message is received.

MCP25625

DS20005282B-page 16  2014-2017 Microchip Technology Inc.

3.7.3 START-OF-FRAME SIGNAL

If enabled, the Start-of-Frame signal is generated on

the SOF bit at the beginning of each CAN message

detected on the RxCAN pin.

The RxCAN pin monitors an Idle bus for a Recessive-

to-Dominant edge. If the Dominant condition remains

until the sample point, the MCP25625 interprets this as

a SOF and a SOF pulse is generated. If the Dominant

condition does not remain until the sample point, the

MCP25625 interprets this as a glitch on the bus and no

SOF signal is generated. Figure 3-5 illustrates SOF

signaling and glitch filtering.

As with One-Shot mode, one use for SOF signaling is

for TTCAN-type systems. In addition, by monitoring

both the RxCAN pin and the SOF bit, an MCU can

detect early physical bus problems by detecting small

glitches before they affect the CAN communication.

3.7.4 Rx0BF AND Rx1BF PINS

In addition to the INT pin, which provides an interrupt

signal to the MCU for many different conditions, the

Receive Buffer Full pins (Rx0BF and Rx1BF) can be

used to indicate that a valid message has been loaded

into RXB0 or RXB1, respectively. The pins have three

different configurations (see Table 3-1):

1. Disabled

2. Buffer Full Interrupt

3. Digital Output

3.7.4.1 Disabled

The RxnBF pins can be disabled to the high-

impedance state by clearing the BxBFE bit in the

BFPCTRL register.

3.7.4.2 Configured as Buffer Full

The RxnBF pins can be configured to act as either

buffer full interrupt pins or as standard digital outputs.

Configuration and status of these pins is available via

the BFPCTRL register (Register 4-11). When set to

operate in Interrupt mode (by setting the BxBFE and

BxBFM bits in the BFPCTRL register), these pins are

active-low and are mapped to the RXxIF bit in the

CANINTF register for each receive buffer. When this bit

goes high for one of the receive buffers (indicating that

a valid message has been loaded into the buffer), the

corresponding RxnBF pin will go low. When the RXxIF

bit is cleared by the MCU, the corresponding interrupt

pin will go to the logic-high state until the next message

is loaded into the receive buffer.

FIGURE 3-5: START-OF-FRAME SIGNALING

START-OF-FRAME BIT

Sample
Point

ID BIT

RxCAN

SOF

EXPECTED START-OF-FRAME BIT

Sample
Point BUS IDLE

RxCAN

SOF

Expected

Normal SOF Signaling

Glitch Filtering

 2014-2017 Microchip Technology Inc. DS20005282B-page 17

MCP25625

3.7.4.3 Configured as Digital Output

When used as digital outputs, the BxBFM bits in the

BFPCTRL register must be cleared and the BxBFE bits

must be set for the associated buffer. In this mode, the

state of the pin is controlled by the BxBFS bits in the

same register. Writing a ‘1’ to the BxBFS bits will cause

a high level to be driven on the associated buffer full

pin, while a ‘0’ will cause the pin to drive low. When

using the pins in this mode, the state of the pin should

be modified only by using the SPI BIT MODIFY

command to prevent glitches from occurring on either

of the buffer full pins.

FIGURE 3-6: RECEIVE BUFFER BLOCK DIAGRAM

TABLE 3-1: CONFIGURING RxnBF PINS

BnBFE BnBFM BnBFS Pin Status

0 X X Disabled, high-impedance

1 1 X Receive buffer interrupt

1 0 0 Digital output = 0

1 0 1 Digital output = 1

Acceptance Mask
RXM1

Acceptance Filter
RXF2

Acceptance Filter
RXF3

Acceptance Filter
RXF4

Acceptance Filter
RXF5

Acceptance Mask
RXM0

Acceptance Filter
RXF0

Acceptance Filter
RXF1

Identifier

Data Field Data Field

Identifier

A
c
c
e
p
t

A
c
c
e
p
t

R
X
B
0

R
X
B
1

M
A
B

Note: Messages received in the MAB are initially applied to the mask and filters of RXB0. In addition,

only one filter match occurs (e.g., if the message matches both RXF0 and RXF2, the match will

be for RXF0 and the message will be moved into RXB0).

MCP25625

DS20005282B-page 18  2014-2017 Microchip Technology Inc.

FIGURE 3-7: RECEIVE FLOW FLOWCHART

Set RXBF0

Start

Detect Start of
Message?

Valid
Message

Received?

Generate
Error

Meets
a Filter Criteria

Is
RX0IF = 0?

Go to Start

Move Message into RXB0

Set FILHIT<2:0> in RXB1CTRL

Is
RX1IF = 0?

Move Message into RXB1

Set RX1IF = 1 in CANINTF Reg.

Yes

No

Generate
Interrupt on INT

Yes Yes

No No

Yes

Yes

No

No

Yes

Yes

Frame

No Yes

No

Begin Loading Message into
Message Assembly Buffer (MAB)

Register According to which
Filter Criteria was Met

Set FILHIT0 in RXB0CTRL Register
According to which Filter Criteria

Set CANSTAT<3:0> accord-
ing to which receive buffer the
message was loaded into.

Is
BUKT = 1?

Generate Overflow Error:
Set RX1OVRin EFLG Reg.

Is
ERRIE = 1

No

Go to Start

Yes

No

Are B0BFM = 1

B0BFE = 1 Pin = 0

No

Set RXBF1
Pin = 0

No

YesYes

RX0IE = 1
RX1IE = 1 in

RXB1RXB0

Set RX0OVR in EFLG Reg.
Generate Overflow Error:

Set RX0IF = 1 in CANINTF Reg.

Meets
a Filter Criteria

for RXB1?for RXB0?

No Yes

Generate
Interrupt on INT

Determines if the Receive
register is empty and able
to accept a new message.

Determines if RXB0 can roll
over into RXB1 if it is full.

in CANINTE

in CANINTE CANINTE Register?

in BF1CTRL Reg.?

in BFPCTRL Reg. and
Are B1BFM = 1

B1BFE = 1
in BF1CTRL Reg.?

in BFPCTRL Reg. and

Register?

Register?

 2014-2017 Microchip Technology Inc. DS20005282B-page 19

MCP25625

3.7.5 MESSAGE ACCEPTANCE FILTERS

AND MASKS

The message acceptance filters and masks are used to

determine if a message in the Message Assembly

Buffer should be loaded into either of the receive

buffers (see Figure 3-9). Once a valid message has

been received into the MAB, the identifier fields of the

message are compared to the filter values. If there is a

match, that message will be loaded into the appropriate

receive buffer.

The registers required for message filtering are described

in Section 4.3 “Acceptance Filter Registers”.

3.7.5.1 Data Byte Filtering

When receiving standard data frames (11-bit identifier),

the MCP25625 automatically applies 16 bits of masks

and filters, normally associated with Extended

Identifiers, to the first 16 bits of the data field (data

bytes 0 and 1). Figure 3-8 illustrates how masks and

filters apply to extended and standard data frames.

Data byte filtering reduces the load on the MCU when

implementing Higher Layer Protocols (HLPs) that filter

on the first data byte (e.g., DeviceNet™).

3.7.5.2 Filter Matching

The filter masks (see Registers 4-22 through 4-25)

are used to determine which bits in the identifier are

examined with the filters. A truth table is shown in

Table 3-2 that indicates how each bit in the identifier is

compared to the masks and filters to determine if the

message should be loaded into a receive buffer. The

mask essentially determines which bits to apply the

acceptance filters to. If any mask bit is set to a zero,

that bit will automatically be accepted, regardless of

the filter bit.

As shown in the Receive Buffer Block Diagram

(Figure 3-6), acceptance filters, RXF0 and RXF1 (and

filter mask, RXM0), are associated with RXB0. Filters,

RXF2, RXF3, RXF4, RXF5 and RXM1 mask, are

associated with RXB1.

FIGURE 3-8: MASKS AND FILTERS APPLIED TO CAN FRAMES

TABLE 3-2: FILTER/MASK TRUTH TABLE

Mask Bit n Filter Bit n

Message

Identifier

Bit

Accept or

Reject Bit n

0 x x Accept

1 0 0 Accept

1 0 1 Reject

1 1 0 Reject

1 1 1 Accept

Note: x = Don’t care.

Extended Frame

Standard Data Frame

ID10 ID0 EID17 EID0

Masks and Filters Apply to the Entire 29-Bit ID Field

ID10 ID0 Data Byte 0 Data Byte 1

11-Bit ID Standard Frame

*

16-Bit Data Filtering*

* The two MSbs’ (EID17 and EID16) mask and filter bits are not used.

MCP25625

DS20005282B-page 20  2014-2017 Microchip Technology Inc.

3.7.5.3 FILHIT Bits

Filter matches on received messages can be deter-

mined by the FILHIT<2:0> bits in the associated

RXBxCTRL register. The FILHIT0 bit in the RXB0CTRL

register is associated with Buffer 0 and the

FILHIT<2:0> bits in the RXB1CTRL register are

associated with Buffer 1.

The three FILHITx bits for Receive Buffer 1 (RXB1) are

coded as follows:

• 101 = Acceptance Filter 5 (RXF5)

• 100 = Acceptance Filter 4 (RXF4)

• 011 = Acceptance Filter 3 (RXF3)

• 010 = Acceptance Filter 2 (RXF2)

• 001 = Acceptance Filter 1 (RXF1)

• 000 = Acceptance Filter 0 (RXF0)

RXB0CTRL contains two copies of the BUKT bit

(BUKT1) and the FILHIT<0> bit.

The coding of the BUKT bit enables these three bits to

be used similarly to the FILHITx bits in the RXB1CTRL

register and to distinguish a hit on filters, RXF0 and

RXF1, in either RXB0 or after a rollover into RXB1.

• 111 = Acceptance Filter 1 (RXB1)

• 110 = Acceptance Filter 0 (RXB0)

• 001 = Acceptance Filter 1 (RXB1)

• 000 = Acceptance Filter 0 (RXB0)

If the BUKT bit is clear, there are six codes

corresponding to the six filters. If the BUKT bit is set,

there are six codes corresponding to the six filters, plus

two additional codes corresponding to the RXF0 and

RXF1 filters that roll over into RXB1.

3.7.5.4 Multiple Filter Matches

If more than one acceptance filter matches, the

FILHITx bits will encode the binary value of the lowest

numbered filter that matched. For example, if filters,

RXF2 and RXF4, match, FILHITx will be loaded with

the value for RXF2. This essentially prioritizes the

acceptance filters with a lower numbered filter having

higher priority. Messages are compared to filters in

ascending order of filter number. This also ensures that

the message will only be received into one buffer. This

implies that RXB0 has a higher priority than RXB1.

3.7.5.5 Configuring the Masks and Filters

The Mask and Filter registers can only be modified

when the MCP25625 is in Configuration mode (see

Section 2.0 “Modes of Operation”).

FIGURE 3-9: MESSAGE ACCEPTANCE MASK AND FILTER OPERATION

Note: ‘000’ and ‘001’ can only occur if the BUKT

bit in RXB0CTRL is set, allowing RXB0

messages to roll over into RXB1.

Note: The Mask and Filter registers read all ‘0’s

when in any mode except Configuration

mode.

Acceptance Mask Register

RxRqst

Message Assembly Buffer

RXFx0

RXFx1

RXFxi

RXMx0

RXMx1

RXMxi

Identifier

Acceptance Filter Register

 2014-2017 Microchip Technology Inc. DS20005282B-page 21

MCP25625

3.8 CAN Bit Time

The Nominal Bit Rate (NBR) is the number of bits per

second transmitted on the CAN bus (see Equation 3-1).

EQUATION 3-1: NOMINAL BIT RATE/TIME

The Nominal Bit Time (NBT) is made up of four

non-overlapping segments. Each of these segments is

made up of an integer number of so called Time

Quanta (TQ).

The length of each Time Quantum is based on the

oscillator period (TOSC). Equation 3-2 illustrates how

the Time Quantum can be programmed using the Baud

Rate Prescaler (BRP):

EQUATION 3-2: TIME QUANTA

Figure 3-10 illustrates how the Nominal Bit Time is

made up of four segments:

• Synchronization Segment (SYNC) –

Synchronizes the different nodes connected on

the CAN bus. A bit edge is expected to be within

this segment. Based on the CAN protocol, the

Synchronization Segment is 1 TQ. See

Section 3.8.3 “Synchronization” for more

details on synchronization.

• Propagation Segment (PRSEG) – Compensates

for the propagation delay on the bus. It is

programmable from 1 to 8 TQ.

• Phase Segment 1 (PHSEG1) – This time

segment compensates for errors that may occur

due to phase shifts in the edges. The time

segment may be automatically lengthened during

resynchronization to compensate for the phase

shift. It is programmable from 1 to 8 TQ.

• Phase Segment 2 (PHSEG2) – This time

segment compensates for errors that may occur

due to phase shifts in the edges. The time

segment may be automatically shortened during

resynchronization to compensate for the phase

shift. It is programmable from 2 to 8 TQ.

The total number of Time Quanta in a Nominal Bit Time

is programmable and can be calculated using

Equation 3-3.

EQUATION 3-3: TQ PER NBT

FIGURE 3-10: ELEMENTS OF A NOMINAL BIT TIME

NBR
1

NBT
-----------=

TQ = 2  (BRP<5:0> + 1)  TOSC =
2  (BRP<5:0> + 1)

FOSC

NBT

TQ
= SYNC + PRSEG + PHSEG1 + PHSEG2

TOSC

TBRPCLK

NBT
SYNC
(1 TQ)

PRSEG
(1-8 TQ)

PHSEG2
(2-8 TQ)

PHSEG1
(1-8 TQ)

TQ

Nominal Bit Time

Sample Point

MCP25625

DS20005282B-page 22  2014-2017 Microchip Technology Inc.

3.8.1 SAMPLE POINT

The sample point is the point in the Nominal Bit Time at

which the logic level is read and interpreted. The CAN

bus can be sampled once or three times, as configured

by the SAM bit in the CNF2 register:

• SAM = 0: The sample point is located between

PHSEG1 and PHSEG2.

• SAM = 1: One sample point is located between

PHSEG1 and PHSEG2. Additionally, two samples

are taken at one-half TQ intervals prior to the end

of PHSEG1, with the value of the bit being

determined by a majority decision.

The sample point in percent can be calculated using

Equation 3-4.

EQUATION 3-4: SAMPLE POINT

3.8.2 INFORMATION PROCESSING TIME

The Information Processing Time (IPT) is the time

required for the CAN controller to determine the bit

level of a sampled bit. The IPT for the MCP25625 is

2 TQ. Therefore, the minimum of PHSEG2 is also 2 TQ.

3.8.3 SYNCHRONIZATION

To compensate for phase shifts between the oscillator

frequencies of the nodes on the bus, each CAN controller

must be able to synchronize to the relevant edge of the

incoming signal.

The CAN controller expects an edge in the received

signal to occur within the SYNC segment. Only

Recessive-to-Dominant edges are used for

synchronization.

There are two mechanisms used for synchronization:

• Hard Synchronization – Forces the edge that

has occurred to lie within the SYNC segment. The

bit time counter is restarted with SYNC.

• Resynchronization – If the edge falls outside the

SYNC segment, PHSEG1 and PHSEG2 will be

adjusted.

For a more detailed description of the CAN synchroni-

zation, please refer to AN754, “Understanding

Microchip’s CAN Module Bit Timing” (DS00754) and

ISO11898-1.

3.8.4 SYNCHRONIZATION JUMP WIDTH

The Synchronization Jump Width (SJW) is the maxi-

mum amount PHSEG1 and PHSEG2 can be adjusted

during resynchronization. SJW is programmable from

1 to 4 TQ.

3.8.5 OSCILLATOR TOLERANCE

According to the CAN specification, the bit timing

requirements allow ceramic resonators to be used in

applications with transmission rates of up to 125 kbps,

as a rule of thumb. For the full bus speed range of the

CAN protocol, a quartz oscillator is required. A

maximum node-to-node oscillator variation of 1.58% is

allowed.

The oscillator tolerance (df), around the nominal

frequency of the oscillator (fnom), is defined in

Equation 3-5.

Equation 3-6 and Equation 3-7 describe the conditions

for the maximum tolerance of the oscillator.

EQUATION 3-5: OSCILLATOR TOLERANCE

EQUATION 3-6: CONDITION 1

EQUATION 3-7: CONDITION 2

SP =  100
PRSEG + PHSEG1

NBT

TQ

1 df–  fnom FOSC 1 df+  fnom  

df 
SJW

2  10  NBT

TQ

df 
min(PHSEG1, PHSEG2)

2  13  NBT

TQ





– PHSEG2

 2014-2017 Microchip Technology Inc. DS20005282B-page 23

MCP25625

3.8.6 PROPAGATION DELAY

Figure 3-11 illustrates the propagation delay between

two CAN nodes on the bus. Assuming Node A is

transmitting a CAN message, the transmitted bit will

propagate from the transmitting CAN Node A,

through the transmitting CAN transceiver, over the

CAN bus, through the receiving CAN transceiver into

the receiving CAN Node B.

During the arbitration phase of a CAN message, the

transmitter samples the bus and checks if the transmit-

ted bit matches the received bit. The transmitting node

has to place the sample point after the maximum

propagation delay.

Equation 3-8 describes the maximum propagation

delay; where tTXD – RXD is the propagation delay of the

transceiver, 235 ns for the MCP25625; TBUS is the

delay on the CAN bus, approximately 5 ns/m. The

factor two comes from the worst case, when Node B

starts transmitting exactly when the bit from Node A

arrives.

EQUATION 3-8: MAXIMUM PROPAGATION

DELAY

FIGURE 3-11: PROPAGATION DELAY

TPROP 2 tTXD RXD–

TBUS+ =

TxCAN CANH

RxCAN CANL

Transceiver Propagation
Delay (tTXD – RXD)

CANH

CANL

RxCAN

TxCAN

Transceiver Propagation
Delay (tTXD – RXD)

CAN Bus (TBUS)

Delay: Node A to B (TPROPAB)

Delay: Node B to A (TPROPBA)

TPROP = TPROPAB + TPROPBA = 2  (tTXD – RXD + TBUS)

Node A Node B

MCP25625

DS20005282B-page 24  2014-2017 Microchip Technology Inc.

3.8.7 BIT TIME CONFIGURATION

EXAMPLE

The following example illustrates the configuration of

the CAN Bit Time registers. Assuming we want to set

up a CAN network in an automobile with the following

parameters:

• 500 kbps Nominal Bit Rate (NBR)

• Sample point between 60 and 80% of the Nominal

Bit Time (NBT)

• 40 meters minimum bus length

Table 3-3 illustrates how the bit time parameters are

calculated. Since the parameters depend on multiple

constraints and equations, and are calculated using an

iterative process, it is recommended to enter the

equations into a spread sheet.

A detailed description of the Bit Time Configuration

registers can be found in Section 4.4 “Bit Time

Configuration Registers”.

TABLE 3-3: STEP-BY-STEP REGISTER CONFIGURATION EXAMPLE

Parameter Register Constraint Value Unit Equations and Comments

NBT — NBT  1 µs 2 µs Equation 3-1

FOSC — FOSC  25 MHz 16 MHz Select crystal or resonator frequency;

usually 16 or 20 MHz work

TQ/Bit — 5 to 25 16 The sum of the TQ of all four segments must

be between 5 and 25; selecting 16 TQ per

bit is a good starting point

TQ — NBT, FOSC 125 ns Equation 3-3

BRP<5:0> CNF1 0 to 63 0 Equation 3-2

SYNC — Fixed 1 TQ Defined in ISO 11898-1

PRSEG CNF2 1 to 8 TQ;

PRSEG > TPROP

7 TQ Equation 3-8: TPROP = 870 ns,

minimum PRSEG = TPROP/TQ = 6.96 TQ;

selecting 7 will allow 40m bus length

PHSEG1 CNF2 1 to 8 TQ;

 PHSEG1  SJW<1:0>

4 TQ There are 8 TQ remaining for

PHSEG1 + PHSEG2; divide the remaining

TQ in half to maximize SJW<1:0>

PHSEG2 CNF3 2 to 8 TQ;

PHSEG2  SJW<1:0>

4 TQ There are 4 TQ remaining

SJW<1:0> CNF1 1 to 4 TQ;

SJW<1:0>  min(PHSEG1,

PHSEG2)

4 TQ Maximizing SJW<1:0> lessens the

requirement for the oscillator tolerance

Sample Point — Usually between 60 and 80% 69 % Use Equation 3-4 to double check the

sample point

Oscillator Tolerance

Condition 1

— Double Check 1.25 % Equation 3-6

Oscillator Tolerance

Condition 2

— Double Check 0.98 % Equation 3-7; better than 1% crystal

oscillator required

 2014-2017 Microchip Technology Inc. DS20005282B-page 25

MCP25625

3.9 Error Detection

The CAN protocol provides sophisticated error

detection mechanisms. The following errors can be

detected.

The registers required for error detection are described

in Section 4.5 “Error Detection Registers”.

3.9.1 CRC ERROR

With the Cyclic Redundancy Check (CRC), the

transmitter calculates special check bits for the bit

sequence from the Start-of-Frame until the end of the

data field. This CRC sequence is transmitted in the

CRC field. The receiving node also calculates the CRC

sequence using the same formula and performs a com-

parison to the received sequence. If a mismatch is

detected, a CRC error has occurred and an error frame

is generated; the message is repeated.

3.9.2 ACKNOWLEDGE ERROR

In the Acknowledge field of a message, the transmitter

checks if the Acknowledge slot (which has been sent

out as a Recessive bit) contains a Dominant bit. If not,

no other node has received the frame correctly. An

Acknowledge error has occurred, an error frame is

generated and the message will have to be repeated.

3.9.3 FORM ERROR

If a node detects a Dominant bit in one of the four

segments (including End-of-Frame, inter-frame space,

Acknowledge delimiter or CRC delimiter), a form error

has occurred and an error frame is generated. The

message is repeated.

3.9.4 BIT ERROR

A bit error occurs if a transmitter detects the opposite

bit level to what it transmitted (i.e., transmitted a

Dominant and detected a Recessive, or transmitted a

Recessive and detected a Dominant).

Exception: In the case where the transmitter sends a

Recessive bit, and a Dominant bit is detected during

the arbitration field and the Acknowledge slot, no bit

error is generated because normal arbitration is

occurring.

3.9.5 STUFF ERROR

lf, between the Start-of-Frame and the CRC delimiter,

six consecutive bits with the same polarity are

detected, the bit-stuffing rule has been violated. A stuff

error occurs and an error frame is generated; the

message is repeated.

3.9.6 ERROR STATES

Detected errors are made known to all other nodes via

error frames. The transmission of the erroneous mes-

sage is aborted and the frame is repeated as soon as

possible. Furthermore, each CAN node is in one of the

three error states according to the value of the internal

error counters:

• Error-active

• Error-passive

• Bus-off (transmitter only)

The error-active state is the usual state where the node

can transmit messages and active error frames (made

of Dominant bits) without any restrictions.

In the error-passive state, messages and passive error

frames (made of Recessive bits) may be transmitted.

The bus-off state makes it temporarily impossible for

the station to participate in the bus communication.

During this state, messages can neither be received

nor transmitted. Only transmitters can go bus-off.

3.10 Error Modes and Error Counters

The MCP25625 contains two error counters: the

Receive Error Counter (REC) (see Register 4-30) and

the Transmit Error Counter (TEC) (see Register 4-29).

The values of both counters can be read by the MCU.

These counters are incremented/decremented in

accordance with the CAN bus specification.

The MCP25625 is error-active if both error counters are

below the error-passive limit of 128.

The device is error-passive if at least one of the error

counters equals or exceeds 128.

The device goes to bus-off if the TEC exceeds the bus-

off limit of 255. The device remains in this state until the

bus-off recovery sequence is received. The bus-off

recovery sequence consists of 128 occurrences of

11 consecutive Recessive bits (see Figure 3-12).

The current Error mode of the MCP25625 can be read

by the MCU via the EFLG register (see Register 4-31).

Additionally, there is an error state warning flag bit

(EWARN bit in the EFLG register), which is set if at

least one of the error counters equals or exceeds the

error warning limit of 96. EWARN is reset if both error

counters are less than the error warning limit.

Note: The MCP25625, after going bus-off, will

recover back to error-active without any

intervention by the MCU if the bus

remains Idle for 128 x 11 bit times. If this is

not desired, the error Interrupt Service

Routine (ISR) should address this.

	Contact us
	General Features
	CAN Controller Features
	CAN Transceiver Features
	Description
	Package Types
	1.0 Device Overview
	1.1 Block Diagram
	FIGURE 1-1: MCP25625 Block Diagram

	1.2 Pin Out Description
	TABLE 1-1: MCP25625 Pin Description

	1.3 Typical Application
	FIGURE 1-2: MCP25625 Interfacing with a 3.3V Microcontroller

	2.0 Modes of Operation
	2.1 CAN Controller Modes of Operation
	2.2 CAN Transceiver Modes of Operation
	2.3 Configuration Mode
	2.4 Normal Mode
	2.5 Sleep/Standby Mode
	2.5.1 Wake-up Functions

	2.6 Listen-Only Mode
	2.7 Loopback Mode

	3.0 CAN Controller
	3.1 CAN Module
	3.2 Control Logic
	3.3 SPI Protocol Block
	FIGURE 3-1: CAN Controller Block Diagram

	3.4 CAN Buffers and Filters
	FIGURE 3-2: CAN Buffers and Protocol Engine

	3.5 CAN Protocol Engine
	3.5.1 Protocol Finite State Machine
	3.5.2 Cyclic Redundancy Check
	3.5.3 Error Management Logic
	3.5.4 Bit Timing Logic
	FIGURE 3-3: CAN Protocol Engine Block Diagram

	3.6 Message Transmission
	3.6.1 Transmit Buffers
	3.6.2 Transmit Priority
	3.6.3 Initiating Transmission
	3.6.4 One-Shot Mode
	3.6.5 TxnRTS Pins
	3.6.6 Aborting Transmission
	FIGURE 3-4: Transmit Message Flowchart

	3.7 Message Reception
	3.7.1 Receive Message Buffering
	3.7.2 Receive Priority
	3.7.3 Start-of-Frame Signal
	3.7.4 Rx0BF and Rx1BF Pins
	FIGURE 3-5: Start-of-Frame Signaling
	TABLE 3-1: Configuring RxnBF Pins
	FIGURE 3-6: Receive Buffer Block Diagram
	FIGURE 3-7: Receive Flow Flowchart

	3.7.5 Message Acceptance Filters and Masks
	TABLE 3-2: Filter/Mask Truth Table
	FIGURE 3-8: Masks and Filters Applied to CAN Frames
	FIGURE 3-9: Message Acceptance Mask and Filter Operation

	3.8 CAN Bit Time
	EQUATION 3-1: Nominal Bit Rate/Time
	EQUATION 3-2: Time Quanta
	EQUATION 3-3: TQ per NBT
	FIGURE 3-10: Elements of a Nominal Bit Time
	3.8.1 Sample Point
	EQUATION 3-4: Sample Point

	3.8.2 Information Processing Time
	3.8.3 Synchronization
	3.8.4 Synchronization Jump Width
	3.8.5 Oscillator Tolerance
	EQUATION 3-5: Oscillator Tolerance
	EQUATION 3-6: Condition 1
	EQUATION 3-7: Condition 2

	3.8.6 Propagation Delay
	EQUATION 3-8: Maximum Propagation Delay
	FIGURE 3-11: Propagation Delay

	3.8.7 Bit Time Configuration Example
	TABLE 3-3: Step-by-Step Register Configuration Example

