imall

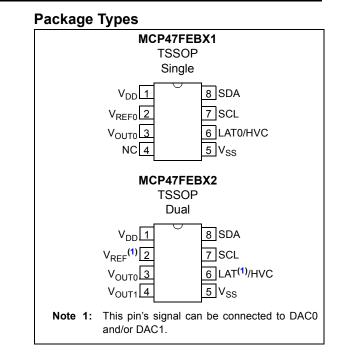
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



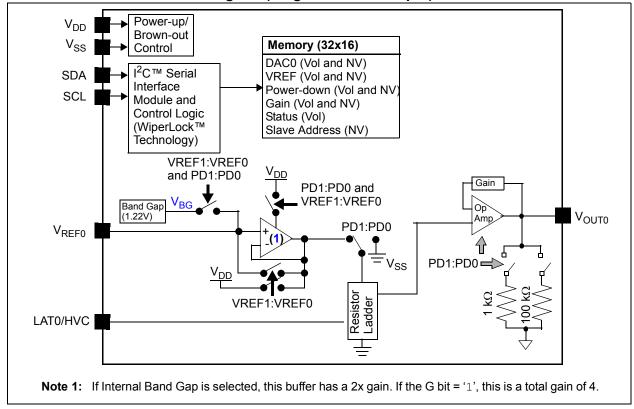
MCP47FEBXX

8-/10-/12-Bit Single/Dual Voltage Output Nonvolatile Digital-to-Analog Converters with I²CTM Interface

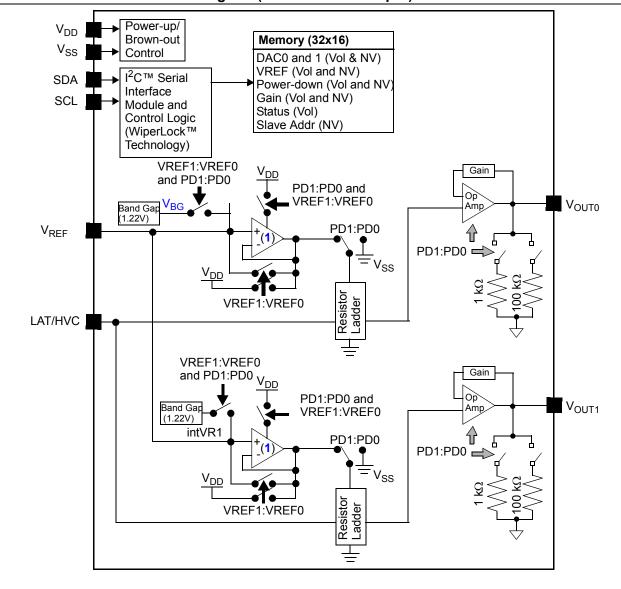
Features

- Operating Voltage Range:
 - 2.7V to 5.5V Full Specifications
 - 1.8V to 2.7V Reduced Device Specifications
- Output Voltage Resolutions:
 - 8-bit: MCP47FEB0X (256 Steps)
 - 10-bit: MCP47FEB1X (1024 Steps)
 - 12-bit: MCP47FEB2X (4096 Steps)
- Rail-to-Rail Output
- Fast Settling Time of 6 µs (typical)
- DAC Voltage Reference Source Options:
 - Device V_{DD}
 - External V_{REF} pin (buffered or unbuffered)
 - Internal Band Gap (1.22V typical)
- Output Gain Options:
 - Unity (1x)
 - 2x (when not using internal V_{DD} as voltage source)
- Nonvolatile Memory (EEPROM):
 - User-programmed Power-on Reset (POR)/Brown-out Reset (BOR) output setting recall and device configuration bits
 - Auto Recall of Saved DAC register setting
 - Auto Recall of Saved Device Configuration (Voltage Reference, Gain, Power-Down)
- Power-on/Brown-out Reset Protection
- Nonvolatile Memory Write Protect (WP) Bit
- Power-Down Modes:
 - Disconnects output buffer (High Impedance)
 - Selection of V_{OUT} pull-down resistors (100 k Ω or 1 k Ω)
- Low Power Consumption:
 - Normal operation: <180 μA (Single), 380 μA (Dual)
 - Power-down operation: 650 nA typical
 - EEPROM write cycle (1.9 mA maximum)
- I²C[™] Interface:
 - Slave address options: four predefined addresses or user programmable (all 7 bits)
 - Standard (100 kbps), Fast (400 kbps), and High-Speed (up to 3.4 Mbps) modes
- Package Types: 8-lead TSSOP
- Extended Temperature Range: -40°C to +125°C

General Description


The MCP47FEBXX are Single- and Dual-channel 8-bit, 10-bit, and 12-bit buffered voltage output Digital-to-Analog Converters (DAC) with nonvolatile memory and an I^2C serial interface.

The V_{REF} pin, the device V_{DD} or the internal band gap voltage can be selected as the DAC's reference voltage. When V_{DD} is selected, V_{DD} is connected internally to the DAC reference circuit. When the V_{REF} pin is used, the user can select the output buffer's gain to be 1 or 2. When the gain is 2, the V_{REF} pin voltage should be limited to a maximum of V_{DD}/2.


These devices have a two-wire I^2 C-compatible serial interface for Standard (100 kHz), Fast (400 kHz) or High-Speed (1.7 MHz and 3.4 MHz) modes.

Applications

- Set Point or Offset Trimming
- Sensor Calibration
- · Low-Power Portable Instrumentation
- PC Peripherals
- Data Acquisition Systems
- Motor Control

MCP47FEBX1 Device Block Diagram (Single-Channel Output)

MCP47FEBX2 Device Block Diagram (Dual-Channel Output)

Note 1: If Internal Band Gap is selected, this buffer has a 2x gain, if the G bit = '1', this is a total gain of 4.

Device	# of Channels	Resolution (bits)	Control Interface	DAC Output POR/BOR Setting ⁽¹⁾	# of VREF Inputs	Internal band gap ?	# of LAT Inputs	Memory	Specified Operating Range (V _{DD})
MCP47FEB01	1	8	l²C™	7Fh	1	Yes	1	EEPROM	1.8V to 5.5V
MCP47FEB11	1	10	l ² C	1FFh	1	Yes	1	EEPROM	1.8V to 5.5V
MCP47FEB21	1	12	l ² C	7FFh	1	Yes	1	EEPROM	1.8V to 5.5V
MCP47FEB02	2	8	l ² C	7Fh	1	Yes	1	EEPROM	1.8V to 5.5V
MCP47FEB12	2	10	l ² C	1FFh	1	Yes	1	EEPROM	1.8V to 5.5V
MCP47FEB22	2	12	I ² C	7FFh	1	Yes	1	EEPROM	1.8V to 5.5V

Device Features

Note 1: The Factory Default value. The DAC output POR/BOR value can be modified via the nonvolatile DAC output register(s).

MCP47FEBXX

NOTES:

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Voltage on V_{DD} with respect to V_{SS}	3	-0.6V to +6.5V
Voltage on all pins with respect to	/ _{SS}	-0.6V to V _{DD} +0.3V
		±20 mA
Output clamp current, I_{OK} (V _O < 0	or V _O > V _{DD})	±20 mA
Maximum current out of V_{SS} pin		
Maximum current into V_{DD} pin		
Maximum current sourced by the V		
Maximum current sunk by the V_{OU}	_T pin	
Maximum current sunk by the V_{REI}	= pin	
Maximum input current source/sun	k by SDA, SCL pins	
Maximum output current sunk by S	DA Output pin	
Total power dissipation ⁽¹⁾		
ESD protection on all pins		
		±100 mA
		65°C to +150°C
		55°C to +125°C
		+300°C
Maximum Junction Temperature (T	J)	+150°C

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note 1: Power dissipation is calculated as follows: $P_{DIS} = V_{DD} x \{I_{DD} - \sum I_{OH}\} + \sum \{(V_{DD} - V_{OH}) x I_{OH}\} + \sum (V_{OL} x I_{OL})$

DC CHARACTERISTICS

DC Characteristics		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions			
Supply Voltage	V _{DD}	2.7	—	5.5	V				
		1.8		2.7	V	DAC operation (reduced analog specifications) and Serial Interface			
V _{DD} Voltage (rising) to ensure device Power-on Reset	V _{POR/BOR}	_		1.7	V	RAM retention voltage (V_{RAM}) < V_{POR} V_{DD} voltages greater than $V_{POR/BOR}$ limit ensure that device is out of reset.			
V _{DD} Rise Rate to ensure Power-on Reset	V _{DDRR}		(Note	3)	V/ms				
High-Voltage Commands Voltage Range (HVC pin)	V _{HV}	V_{SS}	_	12.5	V	The HVC pin will be at one of three input levels (V _{IL} , V _{IH} or V _{IHH}) $^{(1)}$			
High-Voltage Input Entry Voltage	V _{IHHEN}	9.0		—	V	Threshold for Entry into WiperLock™ Technology			
High-Voltage Input Exit Voltage	V _{IHHEX}			V _{DD} + 0.8V	V	(Note 1)			
Power-on Reset to Out- put-Driven Delay	T _{PORD}	—	25	50	μs	V_{DD} rising, $V_{DD} > V_{POR}$			

Note 1 This parameter is ensured by design.

Note 3 POR/BOR voltage trip point is not slope dependent. Hysteresis implemented with time delay.

		Operating	Temperat	ure	–40°C ≤ 1	A ≤ +125	wise specified) 5°C (Extended)			
DC Characteristic	S	All parameters apply across the specified operating ranges unless noted. V_{DD} = +2.7V to 5.5V, V_{REF} = +2.048V to V_{DD} , V_{SS} = 0V, Gx = '0', R_L = 5 k Ω from V_{OUT} to GND, C_L = 100 pF. Typical specifications represent values for V_{DD} = 5.5V, T_A = +25°C.								
Parameters	Sym.	Min.	Тур.	Max.	Units		Conditions			
Supply Current	I _{DD}	_		500 700	μΑ μΑ	Single Dual	Serial Interface Active (Not High-Voltage Command), VRxB:VRxA = '01' ⁽⁶⁾ , V _{OUT} is unloaded, V _{DD} = 5.5V volatile DAC Register = 000h I^2C^{TM} : F _{SCL} = 3.4 MHz			
		—	_	400 550	μΑ μΑ	Single Dual	Serial Interface Active ⁽²⁾ (Not High-Voltage Command), VRxB:VRxA = '10' ⁽⁴⁾ , V _{OUT} is unloaded, V _{REF} = V _{DD} = 5.5V volatile DAC Register = 000h $I^{2}C: F_{SCL} = 3.4 \text{ MHz}$			
				180 380	μΑ μΑ	Single Dual	Serial Interface Inactive ⁽²⁾ (Not High-Voltage Command), VRxB:VRxA = '00', SCL = SDA = V _{SS} , V _{OUT} is unloaded, volatile DAC Register = 000h			
		_	_	180	μA	Single	Serial Interface Inactive ⁽²⁾			
		_	_	380	μA	Dual	(Not High-Voltage Command), VRxB:VRxA = '11', V _{REF} = V _{DD} , SCL = SDA = V _{SS} , V _{OUT} is unloaded, volatile DAC Register = 000h			
			—	1.9	mA	V _{REF} = (after w write all	e Current V _{DD} = 5.5V rite, Serial Interface is Inactive), I 0's to nonvolatile DAC 0 (address 10h), ins are unloaded.			
			145	180	μA	Single	HVC = 12.5V (High-Voltage			
		_	260	400	μA	Dual	Command), Serial Interface Inactive $V_{REF} = V_{DD} = 5.5V$, LAT/HVC = V_{IHH} , DAC registers = 000h, V_{OUT} pins are unloaded.			
Power-Down Current	I _{DDP}	—	0.65	3.8	μA		DxA = '01' ⁽⁵⁾ , ot connected			

Note 2 This parameter is ensured by characterization.

Note 4 Supply current is independent of current through the resistor ladder in mode VRxB:VRxA = '10'.

Note 5 The PDxB:PDxA = '01', '10', and '11' configurations should have the same current.

Note 6 By design, this is worst-case current mode.

DC Characteristics	Operati All para V _{DD} = - Gx = '0	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Parameters	Sym.	Min.	Тур.	Max.	Units		Conditions		
Resistor Ladder Resistance	RL	100	140	180	kΩ	1.8V ≤ V _{REF} ≥	$V_{DD} \le 5.5V, 1.0V^{(7)}$		
Resolution	Ν		256		Taps	8-bit	No Missing Codes		
(# of Resistors			1024		Taps	10-bit	No Missing Codes		
and # of Taps) (see C.1 "Resolution")		4096			Taps	12-bit	No Missing Codes		
Nominal VOUT	V _{OUT} - V _{OUTMEAN}		0.5	1.0	%	$2.7V \leq$	$V_{DD} \leq 5.5 V^{(2)}$		
Match (12)	N _{OUTMEAN}		—	1.2	%	1.8V ⁽²⁾			
V _{OUT} Tempco (see C.19 "V _{OUT} Temperature Coefficient")	ΔV _{OUT} /ΔT	—	15	—	ppm/°C		· Mid-scale FFh or 7FFh)		
V _{REF} pin Input Voltage Range	V _{REF}	V _{SS}	—	V _{DD}	V	1.8V ≤	$V_{DD} \leq 5.5 V^{(1)}$		

Note 1 This parameter is ensured by design.

Note 2 This parameter is ensured by characterization.

Note 7 Resistance is defined as the resistance between the V_{REF} pin (mode VRxB:VRxA = '10') to V_{SS} pin. For dual-channel devices (MCP47FEBX2), this is the effective resistance of the each resistor ladder. The resistance measurement is of the two resistor ladders measured in parallel.

Note 12 Variation of one output voltage to mean output voltage.

DC Characteristic	cs	Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le T_A \le +125^{\circ}C$ (Extended)All parameters apply across the specified operating ranges unless noted. $V_{DD} = +2.7V$ to 5.5V, $V_{REF} = +2.048V$ to V_{DD} , $V_{SS} = 0V$,								
		Gx = '0', R _L = 5 k Ω from V _{OUT} to GND, C _L = 100 pF. Typical specifications represent values for V _{DD} = 5.5V, T _A = +25°C.								
Parameters	Sym.	Min.	Max.	Units		Conditions				
Zero-Scale Error	E _{ZS}	—	—	0.75	LSb	8-bit	VRxB:VRxA = '11', Gx = '0',			
(see C.5						+	$V_{REF} = V_{DD}$, No Load			
"Zero-Scale Error (EZS)")				"Typical	LSb		VRxB:VRxA = `00', Gx = `0',			
(Code = 000h)				urves" ⁽²⁾		-	V_{DD} = 5.5V, No Load			
(0000 0000)) "Typical urves" ⁽²⁾	LSb		V _{DD} = 1.8V, V _{REF} = 1.0V VRxB:VRxA = '10', Gx = '0'. No Load			
) "Typical	LSb	+	$V_{DD} = 1.8V, V_{REF} = 1.0V$			
				urves" ⁽²⁾	LOD		$V_{BD} = 1.00, V_{REF} = 1.00$ VRxB:VRxA = '11', Gx = '0'. No Load			
		See Se	ection 2.0) "Typical urves" ⁽²⁾	LSb	+	VRxB:VRxA = '01', Gx = '0', No Load			
		Fenor		3	LSb	10-bit	VRxB:VRxA = '11', Gx = '0',			
					LOD	10-51	$V_{\text{REF}} = V_{\text{DD}}$, No Load			
		See Se	ection 2.0	"Typical	LSb	+	VRxB:VRxA = '00', Gx = '0',			
				urves" ⁽²⁾			V _{DD} = 5.5V, No Load			
) "Typical urves" ⁽²⁾	LSb		V _{DD} = 1.8V, V _{REF} = 1.0V VRxB:VRxA = '10', Gx = '0'. No Load			
) "Typical urves" ⁽²⁾	LSb		V _{DD} = 1.8V, V _{REF} = 1.0V VRxB:VRxA = '11', Gx = '0'. No Load			
) "Typical urves" ⁽²⁾	LSb		VRxB:VRxA = '01', Gx = '0', No Load			
			—	12	LSb	12-bit	VRxB:VRxA = '11', Gx = '0', V _{REF} = V _{DD} , No Load			
				"Typical urves" ⁽²⁾	LSb		VRxB:VRxA = '00', Gx = '0', V _{DD} = 5.5V, No Load			
) "Typical urves" ⁽²⁾	LSb		V _{DD} = 1.8V, V _{REF} = 1.0V VRxB:VRxA = '10', Gx = '0'. No Load			
		See Se	ection 2.0) "Typical urves" ⁽²⁾	LSb		V _{DD} = 1.8V, V _{REF} = 1.0V VRxB:VRxA = '11', Gx = '0'. No Load			
		See Section 2.0 "Typical Performance Curves" ⁽²⁾		LSb		VRxB:VRxA = '01', Gx = '0', No Load				
Offset Error (see C.7 "Offset Error (EOS)")	E _{OS}	-15 ±1.5 +15			mV	VRxB:V	/RxA = '00', Gx = '0', No Load			
Offset Voltage Temperature Coefficient	V _{OSTC}	_	±10	_	µV/°C					

Note 2 This parameter is ensured by characterization.

			rd Operating Co	•			se specified) (Extended)	
DC Characterist	ics	V _{DD} = + Gx = '0	meters apply acr -2.7V to 5.5V, V_R ', R_L = 5 k Ω from specifications re	_{EF} = +2.048 V _{OUT} to G	BV to V _D ND, C _L =	_{DD} , V _{SS} = = 100 pF	<u>.</u>	
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions		
Full-Scale Error (see C.4	E _{FS}		_	4.5	LSb	8-bit	Code = FFh, VRxB:VRxA = '11', Gx = '0', V _{REF} = 2.048V, No Load	
"Full-Scale Error (EFS)")			e Section 2.0 "T rformance Curv		LSb		Code = FFh, VRxB:VRxA = '10', Gx = '0', V _{REF} = 2.048V, No Load	
			e Section 2.0 "T rformance Curv		LSb		Code = FFh, VRxB:VRxA = '01', Gx = '0', V _{REF} = 2.048V, No Load	
			e Section 2.0 "T rformance Curv		LSb		Code = FFh, VRxB:VRxA = '00', No Load	
			_	18	LSb	10-bit	Code = 3FFh, VRxB:VRxA = '11', Gx = '0', V _{REF} = 2.048V, No Load	
			e Section 2.0 "T rformance Curv		LSb		Code = 3FFh, VRxB:VRxA = '10', Gx = '0', V _{REF} = 2.048V, No Load	
		Pe	e Section 2.0 "T rformance Curv	es" ⁽²⁾	LSb		Code = 3FFh, VRxB:VRxA = '01', Gx = '0', V _{REF} = 2.048V, No Load	
			e Section 2.0 "T rformance Curv	es" ⁽²⁾	LSb		Code = 3FFh, VRxB:VRxA = '00', No Load	
			— — 70		LSb	12-bit	Code = FFFh, VRxB:VRxA = '11', Gx = '0', V _{REF} = 2.048V, No Load	
		Pe	e Section 2.0 "T rformance Curv	es" ⁽²⁾	LSb		Code = FFFh, VRxB:VRxA = '10', Gx = '0', V _{REF} = 2.048V, No Load	
			e Section 2.0 "T rformance Curv		LSb		Code = FFFh, VRxB:VRxA = '01', Gx = '0', V _{REF} = 2.048V, No Load	
			e Section 2.0 "T rformance Curv		LSb		Code = FFFh, VRxB:VRxA = '00', No Load	

Note 2 This parameter is ensured by characterization.

DC Characteristics		$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & -40^{\circ}C \leq T_A \leq +125^{\circ}C \mbox{(Extended)} \\ \mbox{All parameters apply across the specified operating ranges unless noted.} \\ \mbox{V}_{DD} = +2.7V \mbox{ to } 5.5V, \mbox{V}_{REF} = +2.048V \mbox{ to } V_{DD}, \mbox{V}_{SS} = 0V, \\ \mbox{Gx} = '0', \mbox{R}_L = 5 \mbox{ k}\Omega \mbox{ from } V_{OUT} \mbox{ to } GND, \mbox{ C}_L = 100 \mbox{ pF}. \\ \mbox{Typical specifications represent values for } V_{DD} = 5.5V, \mbox{T}_A = +25^{\circ}C. \end{array}$							
Parameters	Sym.	Min.	Тур.	Max.	Units		Conditions		
Gain Error (see C.9 "Gain Error	E _G	-1.0	±0.1	+1.0	% of FSR	8-bit	Code = 250, No Load VRxB:VRxA = '00', Gx = '0'		
(EG)") ⁽⁹⁾		-1.0	±0.1	+1.0	% of FSR	10-bit	Code = 1000, No Load VRxB:VRxA = '00', Gx = '0'		
		-1.0	±0.1	+1.0	% of FSR	12-bit	Code = 4000, No Load VRxB:VRxA = '00', Gx = '0'		
Gain-Error Drift (see C.10 "Gain-Error Drift (EGD)")	∆G/°C	_	-3	—	ppm/°C				
Total Unadjusted Error (see C.6 "Total	Ε _Τ	-2.5	_	+0.5	LSb	8-bit	VRxB:VRxA = '00'. No Load.		
Unadjusted Error (ET)") ⁽²⁾			ction 2.0 "T rmance Cui		LSb		V _{DD} = 1.8V, VRxB:VRxA = '11', Gx = '0', V _{REF} = 1.0V, No Load.		
		-10.0	—	+2.0	LSb	10-bit	VRxB:VRxA = '00'. No Load.		
			ction 2.0 "T rmance Cui		LSb		V _{DD} = 1.8V, VRxB:VRxA = '11', Gx = '0', V _{REF} = 1.0V, No Load.		
		-40.0		+8.0	LSb	12-bit	VRxB:VRxA = '00'. No Load.		
			ction 2.0 "T rmance Cui	•••	LSb		V _{DD} = 1.8V, VRxB:VRxA = '11', Gx = '0', V _{REF} = 1.0V, No Load.		

Note 2 This parameter is ensured by characterization.

Note 9 This gain error does not include offset error.

DC Characteristics	$ \begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise specified)} \\ \mbox{Operating Temperature} & -40^\circ C \leq T_A \leq +125^\circ C \ (Extended) \\ \mbox{All parameters apply across the specified operating ranges unless noted.} \\ \mbox{V}_{DD} = +2.7V \ to \ 5.5V, \ V_{REF} = +2.048V \ to \ V_{DD}, \ V_{SS} = 0V, \\ \mbox{Gx} = `0', \ R_L = 5 \ k\Omega \ from \ V_{OUT} \ to \ GND, \ C_L = 100 \ pF. \\ \mbox{Typical specifications represent values for } V_{DD} = 5.5V, \ T_A = +25^\circ C. \end{array} $									
Parameters	Sym.	Min.	Typ.	Max.	Units					
Integral Nonlinearity (see C.11 "Integral	INL	-0.5	±0.1	+0.5	LSb	8-bit	VRxB:VRxA = '10' (codes: 6 to 250), V _{DD} = V _{REF} = 5.5V.			
Nonlinearity (INL)") ^(8, 11)			ction 2.0 ' mance Cu		LSb		VRxB:VRxA = '00', '01', '11'.			
			ction 2.0 ' mance Cu		LSb		VRxB:VRxA = '01', V _{DD} = 5.5V, Gx = '1'.			
			ction 2.0 ' mance Cu		LSb		VRxB:VRxA = '10', '11', V _{REF} = 1.0V, Gx = '1'.			
			ction 2.0 ' mance Cu		LSb		V _{DD} = 1.8V, V _{REF} = 1.0V			
			±0.4	+1.5	LSb	10-bit	VRxB:VRxA = '10' (codes: 25 to 1000), V _{DD} = V _{REF} = 5.5V.			
			ction 2.0 ' mance Cu		LSb		VRxB:VRxA = '00', '01', '11'.			
		Perfor	ction 2.0 ' mance Cu	rves" ⁽²⁾	LSb		VRxB:VRxA = '01', V _{DD} = 5.5V, Gx = '1'.			
		Perfor	ction 2.0 ' mance Cu	rves" ⁽²⁾	LSb		VRxB:VRxA = '10', '11', V _{REF} = 1.0V, Gx = '1'.			
			ction 2.0 ' mance Cu		LSb		V _{DD} = 1.8V, V _{REF} = 1.0V.			
		-6	±1.5	+6	LSb	12-bit	VRxB:VRxA = '10' (codes: 100 to 4000), V _{DD} = V _{REF} = 5.5V.			
		Perfor	See Section 2.0 "Typical Performance Curves" ⁽²⁾		LSb		VRxB:VRxA = '00', '01', '11'.			
		Perfor	'Typical rves" ⁽²⁾	LSb		VRxB:VRxA = '01', V _{DD} = 5.5V, Gx = '1'.				
		Perfor	'Typical rves" ⁽²⁾	LSb		VRxB:VRxA = '10', '11', V _{REF} = 1.0V, Gx = '1'.				
			ction 2.0 ' mance Cu		LSb		V _{DD} = 1.8V, V _{REF} = 1.0V.			

Note 2 This parameter is ensured by characterization.

Note 8 INL and DNL are measured at V_{OUT} with $V_{RL} = V_{DD}$ (VRxB:VRxA = '00').

Note 11 Code Range dependent on resolution: 8-bit, codes 6 to 250; 10-bit, codes 25 to 1000; 12-bit, 100 to 4000.

	Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le T_A \le +125^{\circ}C$ (Extended)													
DC Characteristics		All parameters apply across the specified operating ranges unless noted. $V_{DD} = +2.7V$ to 5.5V, $V_{REF} = +2.048V$ to V_{DD} , $V_{SS} = 0V$, $Gx = '0'$, $R_L = 5 k\Omega$ from V_{OUT} to GND, $C_L = 100$ pF. Typical specifications represent values for $V_{DD} = 5.5V$, $T_A = +25^{\circ}C$.												
Parameters	Sym.	Min.	Conditions											
Differential Nonlinearity	DNL	-0.25	±0.0125	+0.25	LSb	8-bit	VRxB:VRxA = '10' (codes: 6 to 250), V _{DD} = V _{REF} = 5.5V.							
(see C.12 "Differential		Perform	ction 2.0 mance Cu	rves" ⁽²⁾	LSb		Char: VRxB:VRxA = '00', '01', '11'.							
Nonlinearity (DNL)") ^(8, 11)		Perform	ction 2.0 mance Cu	rves" ⁽²⁾	LSb		Char: VRxB:VRxA = '01', V _{DD} = 5.5V, Gx = '1'.							
		Perform	ction 2.0 mance Cu	rves" ⁽²⁾	LSb LSb		Char: VRxB:VRxA = '10', '11', V _{REF} = 1.0V, Gx = '1'.							
	See Section 2.0 Performance Cu						V _{DD} = 1.8V							
		-0.5	±0.05	+0.5	LSb	10-bit	VRxB:VRxA = '10' (codes: 25 to 1000), V _{DD} = V _{REF} = 5.5V.							
		See Se Perforr	ction 2.0 nance Cu	"Typical rves" ⁽²⁾	LSb		Char: VRxB:VRxA = '00', '01', '11'.							
		See Se Perforr	ction 2.0 mance Cu	"Typical rves" ⁽²⁾	LSb		Char: VRxB:VRxA = '01', V _{DD} = 5.5V, Gx = '1'.							
		Perform	ction 2.0 mance Cu	rves" ⁽²⁾	LSb		Char: VRxB:VRxA = '10', '11', V _{REF} = 1.0V, Gx = '1'.							
									See Se Perforr	ction 2.0 mance Cu	"Typical rves" ⁽²⁾	LSb		V _{DD} = 1.8V
						-1.0	±0.2	+1.0	LSb	12-bit	VRxB:VRxA = '10' (codes: 100 to 4000), V _{DD} = V _{REF} = 5.5V.			
		Perform	"Typical rves" ⁽²⁾	LSb		Char: VRxB:VRxA = '00', '01', '11'.								
		Perform	ction 2.0 nance Cu	rves" ⁽²⁾	LSb		Char: VRxB:VRxA = '01', V _{DD} = 5.5V, Gx = '1'.							
		Perform	Performance Curves" ⁽²⁾ V _{REF} = 1.0V, Gx = '1'.											
							V _{DD} = 1.8V							

Note 2 This parameter is ensured by characterization.

Note 8 INL and DNL are measured at V_{OUT} with $V_{RL} = V_{DD}$ (VRxB:VRxA = '00').

Note 11 Code Range dependent on resolution: 8-bit, codes 6 to 250; 10-bit, codes 25 to 1000; 12-bit, 100 to 4000.

			rd Opera ng Tempe			ess otherwise specified) $T_A \le +125^{\circ}C$ (Extended)					
DC Characteristics		V _{DD} = + Gx = '0	All parameters apply across the specified operating ranges unless noted. V_{DD} = +2.7V to 5.5V, V_{REF} = +2.048V to V_{DD} , V_{SS} = 0V, Gx = '0', R_L = 5 k Ω from V_{OUT} to GND, C_L = 100 pF. Typical specifications represent values for V_{DD} = 5.5V, T_A = +25°C.								
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions					
-3 dB Bandwidth	BW	—	86.5	—	kHz	$V_{REF} = 2.048V \pm 0.1V,$					
(see C.16 "-3 dB Bandwidth")			67.7			VRxB:VRxA = (10), Gx = (0)					
Dandwidth)		_	67.7	_	kHz	V _{REF} = 2.048V ± 0.1V, VRxB:VRxA = '10', Gx = '1'					
Output Amplifier											
Minimum Output Voltage	V _{OUT(MIN)}	—	0.01	—	V	$1.8V \leq V_{DD} < 5.5V,$ Output Amplifier's minimum drive					
Maximum Output Voltage	V _{OUT(MAX)}	_	V _{DD} – 0.04	—	V	$1.8V \leq V_{DD} < 5.5V,$ Output Amplifier's maximum drive					
Phase Margin	PM		66	_	Degree (°)	$C_L = 400 \text{ pF}, R_L = \infty$					
Slew Rate ⁽¹⁰⁾	SR	—	0.44	—	V/µs	$R_L = 5 k\Omega$					
Short-Circuit Current	I _{SC}	3	9	14	mA	DAC code = Full Scale					
Internal Band Gap	•										
Band Gap Voltage	V _{BG}	1.18	1.22	1.26	V						
Band Gap Voltage Temperature Coefficient	V _{BGTC}	_	15	_	ppm/°C						
Operating Range		2.0		5.5	V	V _{REF} pin voltage stable					
(V _{DD})		2.2		5.5	V	V _{OUT} output linear					
External Reference (V											
Input Range ⁽¹⁾	V _{REF}	V _{SS}	—	$V_{DD} - 0.04$	V	VRxB:VRxA = '11' (buffered mode)					
		V _{SS}	—	V _{DD}	V	VRxB:VRxA = '10' (unbuffered mode)					
Input Capacitance	C _{REF}	—	1	—	pF	VRxB:VRxA = '10' (unbuffered mode)					
Total Harmonic Distortion ⁽¹⁾	THD	—	-64	—	dB	V _{REF} = 2.048V ± 0.1V, VRxB:VRxA = '10', Gx = '0', Frequency = 1 kHz					
Dynamic Performance	9										
Major Code Transition Glitch (see C.14 "Major-Code Transition Glitch")		_	45		nV-s	1 LSb change around major carry (7FFh to 800h)					
Digital Feedthrough (see C.15 "Digital Feed-through")			<10		nV-s						

Note 1 This parameter is ensured by design.

Note 10 Within 1/2 LSb of final value when code changes from 1/4 to 3/4 of FSR. (Example: 400h to C00h in 12-bit device).

DC Characteristics			$\begin{array}{llllllllllllllllllllllllllllllllllll$							
	All parameters apply across the specified operating ranges unless noted. $V_{DD} = +2.7V$ to 5.5V, $V_{REF} = +2.048V$ to V_{DD} , $V_{SS} = 0V$, $Gx = '0'$, $R_L = 5 k\Omega$ from V_{OUT} to GND, $C_L = 100 \text{ pF}$. Typical specifications represent values for $V_{DD} = 5.5V$, $T_A = +25^{\circ}C$.									
Sym.	Min.	Тур.	Max.	Units	Conditions					
(LAT0/HVC)									
V _{IH}	0.45 V _{DD}	—		V	$2.7V \le V_{DD} \le 5.5V$ (Allows 2.7V Digital V_{DD} with 5V Analog $V_{DD})$					
	$0.5 V_{DD}$	—	—	V	$1.8V \le V_{DD} \le 2.7V$					
V _{IL}	_	—	0.2 V _{DD}	V						
V _{HYS}	—	0.1 V _{DD}	_	V						
۱ _{IL}	-1	—	1	μA	$V_{IN} = V_{DD}$ and $V_{IN} = V_{SS}$					
C _{IN} , C _{OUT}	—	10	_	pF	f _C = 3.4 MHz					
, SCL)										
V _{OL}	—	—	0.4	V	$V_{DD} \ge 2.0V, I_{OL} = 3 \text{ mA}$					
	—	—	0.2 V _{DD}	V	V _{DD} < 2.0V, I _{OL} = 1 mA					
V _{IH}	0.7 V _{DD}	—	—	V	$1.8V \le V_{DD} \le 5.5V$					
V _{IL}	—	—	0.3 V _{DD}	V	$1.8V \le V_{DD} \le 5.5V$					
ILI	-1	—	1	μA	SCL = SDA = V_{SS} or SCL = SDA = V_{DD}					
C _{PIN}	—	10		pF	f _C = 3.4 MHz					
	(LAT0/HVC V _{IH} V _{IL} V _{HYS} I _{IL} C _{IN} , C _{OUT} SCL) V _{OL} V _{IH} V _{IL} I _{LI}	$\begin{tabular}{ c c c } & Operating \\ All parame \\ V_{DD} = +2.7 \\ Gx = '0', R \\ Typical spate \\ \hline V_{DD} = +2.7 \\ Gx = '0', R \\ Typical spate \\ \hline V_{DD} = -0 \\ \hline \hline 0.5 V_{DD} \\ \hline \hline \hline \hline 0.5 V_{DD} \\ \hline \hline \hline \hline \hline \hline \hline 0.5 V_{DD} \\ \hline $	$\begin{array}{ c c c c } & Operating Temperation of the second stress apply \\ V_{DD} = +2.7V to 5.5V \\ Gx = '0', R_L = 5 k\Omega from the second stress apply \\ V_{DD} = +2.7V to 5.5V \\ Gx = '0', R_L = 5 k\Omega from the second stress apply \\ \hline Gx = '0', R_L = 5 k\Omega from the second stress apply \\ \hline Typical specifications \\ \hline Typical specifications \\ \hline Typical specifications \\ \hline \hline Typical specific$	$\begin{array}{c c c c c c c c } \hline Operating Temperature & -40 \\ \hline All parameters apply across the s \\ V_{DD} = +2.7V to 5.5V, V_{REF} = +2.0 \\ \hline Gx = '0', R_L = 5 k\Omega from V_{OUT} to \\ \hline Typical specifications represent V \\ \hline Sym. Min. Typ. Max. \\\hline \hline (LAT0/HVC) & & & & & & \\ \hline \hline V_{IH} & 0.45 V_{DD} & & & & & \\ \hline 0.5 V_{DD} & & & & & & \\ \hline 0.5 V_{DD} & & & & & & \\ \hline 0.5 V_{DD} & & & & & & \\ \hline 0.5 V_{DD} & & & & & & \\ \hline V_{IL} & -1 & & & & & & \\ \hline V_{HYS} & & 0.1 V_{DD} & & & & \\ \hline V_{HYS} & & & & & & & \\ \hline V_{HYS} & & & & & & & \\ \hline V_{IL} & -1 & & & & & & \\ \hline V_{OL} & & & & & & & \\ \hline V_{IH} & 0.7 V_{DD} & & & & & \\ \hline V_{IL} & & & & & & & \\ \hline V_{IL} & & & & & & & \\ \hline V_{IL} & & & & & & & \\ \hline V_{IL} & -1 & & & & & \\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline $Operating Temperature $-40°C \leq T_A$ \\ All parameters apply across the specified $V_{DD} = +2.7V$ to $5.5V$, $V_{REF} = +2.048V$ to $Gx = '0', $R_L = 5 k\Omega$ from V_{OUT} to $GND, CT \\ \hline $Gx = '0', $R_L = 5 k\Omega$ from V_{OUT} to $GND, CT \\ \hline $Typical specifications represent values for V_{DT} to $GND, CT \\ \hline $Typical specifications represent values for V_{OUT} to $GND, CT \\ \hline $Typical specifications represent values for V_{OUT} to $GND, CT \\ \hline $Typical specifications represent values for V_{OUT} to $GND, CT \\ \hline $Typical specifications represent values for V_{OUT} to $GND, CT \\ \hline $Typical specifications represent values for V_{OUT} to $GND, CT \\ \hline V_{IH} $0.45 V_{DD} $ V \\ \hline V_{IL} $ $O.2 V_{DD} V \\ \hline V_{HYS} $ $O.4 V \\ \hline V_{IL} $ V \\ \hline V_{IL} $$					

Note 1 This parameter is ensured by design.

DC Characteristics		Operating All parame $V_{DD} = +2$. Gx = '0', F	Temperate eters apply 7V to 5.5 $R_L = 5 k\Omega$	ure y across th /, V _{REF} = - from V _{OUT}	–40°C ≤ 1 ne specifie ⊦2.048V to · to GND,	$C_A \le +128$ ed operated V_{DD}, V_{SD} $C_L = 100$	
Parameters	Sym.	Min.	Тур.	Max.	Units		Conditions
RAM Value							
Value Range	N	0h	—	FFh	hex	8-bit	
		0h	_	3FFh	hex	10-bit	
		0h	—	FFFh	hex	12-bit	
DAC Register POR/BOR	N	Se	e Table 4	-2	hex	8-bit	
Value		Se	e Table 4	-2	hex	10-bit	
		Se	e Table 4	-2	hex	12-bit	
PDCON Initial Factory Setting		Se	e Table 4	-2	hex		
EEPROM		•					
Endurance	EN _{EE}	—	1M	_	Cycles	Note 1,	Note 2
Data Retention	DR _{EE}	—	200	_	Years	At +25°	C ^(1, 2)
EEPROM Range	N	0h	_	FFh	hex	8-bit	DACx Register(s)
		0h	—	3FFh	hex	10-bit	DACx Register(s)
		0h	—	FFFh	hex	12-bit	DACx Register(s)
Initial Factory Setting	N	Se	e Table 4	-2			
EEPROM Programming Write Cycle Time	t _{WC}		11	16	ms	$V_{DD} = +$	+1.8V to 5.5V
Power Requirements		·	•			•	
Power Supply Sensitivity	PSS	—	0.002	0.005	%/%	8-bit	Code = 7Fh
(C.17 "Power-Supply		—	0.002	0.005	%/%	10-bit	Code = 1FFh
Sensitivity (PSS)")			0.002	0.005	%/%	12-bit	Code = 7FFh

Note 1 This parameter is ensured by design.

Note 2 This parameter is ensured by characterization.

DC Notes:

- 1. This parameter is ensured by design.
- 2. This parameter is ensured by characterization.
- 3. POR/BOR voltage trip point is not slope dependent. Hysteresis implemented with time delay.
- 4. Supply current is independent of current through the resistor ladder in mode VRxB:VRxA = '10'.
- 5. The PDxB:PDxA = '01', '10', and '11' configurations should have the same current.
- 6. By design, this is worst-case current mode.
- Resistance is defined as the resistance between the V_{REF} pin (mode VRxB:VRxA = '10') to V_{SS} pin. For dualchannel devices (MCP47FEBX2), this is the effective resistance of the each resistor ladder. The resistance measurement is of the two resistor ladders measured in parallel.
- 8. INL and DNL are measured at V_{OUT} with $V_{RL} = V_{DD}$ (VRxB:VRxA = '00').
- 9. This gain error does not include offset error.
- 10. Within 1/2 LSb of final value when code changes from 1/4 to 3/4 of FSR. (Example: 400h to C00h in 12-bit device).
- 11. Code Range dependent on resolution: 8-bit, codes 6 to 250; 10-bit, codes 25 to 1000; 12-bit, 100 to 4000.
- 12. Variation of one output voltage to mean output voltage.

MCP47FEBXX

1.1 Timing Waveforms and Requirements

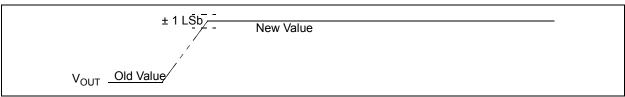
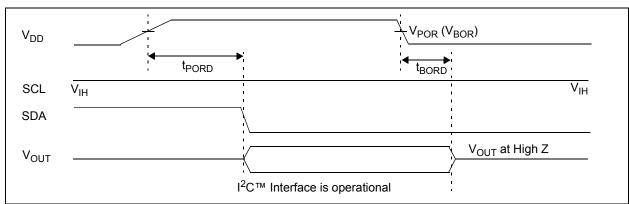
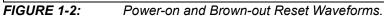
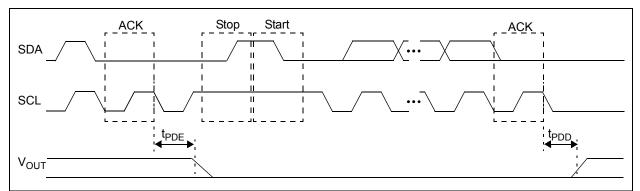



FIGURE 1-1: V_{OUT} Settling Time Waveforms.


TABLE 1-1: WIPER SETTLING TIMING


Timing Characteristic	cs	Operat All para V _{DD} =	ing Tem ameters +1.8V to	perature apply ac 5.5V, V	eross the _{SS} = 0V,	itions (unless otherwise specified) $-40^{\circ}C \le T_A \le +125^{\circ}C$ (Extended) the specified operating ranges unless noted. $0V, R_L = 5 k\Omega$ from V _{OUT} to GND, C _L = 100 pF. sent values for V _{DD} = 5.5V, T _A = +25^{\circ}C.			
Parameters S	Sym.	Min.	Тур.	Max.	Units		Conditions		
V _{OUT} Settling Time	t _S		6		μs	8-bit	Code = 3Fh \rightarrow BFh; BFh \rightarrow 3Fh ⁽¹⁾		
(±1LSb error band,		_	6		μs	10-bit	Code = 0FFh \rightarrow 2FFh; 2FFh \rightarrow 0FFh ⁽¹⁾		
C _L = 100 pF) (see C.13 "Settling Time ")		_	6	—	μs	12-bit	Code = 3FFh \rightarrow BFFh; BFFh \rightarrow 3FFh ⁽¹⁾		

Note 1 Within 1/2 LSb of final value when code changes from 1/4 to 3/4 of FSR. (Example: 400h to C00h in 12- bit device).

1.2 I²C Mode Timing Waveforms and Requirements

FIGURE 1-3: $I^2 C^{\text{TM}}$ Power-Down Command Timing.

TABLE 1-2:	RESET TIMING

Timing Characteristi					Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le T_A \le +125^{\circ}C$ (Extended)All parameters apply across the specified operating ranges unless noted.						
		V _{DD} =	= +1.8V	to 5.5∖	/, V _{SS} =	0V, R _L = 5 kΩ from V _{OUT} to GND, C _L = 100 pF. sent values for V _{DD} = 5.5V, T _A = +25°C.					
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions					
Power-on Reset Delay	t _{PORD}		60		μs	Monitor ACK bit response to ensure device responds to command.					
Brown-out Reset Delay	t _{BORD}	_	45	_	μs	V_{DD} transitions from $V_{DD(MIN)} \rightarrow V_{POR}$ V_{OUT} driven to V_{OUT} disabled					
Power-Down Output Disable Time Delay	T _{PDD}		10.5		μs	PDxB:PDxA = '11', '10', or '01' -> "00" started from fall- ing edge of the SCL at the end of the 8th clock cycle. Volatile DAC Register = FFh, V_{OUT} = 10 mV. V_{OUT} not connected.					
Power-Down Output Enable Time Delay	T _{PDE}		1		μs	PDxB:PDxA = "00" \rightarrow '11', '10', or '01' started from falling edge of the SCL at the end of the 8th clock cycle. V _{OUT} = V _{OUT} - 10 mV. V _{OUT} not connected.					

MCP47FEBXX

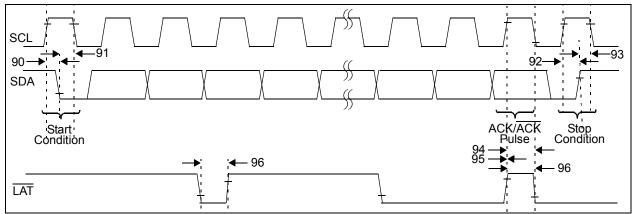
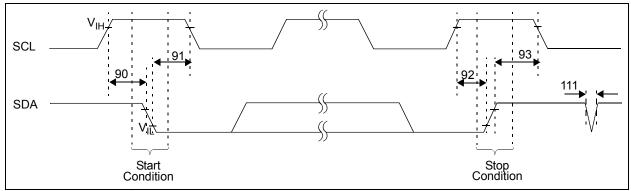
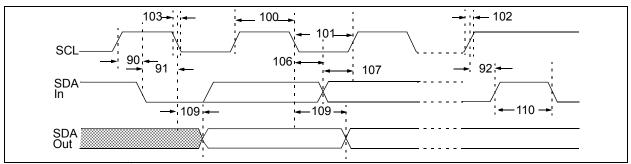



FIGURE 1-4: I²C[™] Bus Start/Stop Bits Timing Waveforms.


FIGURE 1-5: $l^2 C^{TM}$ Bus Start/Stop Bits Timing Waveforms.

I ² C™ A0	C Characte	eristics	Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ (Extended)Operating Voltage range is described in DC Characteristics				
Param. No.	Symbol	Characte	ristic	Min.	Max.	Units	Conditions
	F _{SCL}		Standard Mode	0	100	kHz	C _b = 400 pF, 1.8V - 5.5V ⁽²⁾
			Fast Mode	0	400	kHz	C _b = 400 pF, 2.7V - 5.5V
			High-Speed 1.7	0	1.7	MHz	C _b = 400 pF, 4.5V - 5.5V
			High-Speed 3.4	0	3.4	MHz	C _b = 100 pF, 4.5V - 5.5V
D102	Cb	Bus Capacitive	100 kHz mode		400	pF	
		Loading	400 kHz mode	_	400	pF	-
			1.7 MHz mode		400	pF	
			3.4 MHz mode		100	pF	
90	T _{SU:STA}	Start Condition	100 kHz mode	4700	_	ns	Note 2
		Setup Time	400 kHz mode	600	_	ns	
		(Only relevant for repeated Start	1.7 MHz mode	160	—	ns	
		condition)	3.4 MHz mode	160	—	ns	
91	T _{HD:STA}	Start Condition	100 kHz mode	4000	—	ns	Note 2
		Hold time	400 kHz mode	600	—	ns	
		(After this period the first clock pulse is	1.7 MHz mode	160	—	ns	
		generated)	3.4 MHz mode	160	—	ns	
92	T _{SU:STO}	Stop Condition	100 kHz mode	4000	—	ns	Note 2
		Setup Time	400 kHz mode	600	—	ns	
			1.7 MHz mode	160	—	ns	
			3.4 MHz mode	160	—	ns	
93	T _{HD:STO}	Stop Condition	100 kHz mode	4000	—	ns	Note 2
		Hold Time	400 kHz mode	600	—	ns	
			1.7 MHz mode	160	—	ns	
			3.4 MHz mode	160	—	ns	
94	T _{LATSU}	LAT ↑ to SCL↑ (write Setup Time	data ACK bit)	10		ns	Write Data delayed ⁽³⁾
95	T _{LATHD}	SCL \uparrow to \overline{LAT} (write Hold Time	data ACK bit)	250	_	ns	Write Data delayed ⁽³⁾
96	T _{LAT}	LAT High or Low Time	e	50		ns	
97	T _{HVCSU}	HVC High to SCL Hig (of Start condition) - S		25		μs	High-Voltage Commands
98	T _{HVCHD}	SCL Low (of Stop cor HVC Low - Hold Time		25		μs	High-Voltage Commands

TABLE 1-3: I²C BUS START/STOP BITS AND LAT REQUIREMENTS

Note 2 Not Tested. This parameter ensured by characterization.

Note 3 The transition of the LAT signal between 10 ns before the rising edge (Spec 94) and 250 ns after the rising edge (Spec 95) of the SCL signal is indeterminate whether the change in V_{OUT} is delayed or not.

TABLE 1-4:	I ² C BUS REQUIREMENTS (SLAVE MODE)
------------	--

l ² C™ AC	Character	istics	Standard Operation Operating Temper Operating Voltage	rature –40	$0^{\circ}C \le TA$	×≤ +125°	C (Extended)
Param. No.	Sym.	Charao	cteristic	Min.	Max.	Units	Conditions
100	T _{HIGH}	Clock high time	100 kHz mode	4000	_	ns	1.8V-5.5V ⁽²⁾
	mon		400 kHz mode	600	_	ns	2.7V-5.5V
			1.7 MHz mode	120	_	ns	4.5V-5.5V
			3.4 MHz mode	60	_	ns	4.5V-5.5V
101	T _{LOW}	Clock low time	100 kHz mode	4700	—	ns	1.8V-5.5V ⁽²⁾
			400 kHz mode	1300	_	ns	2.7V-5.5V
			1.7 MHz mode	320	-	ns	4.5V-5.5V
			3.4 MHz mode	160	_	ns	4.5V-5.5V
102A ⁽²⁾	T _{RSCL}	SCL rise time	100 kHz mode	—	1000	ns	C _b is specified to be from
			400 kHz mode	20 + 0.1C _b	300	ns	10 to 400 pF (100 pF maximum for 3.4 MHz
			1.7 MHz mode	20	80	ns	mode)
			1.7 MHz mode	20	160	ns	After a Repeated Start condition or an Acknowledge bit
			3.4 MHz mode	10	40	ns	
			3.4 MHz mode	10	80	ns	After a Repeated Start condition or an Acknowledge bit
102B ⁽²⁾	T _{RSDA}	SDA rise time	100 kHz mode		1000	ns	Cb is specified to be from
		20 + 0.1C _b	300	ns	10 to 400 pF (100 pF		
			1.7 MHz mode	20	160	ns	maximum for 3.4 MHz mode)
			3.4 MHz mode	10	80	ns	

Note 2 Not Tested. This parameter ensured by characterization.

I ² C™ AC	Characteri	istics	Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ (Extended)Operating Voltage range is described in DC Characteristics					
Param. No.	Sym.	Charao	cteristic	Min.	Max.	Units	Conditions	
103A ⁽²⁾	T _{FSCL}	SCL fall time	100 kHz mode		300	ns	C _b is specified to be from	
			400 kHz mode	20 + 0.1C _b	300	ns	10 to 400 pF	
			1.7 MHz mode	20	80	ns	(100 pF maximum for 3.4 MHz mode) ⁽⁴⁾	
			3.4 MHz mode	10	40	ns		
103B ⁽²⁾	T _{FSDA}	SDA fall time	100 kHz mode	_	300	ns	C _b is specified to be from	
			400 kHz mode	20 + 0.1C _b	300	ns	10 to 400 pF	
			1.7 MHz mode	20	160	ns	(100 pF maximum for 3.4 MHz mode) ⁽⁴⁾	
			3.4 MHz mode	10	80	ns		
106	T _{HD:DAT}	Data input hold	100 kHz mode	0	l —	ns	1.8V-5.5V ^(2, 5)	
		time	400 kHz mode	0	1 —	ns	2.7V-5.5V ⁽⁵⁾	
			1.7 MHz mode	ode 0 — ns 4.5V-5.5V	4.5V-5.5V ⁽⁵⁾			
			3.4 MHz mode	0	_	ns	4.5V-5.5V ⁽⁵⁾	
107	T _{SU:DAT}	Data input	100 kHz mode	250	_	ns	Note 2, Note 6	
		setup time	400 kHz mode	100	1 —	ns	Note 6	
			1.7 MHz mode	10	_	ns		
			3.4 MHz mode	10	_	ns		
109	T _{AA}	Output valid	100 kHz mode	_	3450	ns	Note 2, Note 7	
		from clock	400 kHz mode	_	900	ns	Note 7	
			1.7 MHz mode	_	150	ns	C _b = 100 pF ^(7, 8)	
					310	ns	$C_{\rm b} = 400 \ \rm pF^{(2, 7)}$	
			3.4 MHz mode		150	ns	$C_{\rm b} = 100 \rm pF^{(7)}$	
110	T _{BUF}	Bus free time	100 kHz mode	4700	_	ns	Time the bus must be free	
			400 kHz mode	1300	_	ns	before a new transmis-	
			1.7 MHz mode	N.A.	—	ns	sion can start ⁽²⁾	
			3.4 MHz mode	N.A.	_	ns		
111	T _{SP}	Input filter spike	100 kHz mode		NXP Spec states N.A. ⁽²⁾			
	0.	suppression	400 kHz mode		50	ns		
		(SDA and SCL)	1.7 MHz mode	—	10	ns	Spike suppression	
			3.4 MHz mode	_	10	ns	Spike suppression	

TABLE 1-5:	I ² C BUS REQUIREMENTS ((SLAVE MODE)	(CONTINUED))
------------	-------------------------------------	--------------	-------------	---

Note 2 Not Tested. This parameter ensured by characterization.

Note 4 Use Cb in pF for the calculations.

Note 5 A Master Transmitter must provide a delay to ensure that difference between SDA and SCL fall times do not unintentionally create a Start or Stop condition.

Note 6 A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement $t_{SU;DAT} \ge 250$ ns must then be met. This will automatically be the case if the device does not stretch the Low period of the SCL signal. If such a device does stretch the Low period of the SCL signal, it must output the next data bit to the SDA line T_R max.+ $t_{SU;DAT}$ = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

Note 7 As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

Note 8 Ensured by the T_{AA} 3.4 MHz specification test.

Timing Table Notes:

- 1. Within 1/2 LSb of final value when code changes from 1/4 to 3/4 of FSR. (Example: 400h to C00h in 12- bit device).
- 2. Not Tested. This parameter ensured by characterization.
- 3. The transition of the LAT signal between 10 ns before the rising edge (Spec 94) and 250 ns after the rising edge (Spec 95) of the SCL signal is indeterminate whether the change in V_{OUT} is delayed or not.
- 4. Use Cb in pF for the calculations.
- 5. A Master Transmitter must provide a delay to ensure that difference between SDA and SCL fall times do not unintentionally create a Start or Stop condition.
- 6. A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement $t_{SU;DAT} \ge 250$ ns must then be met. This will automatically be the case if the device does not stretch the Low period of the SCL signal. If such a device does stretch the Low period of the SCL signal, it must output the next data bit to the SDA line

 $T_R max.+t_{SU;DAT} = 1000 + 250 = 1250 ns$ (according to the standard-mode I²C bus specification) before the SCL line is released.

- 7. As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.
- 8. Ensured by the T_{AA} 3.4 MHz specification test.

TEMPERATURE SPECIFICATIONS

Electrical Specifications: Unless otherwise indicated, V_{DD} = +2.7V to +5.5V, V_{SS} = GND.						
Parameters	Symbol	Min.	Typical	Max.	Units	Conditions
Temperature Ranges						
Specified Temperature Range	T _A	-40		+125	°C	
Operating Temperature Range	T _A	-40	_	+125	°C	Note 1
Storage Temperature Range	T _A	-65		+150	°C	
Thermal Package Resistances						
Thermal Resistance, 8L-TSSOP	θ_{JA}	_	139		°C/W	

Note 1: The MCP47FEBXX devices operate over this extended temperature range, but with reduced performance. Operation in this range must not cause T_J to exceed the Maximum Junction Temperature of +150°C.