

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

8/10/12-Bit Voltage Output Digital-to-Analog Converter with SPI Interface

Features

- MCP4901: 8-Bit Voltage Output DAC
 MCP4911: 10-Bit Voltage Output DAC
- MCP4921: 12-Bit Voltage Output DAC
- · Rail-to-Rail Output
- · SPI Interface with 20 MHz Clock Support
- Simultaneous Latching of the DAC Output with LDAC Pin
- Fast Settling Time of 4.5 μs
- · Selectable Unity or 2x Gain Output
- · External Voltage Reference Input
- · External Multiplier Mode
- · 2.7V to 5.5V Single-Supply Operation
- Extended Temperature Range: -40°C to +125°C

Applications

- · Set Point or Offset Trimming
- · Precision Selectable Voltage Reference
- Motor Control Feedback Loop
- · Digitally-Controlled Multiplier/Divider
- Calibration of Optical Communication Devices

Related Products

P/N	DAC Resolution	No. of Channels	Voltage Reference (V _{REF})
MCP4801	8	1	
MCP4811	10	1	lotomal
MCP4821	MCP4811 10 MCP4821 12 MCP4802 8 MCP4812 10 MCP4822 12 MCP4901 8 MCP4911 10 MCP4921 12		Internal (2.048V)
MCP4802	8	2	(2.0101)
MCP4812	10	2	
MCP4822	12	2	
MCP4901	8	1	
MCP4911	10	1	Fortonia el
MCP4921	12	1	External
MCP4902	8	2	
MCP4912	10	2	
MCP4922	12	2	

Note: The products listed here have similar AC/DC performances.

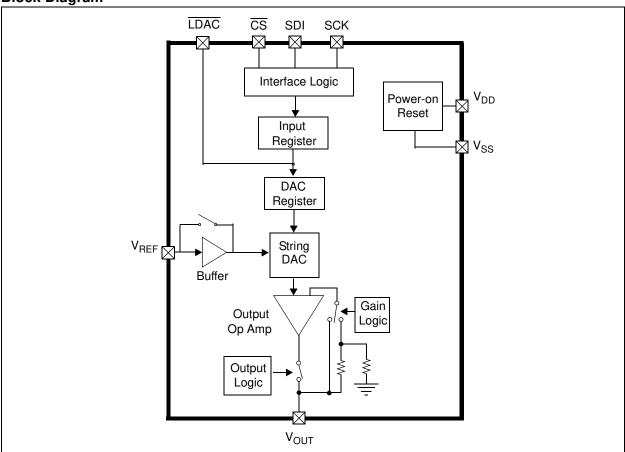
Description

The MCP4901/4911/4921 devices are single channel 8-bit, 10-bit and 12-bit buffered voltage output Digital-to-Analog Converters (DACs), respectively. The devices operate from a single 2.7V to 5.5V supply with an SPI compatible Serial Peripheral Interface. The user can configure the full-scale range of the device to be V_{REF} or 2^*V_{REF} by setting the gain selection option bit (gain of 1 of 2).

The user can shut down the device by setting the Configuration Register bit. In Shutdown mode, most of the internal circuits are turned off for power savings, and the output amplifier is configured to present a known high resistance output load (500 k Ω , typical).

The devices include double-buffered registers, allowing synchronous updates of the DAC output using the $\overline{\text{LDAC}}$ pin. These devices also incorporate a Power-on Reset (POR) circuit to ensure reliable power-up.

The devices utilize a resistive string architecture, with its inherent advantages of low Differential Non-Linearity (DNL) error and fast settling time. These devices are specified over the extended temperature range (+125°C).


The devices provide high accuracy and low noise performance for consumer and industrial applications where calibration or compensation of signals (such as temperature, pressure and humidity) are required.

The MCP4901/4911/4921 devices are available in the PDIP, SOIC, MSOP and DFN packages.

Package Types

8-Pin PDIP, SOIC, MSOP DFN-8 (2x3)*											
V _{DD} 1	8 V _{OUT} 7 V _{SS} 6 V _{REF} 5 LDAC	V _{DD} 1 EP SCK 3 9 SDI 4 E									
M M	MCP4901: 8-bit single DAC MCP4911: 10-bit single DAC MCP4921: 12-bit single DAC * Includes Exposed Thermal Pad (EP); see Table 3-1.										

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{DD}	6.5V
All inputs and outputs w.r.t	V_{SS} = 0.3V to V_{DD} + 0.3V
Current at Input Pins	±2 mA
Current at Supply Pins	±50 mA
Current at Output Pins	±25 mA
Storage temperature	65°C to +150°C
Ambient temp. with power applied \dots	55°C to +125°C
ESD protection on all pins ≥ 4	$kV~(HBM), \geq 400V~(MM)$
Maximum Junction Temperature (T_J)	+150°C

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $V_{DD} = 5V$, $V_{SS} = 0V$, $V_{REF} = 2.048V$, Output Buffer Gain (G) = 2x, $R_L = 5$ kΩ to GND, $C_L = 100$ pF $T_A = -40$ to +85°C. Typical values are at +25°C.

$C_L = 100 \text{ pH}$	$T_{A} = -4$	0 to +85°(C. Typical va	alues are a	t +25°C.
Sym	Min	Тур	Max	Units	Conditions
V_{DD}	2.7	_	5.5		
I_{DD}	_	175	350	μΑ	$V_{DD} = 5V$
	_	125	250	μΑ	$\begin{array}{c} V_{DD}=3V \\ V_{REF} \text{ input is unbuffered, all digital} \\ \text{inputs are grounded, all analog} \\ \text{outputs } (V_{OUT}) \text{ are unloaded.} \\ \text{Code} = 0\text{x}000\text{h} \end{array}$
I _{SHDN_SW}	_	3.3	6	μΑ	Power-on Reset circuit remains on
V_{POR}	_	2.0	_	V	
n	8	_		Bits	
INL	-1	±0.125	1	LSb	
DNL	-0.5	±0.1	+0.5	LSb	Note 1
n	10	_		Bits	
INL	-3.5	±0.5	3.5	LSb	
DNL	-0.5	±0.1	+0.5	LSb	Note 1
n	12	_	_	Bits	
INL	-12	±2	12	LSb	
DNL	-0.75	±0.2	+0.75	LSb	Note 1
	Sym V _{DD} I _{DD} I _{DD} I _{SHDN_SW} V _{POR} n INL DNL n INL DNL	Sym Min V _{DD} 2.7 I _{DD} — — — I _{SHDN_SW} — V _{POR} — n 8 INL -1 DNL -0.5 n 10 INL -3.5 DNL -0.5 n 12 INL -12	Sym Min Typ V _{DD} 2.7 — I _{DD} — 175 — 125 I _{SHDN_SW} — 3.3 V _{POR} — 2.0 n 8 — INL -1 ±0.125 DNL -0.5 ±0.1 n 10 — INL -3.5 ±0.5 DNL -0.5 ±0.1 n 12 — INL -12 ±2	Sym Min Typ Max V _{DD} 2.7 — 5.5 I _{DD} — 175 350 — 125 250 I _{SHDN_SW} — 3.3 6 V _{POR} — 2.0 — INL -1 ±0.125 1 DNL -0.5 ±0.1 +0.5 INL -3.5 ±0.5 3.5 DNL -0.5 ±0.1 +0.5 INL -0.5 ±0.1 +0.5	VDD 2.7 — 5.5 IDD — 175 350 μA — 125 250 μA ISHDN_SW — 3.3 6 μA VPOR — 2.0 — V INL -1 ±0.125 1 LSb DNL -0.5 ±0.1 +0.5 LSb INL -3.5 ±0.5 3.5 LSb DNL -0.5 ±0.1 +0.5 LSb INL -0.5 ±0.1 +0.5 LSb INL -12 ±2 12 LSb

Note 1: Guaranteed monotonic by design over all codes.

2: This parameter is ensured by design, and not 100% tested.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated, $V_{DD} = 5V$, $V_{SS} = 0V$, $V_{REF} = 2.048V$, Output Buffer Gain (G) = 2x, $R_L = 5$ kΩ to GND, $C_L = 100$ pF $T_A = -40$ to +85°C. Typical values are at +25°C.

Section Sec	(G) = $2x$, $R_L = 5 k\Omega$ to GND,	$C_L = 100 \text{ pl}$	$T_{A} = -4$	0 to +85°0	C. Typical va	alues are a	t +25°C.
FSR Offset Error Temperature V _{OS} /°C — 0.16 — ppm/°C +25°C to 25°C	Parameters	Sym	Min	Тур	Max	Units	Conditions
Coefficient	Offset Error	V _{OS}	1	±0.02	1		Code = 0x000h
Gain Error ge	Offset Error Temperature	V _{OS} /°C		0.16	_	ppm/°C	-45°C to 25°C
Gain Error Temperature	Coefficient			-0.44	_	ppm/°C	+25°C to 85°C
Input Amplifier (V _{REF} Input) Input Amplifier (V _{REF} Input)	Gain Error	9E		-0.10	1		
Input Range - Buffered Mode Mo	Gain Error Temperature Coefficient	∆G/°C	_	-3	_	ppm/°C	
Mode Nee	Input Amplifier (V _{REF} Inpu	t)					
Mode RVREF - 165 -	Input Range – Buffered Mode	V _{REF}	0.040	_		V	Code = 2048
Input Capacitance	Input Range – Unbuffered Mode	V _{REF}	0	_	V_{DD}	V	
Unbuffered Mode fVREF — 450 — kHz VREF = 2.5V ±0.2Vp-p, Unbuffered, G = 1 -3 dB Bandwidth fVREF — 400 — kHz VREF = 2.5V ±0.2Vp-p, Unbuffered, G = 2 Multiplier Mode — Total Harmonic Distortion THDVREF — -73 — dB VREF = 2.5V ±0.2Vp-p, Frequency = 1 kHz Output Amplifier Output Swing VOUT — 0.01 to VDD — VDD — VOUT VOUT = 10 mV to (VDD — 40 mV) Phase Margin Θm — 66 — Degrees Slew Rate SR — 0.55 — V/μs Short Circuit Current I _{SC} — 15 24 mA Settling Time t _{settling} — 4.5 — μs Within 1/2 LSB of final value from 1/4 to 3/4 full-scale range Dynamic Performance (Note 2) DAC-to-DAC Crosstalk — 10 — nV-s 1 LSB change around major carry (01111111 to 10000000) Digital Feedthrough — 10 — nV-s NV-s	Input Impedance	R _{VREF}		165	_	kΩ	Unbuffered Mode
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance – Unbuffered Mode	C _{VREF}		7	_	pF	
Multiplier Mode — THD $_{VREF}$ — -73 — dB V_{REF} = 2.5V ±0.2Vp-p, Frequency = 1 kHz Output Amplifier Output Swing V_{OUT} — 0.01 to V_{DD} — V Accuracy is better than 1 LSb for V_{OUT} = 10 mV to (V_{DD} — 40 mV) Phase Margin θ m — 66 — Degrees Slew Rate θ SR — 0.55 — V/ θ s Short Circuit Current θ settling θ — 4.5 — θ within 1/2 LSB of final value from 1/4 to 3/4 full-scale range Dynamic Performance (Note 2) DAC-to-DAC Crosstalk — 10 — nV-s Major Code Transition Glitch — 10 — nV-s Digital Feedthrough — 10 — nV-s	Multiplier Mode -3 dB Bandwidth	f _{VREF}		450	_	kHz	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		f _{VREF}		400	_	kHz	
Output Swing $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Multiplier Mode – Total Harmonic Distortion	THD _{VREF}	_	-73	_	dB	
V _{DD} - V _{OUT} = 10 mV to (V _{DD} - 40 mV)	Output Amplifier						
Slew Rate SR	Output Swing	V _{OUT}	_	V_{DD} –	_	V	
Short Circuit Current I _{SC} — 15 24 mA Settling Time t _{settling} — 4.5 — µs Within 1/2 LSB of final value from 1/4 to 3/4 full-scale range Dynamic Performance (Note 2) DAC-to-DAC Crosstalk — 10 — nV-s Major Code Transition — 45 — nV-s 1 LSB change around major carry (01111111 to 10000000) Digital Feedthrough — 10 — nV-s	Phase Margin	θm	_	66	_	Degrees	
Settling Time t _{settling} — 4.5 — µs Within 1/2 LSB of final value from 1/4 to 3/4 full-scale range Dynamic Performance (Note 2) DAC-to-DAC Crosstalk — 10 — nV-s Major Code Transition — 45 — nV-s 1 LSB change around major carry (01111111 to 10000000) Digital Feedthrough — 10 — nV-s	Slew Rate	SR	_	0.55	_	V/µs	
1/4 to 3/4 full-scale range	Short Circuit Current	I _{SC}	_	15	24	mA	
DAC-to-DAC Crosstalk — 10 — nV-s Major Code Transition — 45 — nV-s 1 LSB change around major carry (01111111 to 10000000) Digital Feedthrough — 10 — nV-s	Settling Time	t _{settling}	1	4.5	_	μs	
Major Code Transition — 45 — nV-s 1 LSB change around major carry (01111111 to 10000000) Digital Feedthrough — 10 — nV-s	Dynamic Performance (No	te 2)					
Glitch (01111111 to 10000000) Digital Feedthrough — 10 — nV-s	DAC-to-DAC Crosstalk		_	10	_	nV-s	
	Major Code Transition Glitch		_	45	_	nV-s	1 LSB change around major carry (01111111 to 10000000)
Analog Crosstalk — 10 — nV-s	Digital Feedthrough			10		nV-s	
	Analog Crosstalk		_	10	_	nV-s	

Note 1: Guaranteed monotonic by design over all codes.

^{2:} This parameter is ensured by design, and not 100% tested.

ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE

Electrical Specifications: Unless otherwise indicated, $V_{DD} = 5V$, $V_{SS} = 0V$, $V_{REF} = 2.048V$, Output Buffer Gain (G) = 2x, $R_L = 5 \text{ k}\Omega$ to GND, $C_L = 100 \text{ pF}$. Typical values are at +125°C by characterization or simulation.

	$(G) = 2x$, $R_L = 5 \text{ k}\Omega$ to GND, $C_L = 100 \text{ pF}$. Typical values are at +125°C by characterization or simulation. Parameters Sym Min Typ Max Units Conditions												
	Sym	IVIIN	тур	wax	Units	Conditions							
Power Requirements	 				1	1							
Input Voltage	V_{DD}	2.7	_	5.5									
Input Current	I _{DD}	_	200	_	μА	V _{REF} input is unbuffered, all digital inputs are grounded, all analog outputs (VOUT) are unloaded. Code = 0x000h							
Software Shutdown Current	I _{SHDN_SW}	_	5	_	μΑ								
Power-on Reset Threshold	V_{POR}	_	1.85	_	V								
DC Accuracy													
MCP4901													
Resolution	n	8	_	_	Bits								
INL Error	INL		±0.25		LSb								
DNL	DNL		±0.2		LSb	Note 1							
MCP4911													
Resolution	n	10	_	_	Bits								
INL Error	INL		±1		LSb								
DNL	DNL		±0.2		LSb	Note 1							
MCP4921													
Resolution	n	12	_	_	Bits								
INL Error	INL		±4		LSb								
DNL	DNL		±0.25		LSb	Note 1							
Offset Error	V _{OS}	_	±0.02	_	% of FSR	Code = 0x000h							
Offset Error Temperature Coefficient	V _{OS} /°C	_	-5	_	ppm/°C	+25°C to +125°C							
Gain Error	9E	_	-0.10	_	% of FSR	Code = 0xFFFh, not including offset error							
Gain Error Temperature Coefficient	∆G/°C	_	-3	_	ppm/°C								
Input Amplifier (V _{REF} Input	:)												
Input Range – Buffered Mode	V _{REF}	_	0.040 to V _{DD} - 0.040	_	V	Note 1 Code = 2048, V _{REF} = 0.2 Vp-p, f = 100 Hz and 1 kHz							
Input Range – Unbuffered Mode	V _{REF}	0	_	V_{DD}	V								
Input Impedance	R _{VREF}	_	174	_	kΩ	Unbuffered Mode							
Input Capacitance – Unbuffered Mode	C _{VREF}	_	7	_	pF								
Multiplying Mode -3 dB Bandwidth	f _{VREF}	_	450	_	kHz	$V_{REF} = 2.5V \pm 0.1 \text{ Vp-p},$ Unbuffered, G = 1x							
	f _{VREF}	_	400	_	kHz	$V_{REF} = 2.5V \pm 0.1 \text{ Vp-p},$ Unbuffered, G = 2x							

Note 1: Guaranteed monotonic by design over all codes.

^{2:} This parameter is ensured by design, and not 100% tested.

ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE (CONTINUED)

Electrical Specifications: Unless otherwise indicated, $V_{DD} = 5V$, $V_{SS} = 0V$, $V_{REF} = 2.048V$, Output Buffer Gain (G) = 2x, $R_L = 5 k\Omega$ to GND, $C_L = 100$ pF. Typical values are at +125°C by characterization or simulation. Units **Parameters** Sym Min Тур Max Conditions $V_{REF} = 2.5V \pm 0.1Vp-p,$ THD_{VREF} Multiplying Mode - Total dB Harmonic Distortion Frequency = 1 kHz **Output Amplifier** ٧ V_{OUT} Accuracy is better than 1 LSb for **Output Swing** 0.01 to $V_{OUT} = 10 \text{ mV to } (V_{DD} - 40 \text{ mV})$ $V_{DD} -$ 0.04 θ m Phase Margin 66 Degrees SR 0.55 Slew Rate V/µs Short Circuit Current 17 mΑ I_{SC} Within 1/2 LSB of final value from Settling Time 4.5 μs t_{settling} 1/4 to 3/4 full-scale range **Dynamic Performance (Note 2)** Major Code Transition 45 nV-s 1 LSB change around major carry Glitch (0111...1111 to 1000...0000) Digital Feedthrough nV-s 10

Note 1: Guaranteed monotonic by design over all codes.

^{2:} This parameter is ensured by design, and not 100% tested.

AC CHARACTERISTICS (SPI TIMING SPECIFICATIONS)

Electrical Specifications: Unless otherwise indicated, V_{DD} = 2.7V – 5.5V, T_{A} = -40 to +125°C. Typical values are at +25°C.

Typical values are at +25 G.												
Parameters	Sym	Min	Тур	Max	Units	Conditions						
Schmitt Trigger High Level Input Voltage (All digital input pins)	V _{IH}	0.7 V _{DD}	1		V							
Schmitt Trigger Low Level Input Voltage (All digital input pins)	V _{IL}	_	_	0.2 V _{DD}	V							
Hysteresis of Schmitt Trigger Inputs	V_{HYS}	_	0.05 V _{DD}	_								
Input Leakage Current	I _{LEAKAGE}	-1		1	μΑ	$\overline{LDAC} = \overline{CS} = SDI = SCK = V_{REF} = V_{DD} \text{ or } V_{SS}$						
Digital Pin Capacitance (All inputs/outputs)	C _{IN} , C _{OUT}	_	10	_	pF	$V_{DD} = 5.0V$, $T_A = +25$ °C, $f_{CLK} = 1$ MHz (Note 1)						
Clock Frequency	F _{CLK}	_	_	20	MHz	$T_A = +25^{\circ}C$ (Note 1)						
Clock High Time	t _{HI}	15	_	_	ns	Note 1						
Clock Low Time	t_{LO}	15	-	_	ns	Note 1						
CS Fall to First Rising CLK Edge	tcssr	40	1	_	ns	Applies only when $\overline{\text{CS}}$ falls with CLK high (Note 1)						
Data Input Setup Time	t _{SU}	15		_	ns	Note 1						
Data Input Hold Time	t _{HD}	10	_	_	ns	Note 1						
SCK Rise to CS Rise Hold Time	t _{CHS}	15		_	ns	Note 1						
CS High Time	t _{CSH}	15	_	_	ns	Note 1						
LDAC Pulse Width	t_{LD}	100	_	_	ns	Note 1						
LDAC Setup Time	t _{LS}	40	_	_	ns	Note 1						
SCK Idle Time before $\overline{\text{CS}}$ Fall	t _{IDLE}	40	_	_	ns	Note 1						

Note 1: This parameter is ensured by design and not 100% tested.

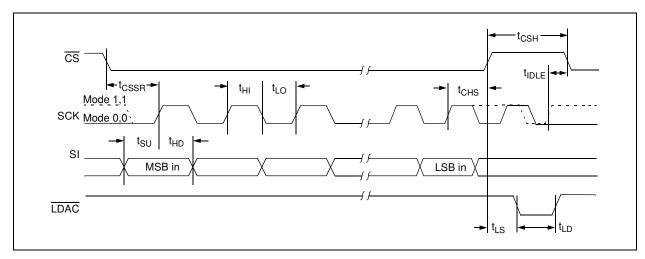


FIGURE 1-1: SPI Input Timing Data.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $V_{DD} = +2.7V$ to $+5.5V$, $V_{SS} = GND$.												
Parameters	Sym	Min	Тур	Max	Units	Conditions						
Temperature Ranges												
Specified Temperature Range	T _A	-40	_	+125	°C							
Operating Temperature Range	T _A	-40	_	+125	°C	Note 1						
Storage Temperature Range	T _A	-65	_	+150	°C							
Thermal Package Resistances												
Thermal Resistance, 8L-DFN (2 x 3)	θ_{JA}	_	68	_	°C/W							
Thermal Resistance, 8L-PDIP	$\theta_{\sf JA}$	_	90	_	°C/W							
Thermal Resistance, 8L-SOIC	θ_{JA}	_	150	_	°C/W							
Thermal Resistance, 8L-MSOP	θ_{JA}	_	211	_	°C/W							

Note 1: The MCP4901/4911/4921 devices operate over this extended temperature range, but with reduced performance. Operation in this range must not cause T_J to exceed the maximum junction temperature of 150°C.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

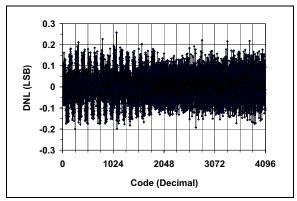


FIGURE 2-1: DNL vs. Code (MCP4921).

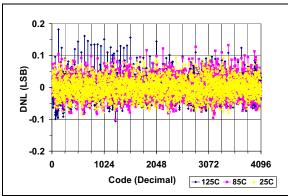
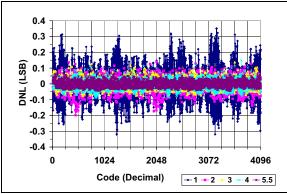



FIGURE 2-2: DNL vs. Code and Temperature (MCP4921).

FIGURE 2-3: DNL vs. Code and V_{REF} Gain=1 (MCP4921).

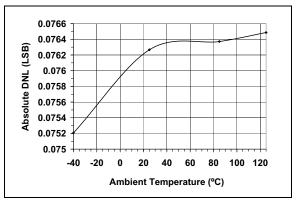
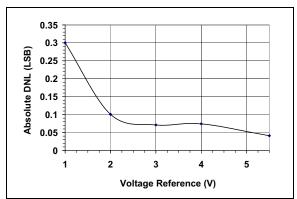



FIGURE 2-4: Absolute DNL vs. Temperature (MCP4921).

FIGURE 2-5: Absolute DNL vs. Voltage Reference (MCP4921).

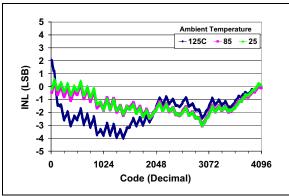


FIGURE 2-6: INL vs. Code and Temperature (MCP4921).

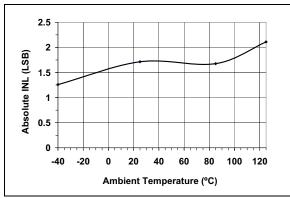


FIGURE 2-7: Absolute INL vs. Temperature (MCP4921).

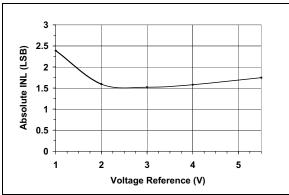
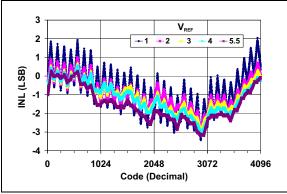
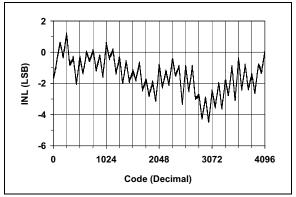




FIGURE 2-8: Absolute INL vs. V_{REF} (MCP4921).

FIGURE 2-9: INL vs. Code and V_{REF} (MCP4921).

FIGURE 2-10: INL vs. Code (MCP4921).

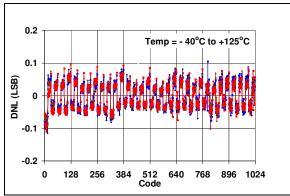


FIGURE 2-11: DNL vs. Code and Temperature (MCP4911).

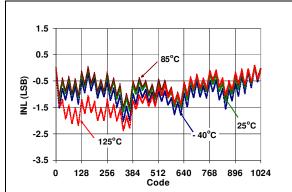
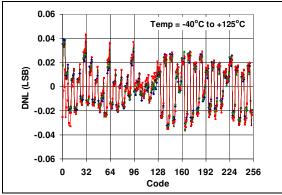
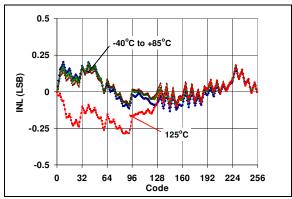
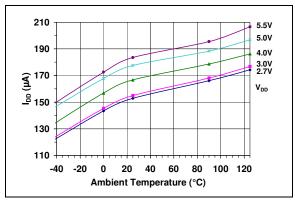
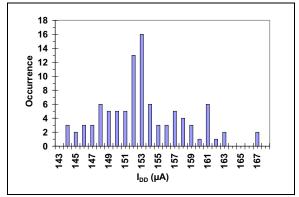
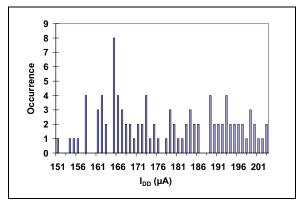
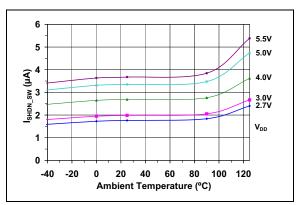


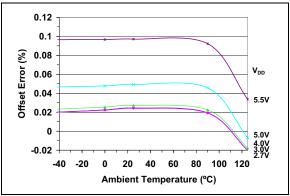
FIGURE 2-12: INL vs. Code and Temperature (MCP4911).

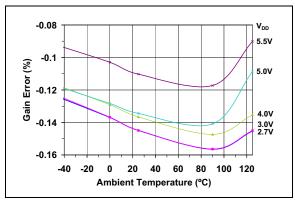




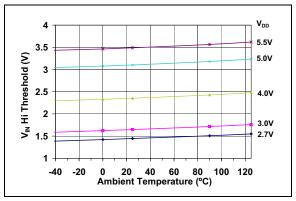

FIGURE 2-13: DNL vs. Code and Temperature (MCP4901).


FIGURE 2-14: INL vs. Code and Temperature (MCP4901).


FIGURE 2-15: I_{DD} vs. Temperature and V_{DD} .


FIGURE 2-16: I_{DD} Histogram ($V_{DD} = 2.7V$).


FIGURE 2-17: I_{DD} Histogram ($V_{DD} = 5.0V$).


FIGURE 2-18: Shutdown Current vs. Temperature and V_{DD} .

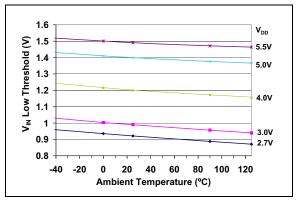

FIGURE 2-19: Offset Error vs. Temperature and V_{DD} .

FIGURE 2-20: Gain Error vs. Temperature and V_{DD} .

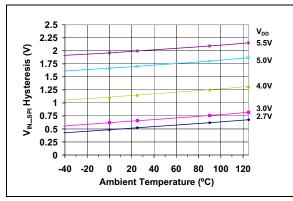


FIGURE 2-21: V_{IN} High Threshold vs. Temperature and V_{DD} .

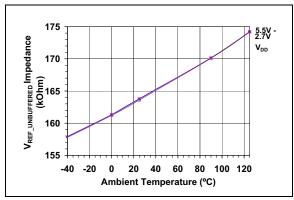


FIGURE 2-22: V_{IN} Low Threshold vs. Temperature and V_{DD} .

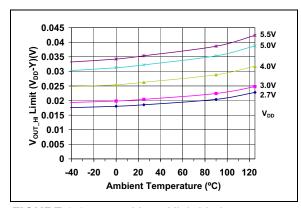

 $\textbf{Note:} \ \, \textbf{Unless otherwise indicated}, \ \, \textbf{T}_{A} = +25^{\circ}\textbf{C}, \ \, \textbf{V}_{DD} = 5 \textbf{V}, \ \, \textbf{V}_{SS} = 0 \textbf{V}, \ \, \textbf{V}_{REF} = 2.048 \textbf{V}, \ \, \textbf{Gain} = 2, \ \, \textbf{R}_{L} = 5 \ \textbf{k}\Omega, \ \, \textbf{C}_{L} = 100 \ \textbf{pF}.$


FIGURE 2-23: Input Hysteresis vs. Temperature and V_{DD} .


FIGURE 2-24: V_{REF} Input Impedance vs. Temperature and V_{DD} .

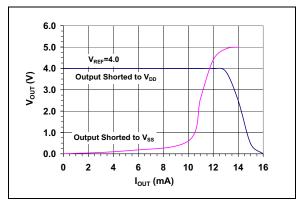

FIGURE 2-25: V_{OUT} High Limit vs. Temperature and V_{DD} .

FIGURE 2-26: V_{OUT} Low Limit vs. Temperature and V_{DD} .

FIGURE 2-27: I_{OUT} High Short vs. Temperature and V_{DD} .

FIGURE 2-28: I_{OUT} vs. V_{OUT} . Gain = 1.

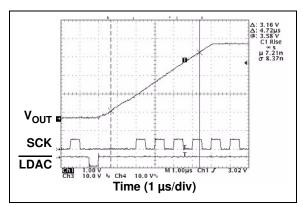


FIGURE 2-29: V_{OUT} Rise Time

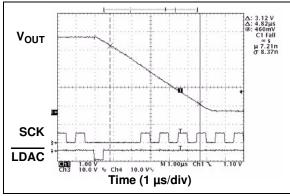


FIGURE 2-30: V_{OUT} Fall Time.

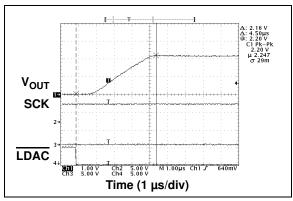


FIGURE 2-31: V_{OUT} Rise Time

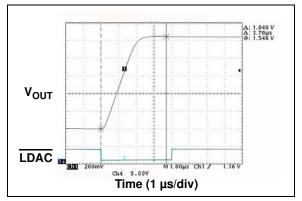
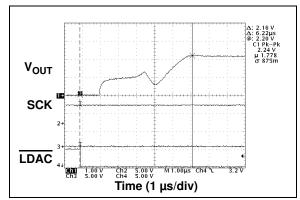



FIGURE 2-32: V_{OUT} Rise Time

FIGURE 2-33: V_{OUT} Rise Time Exit Shutdown.

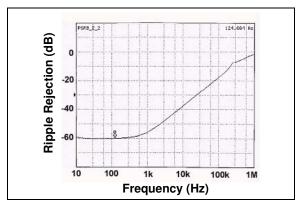


FIGURE 2-34: PSRR vs. Frequency.

 $\textbf{Note:} \ \, \textbf{Unless otherwise indicated}, \ \, \textbf{T}_{A} = +25^{\circ} \textbf{C}, \ \, \textbf{V}_{DD} = 5 \textbf{V}, \ \, \textbf{V}_{SS} = 0 \textbf{V}, \ \, \textbf{V}_{REF} = 2.50 \textbf{V}, \ \, \textbf{Gain} = 2, \ \, \textbf{R}_{L} = 5 \ \textbf{k}\Omega, \ \, \textbf{C}_{L} = 100 \ \textbf{pF}.$

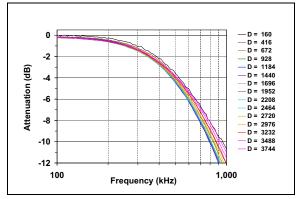
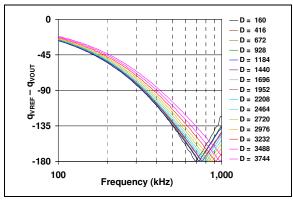



FIGURE 2-35:

Multiplier Mode Bandwidth.

FIGURE 2-37:

Phase Shift.

Figure 2-35 calculation: Attenuation (dB) = 20 log (V_{OUT}/V_{REF}) - 20 log (G(D/4096))

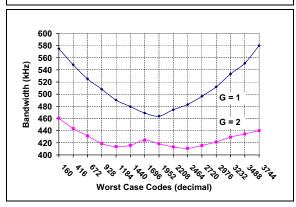


FIGURE 2-36:

-3 db Bandwidth vs. Worst

Codes.

NOTES:

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

PDIP, MSOP, SOIC	DFN	Symbol	Description
1	1	V_{DD}	Supply Voltage Input (2.7V to 5.5V)
2	2	CS	Chip Select Input
3	3	SCK	Serial Clock Input
4	4	SDI	Serial Data Input
5	5	LDAC	DAC Output Synchronization Input. This pin is used to transfer the input register (DAC settings) to the output register (V _{OUT})
6	6	V_{REF}	Voltage Reference Input
7	7	V_{SS}	Ground reference point for all circuitry on the device
8	8	V _{OUT}	DAC Analog Output
_	9	EP	Exposed Thermal Pad. This pad must be connected to V _{SS} in application

3.1 Supply Voltage Pins (V_{DD.} V_{SS})

 V_{DD} is the positive supply voltage input pin. The input supply voltage is relative to V_{SS} and can range from 2.7V to 5.5V. The power supply at the V_{DD} pin should be as clean as possible for good DAC performance. It is recommended to use an appropriate bypass capacitor of about 0.1 μF (ceramic) to ground. An additional 10 μF capacitor (tantalum) in parallel is also recommended to further attenuate high-frequency noise present in application boards.

 V_{SS} is the analog ground pin and the current return path of the device. The user must connect the V_{SS} pin to a ground plane through a low-impedance connection. If an analog ground path is available in the application Printed Circuit Board (PCB), it is highly recommended that the V_{SS} pin be tied to the analog ground path or isolated within an analog ground plane of the circuit board.

3.2 Chip Select (CS)

CS is the chip select input, which requires an active-low signal to enable serial clock and data functions.

3.3 Serial Clock Input (SCK)

SCK is the SPI compatible serial clock input.

3.4 Serial Data Input (SDI)

SDI is the SPI compatible serial data input.

3.5 Latch DAC Input (LDAC)

The $\overline{\text{LDAC}}$ (latch DAC synchronization input) pin is used to transfer the input latch register to the DAC register (output latches, V_{OUT}). When this pin is low, V_{OUT} is updated with input register content. This pin can be tied to low (V_{SS}) if the V_{OUT} update is desired at the rising edge of the $\overline{\text{CS}}$ pin. This pin can be driven by an external control device such as an MCU I/O pin.

3.6 Analog Output (V_{OUT})

 V_{OUT} is the DAC analog output pin. The DAC output has an output amplifier. The full-scale range of the DAC output is from V_{SS} to G^*V_{REF} , where G is the gain selection option (1x or 2x). The DAC analog output cannot go higher than the supply voltage (V_{DD}) .

3.7 Voltage Reference Input (V_{REF})

 V_{REF} is the voltage reference input for the device. The reference on this pin is utilized to set the reference voltage on the string DAC. The input voltage can range from V_{SS} to V_{DD} . This pin can be tied to V_{DD} .

3.8 Exposed Thermal Pad (EP)

There is an internal electrical connection between the Exposed Thermal Pad (EP) and the V_{SS} pin. They must be connected to the same potential on the PCB.

NOTES:

4.0 GENERAL OVERVIEW

The MCP4901, MCP4911 and MCP4921 are single channel voltage output 8-bit, 10-bit and 12-bit DAC devices, respectively. These devices include a V_{REF} input buffer, a rail-to-rail output amplifier, shutdown and reset management circuitry. The devices use an SPI serial communication interface and operate with a single-supply voltage from 2.7V to 5.5V.

The DAC input coding of these devices is straight binary. Equation 4-1 shows the DAC analog output voltage calculation.

EQUATION 4-1: ANALOG OUTPUT VOLTAGE (V_{OUT})

 $V_{OUT} = \frac{(V_{REF} \times D_n)}{2^n} G$

Where:

V_{REF} = External voltage reference

 D_n = DAC input code G = Gain Selection

= $2 \text{ for } < \overline{GA} > \text{ bit } = 0$ = $1 \text{ for } < \overline{GA} > \text{ bit } = 1$

n = DAC Resolution

= 8 for MCP4901 = 10 for MCP4911

= 12 for MCP4912

The ideal output range of each device is:

MCP4901 (n = 8)

- (a) 0V to $255/256*V_{REF}$ when gain setting = 1x.
- (b) 0V to $255/256*2*V_{REF}$ when gain setting = 2x.
- MCP4911 (n = 10)
- (a) 0V to $1023/1024*V_{BEF}$ when gain setting = 1x.
- (b) 0V to $1023/1024*2*V_{BFF}$ when gain setting = 2x.
- MCP4921 (n = 12)
- (a) 0V to $4095/4096*V_{REF}$ when gain setting = 1x.
- (b) 0V to $4095/4096*2*V_{REF}$ when gain setting = 2x.

Note: See the output swing voltage specification in Section 1.0 "Electrical Characteristics".

1 LSb is the ideal voltage difference between two successive codes. Table 4-1 illustrates the LSb calculation of each device.

TABLE 4-1: LSb OF EACH DEVICE

Device	Gain Selection	LSb Size					
MCP4901	1x	V _{REF} /256					
(n = 8)	2x	(2*V _{REF})/256					
MCP4911	1x	V _{REF} /1024					
(n = 10)	2x	(2*V _{REF})/1024					
MCP4921	1x	V _{REF} /4096					
(n = 12)	2x	(2*V _{REF})/4096					
where V _{REF} is	the external	voltage reference.					

4.1 DC Accuracy

4.1.1 INL ACCURACY

Integral Non-Linearity (INL) error is the maximum deviation between an actual code transition point and its corresponding ideal transition point, after offset and gain errors have been removed. The two endpoints (from 0x000 and 0xFFF) method is used for the calculation. Figure 4-1 shows the details.

A positive INL error represents transition(s) later than ideal. A negative INL error represents transition(s) earlier than ideal.

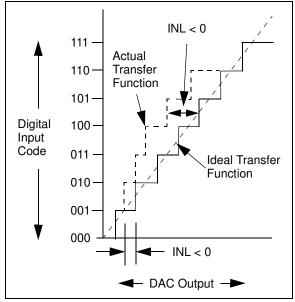


FIGURE 4-1: Example for INL Error.

4.1.2 DNL ACCURACY

A Differential Non-Linearity (DNL) error is the measure of variations in code widths from the ideal code width. A DNL error of zero indicates that every code is exactly 1 LSB wide.

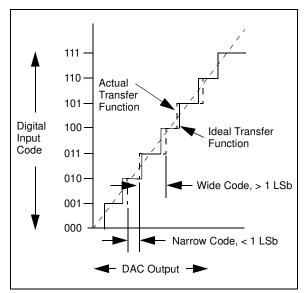


FIGURE 4-2: Example for DNL Accuracy.

4.1.3 OFFSET ERROR

An offset error is the deviation from zero voltage output when the digital input code is zero.

4.1.4 GAIN ERROR

A gain error is the deviation from the ideal output, V_{REF} –1 LSB, excluding the effects of offset error.

4.2 Circuit Descriptions

4.2.1 OUTPUT AMPLIFIER

The DAC's output is buffered with a low-power, precision CMOS amplifier. This amplifier provides low offset voltage and low noise. The output stage enables the device to operate with output voltages close to the power supply rails. Refer to **Section 1.0** "**Electrical Characteristics**" for the analog output voltage range and load conditions.

In addition to resistive load driving capability, the amplifier will also drive high capacitive loads without oscillation. The amplifier's strong output allows V_{OUT} to be used as a programmable voltage reference in a system.

Selecting a gain of 2 reduces the bandwidth of the amplifier in Multiplying mode. Refer to **Section 1.0** "**Electrical Characteristics**" for the Multiplying mode bandwidth for given load conditions.

4.2.1.1 Programmable Gain Block

The rail-to-rail output amplifier has two configurable gain options: a gain of 1x (\overline{GA} > = 1) or a gain of 2x (\overline{GA} > = 0). The default value is a gain of 2x (\overline{GA} > = 0).

4.2.2 VOLTAGE REFERENCE AMPLIFIER

The input buffer amplifier for the MCP4901/4911/4921 devices provides low offset voltage and low noise. A Configuration bit for each DAC allows the V_{REF} input to bypass the V_{REF} input buffer amplifier, achieving Buffered or Unbuffered mode. Buffered mode provides a very high input impedance, with only minor limitations on the input range and frequency response. Unbuffered mode provides a wide input range (0V to V_{DD}), with a typical input impedance of 165 k Ω with 7 pF. Unbuffered mode (<BUF> = 0) is the default configuration.

4.2.3 POWER-ON RESET CIRCUIT

The internal Power-on Reset (POR) circuit monitors the power supply voltage (V_DD) during device operation. The circuit also ensures that the device powers up with high output impedance ($<\!SHDN>=0$, typically 500 k Ω). The devices will continue to have a high-impedance output until a valid write command is received, and the \overline{LDAC} pin meets the input low threshold.

If the power supply voltage is less than the POR threshold ($V_{POR} = 2.0V$, typical), the device will be held in its Reset state. It will remain in that state until $V_{DD} > V_{POR}$ and a subsequent write command is received.

Figure 4-3 shows a typical power supply transient pulse and the duration required to cause a reset to occur, as well as the relationship between the duration and trip voltage. A 0.1 μ F decoupling capacitor, mounted as close as possible to the V_{DD} pin, can provide additional transient immunity.

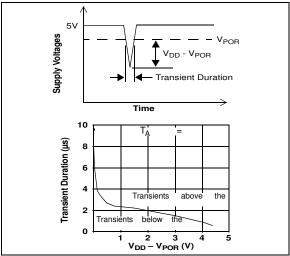


FIGURE 4-3: Typical Transient Response.

4.2.4 SHUTDOWN MODE

The user can shut down the device by using a software command. During Shutdown mode, most of the internal circuits, including the output amplifier, are turned off for power savings. The serial interface remains active, thus allowing a write command to bring the device out of Shutdown mode. There will be no analog output at the V_{OUT} pin, and the V_{OUT} pin is internally switched to a known resistive load (500 k Ω , typical). Figure 4-4 shows the analog output stage during Shutdown mode.

The device will remain in Shutdown mode until it receives a write command with $<\overline{SHDN}>$ bit = 1 and the bit is latched into the device. When the device is changed from Shutdown to Active mode, the output settling time takes less than 10 μ s, but more than the standard active mode settling time (4.5 μ s).

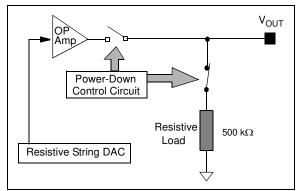


FIGURE 4-4: Output Stage for Shutdown Mode.

NOTES:

5.0 SERIAL INTERFACE

5.1 Overview

The MCP4901/4911/4921 devices are designed to interface directly with the Serial Peripheral Interface (SPI) port, which is available on many microcontrollers and supports Mode 0,0 and Mode 1,1. Commands and data are sent to the device via the SDI pin, with data being clocked-in on the rising edge of SCK. The communications are unidirectional, thus the data cannot be read out of the MCP4901/4911/4921. The CS pin must be held low for the duration of a write command. The write command consists of 16 bits and is used to configure the DAC's control and data latches. Register 5-1 through Register 5-3 detail the input register that is used to configure and load the DAC register for each device. Figure 5-1 through Figure 5-3 show the write command for each device.

Refer to Figure 1-1 and the SPI Timing Specifications Table for detailed input and output timing specifications for both Mode 0,0 and Mode 1,1 operation.

5.2 Write Command

The write command is initiated by driving the $\overline{\text{CS}}$ pin low, followed by clocking the four Configuration bits and the 12 data bits into the SDI pin on the rising edge of SCK. The $\overline{\text{CS}}$ pin is then raised, causing the data to be latched into the DAC's input register.

The MCP4901/4911/4921 utilizes a double-buffered latch structure to allow the analog output to be synchronized with the $\overline{\text{LDAC}}$ pin, if desired.

By bringing the $\overline{\text{LDAC}}$ pin down to a low state, the content stored in the DAC's input register is transferred into the DAC's output register (V_{OUT}), and V_{OUT} is updated.

All writes to the MCP4901/4911/4921 devices are 16-bit words. Any clocks past the 16th clock will be ignored. The Most Significant 4 bits are Configuration bits. The remaining 12 bits are data bits. No data can be transferred into the device with $\overline{\text{CS}}$ high. This transfer will only occur if 16 clocks have been transferred into the device. If the rising edge of $\overline{\text{CS}}$ occurs prior to that, shifting of data into the input register will be aborted.

REGISTER 5-1: WRITE COMMAND REGISTER FOR MCP4921 (12-BIT DAC)

W-x	W-x	W-x	W-0	W-x											
0	BUF	GA	SHDN	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
bit 15															bit 0

REGISTER 5-2: WRITE COMMAND REGISTER FOR MCP4911 (10-BIT DAC)

W-x	W-x	W-x	W-0	W-x											
0	BUF	GA	SHDN	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Х	Х
bit 15															bit 0

REGISTER 5-3: WRITE COMMAND REGISTER FOR MCP4901 (8-BIT DAC)

W-x	W-x	W-x	W-0	W-x											
0	BUF	GA	SHDN	D7	D6	D5	D4	D3	D2	D1	D0	Х	Х	Х	Х
bit 15															bit 0

Where:

bit 15 0 = Write to DAC register

1 = Ignore this command

bit 14 **BUF:** V_{REF} Input Buffer Control bit

1 = Buffered

0 = Unbuffered

bit 13 GA: Output Gain Selection bit

 $\begin{array}{lll} 1 = & 1x \; (V_{OUT} = V_{REF} \; ^*D/4096) \\ 0 = & 2x \; (V_{OUT} = 2 \; ^*V_{REF} \; ^*D/4096) \end{array}$

bit 12 SHDN: Output Shutdown Control bit

1 = Active mode operation. Vout is available.

0 = Shutdown the device. Analog output is not available. Vout pin is connected to 500 k Ω (typical).

bit 11-0 **D11:D0:** DAC Input Data bits. Bit x is ignored.

Legend

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR 1 = bit is set 0 = bit is cleared x = bit is unknown

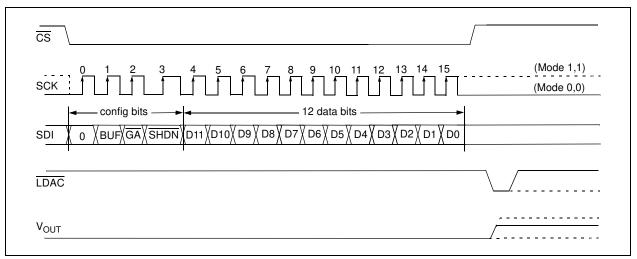


FIGURE 5-1: Write Command for MCP4921 (12-bit DAC).

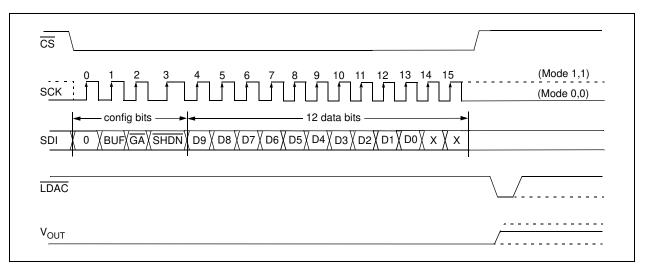


FIGURE 5-2: Write Command for MCP4911 (10-bit DAC). Note: X are don't care bits.

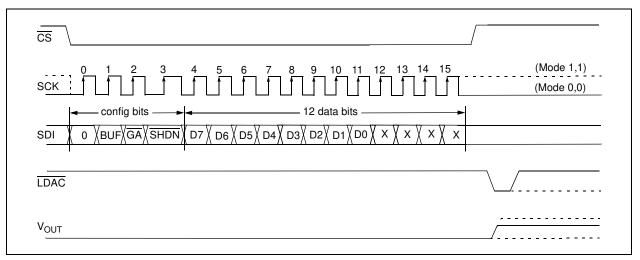


FIGURE 5-3: Write Command for MCP4901(8-bit DAC). Note: X are don't care bits.