imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Open-Drain Output Sub-Microamp Comparators

Features

- · Low Quiescent Current: 600 nA/Comparator (typical)
- Rail-to-Rail Input: V_{SS} 0.3V to V_{DD} + 0.3V
- Open-Drain Output: $V_{OUT} \le 10V$
- Propagation Delay: 4 μs (typical, 100 mV Overdrive)
- Wide Supply Voltage Range: 1.6V to 5.5V
- · Single Available in SOT-23-5, SC-70-5* Packages
- · Available in Single, Dual and Quad
- Chip Select (CS) with MCP6548
- · Low Switching Current
- Internal Hysteresis: 3.3 mV (typical)
- Temperature Range:
- Industrial: -40°C to +85°C
- Extended: -40°C to +125°C

Typical Applications

- Laptop Computers
- Mobile Phones
- Metering Systems
- · Hand-held Electronics
- RC Timers
- · Alarm and Monitoring Circuits
- Windowed Comparators
- Multi-vibrators

Related Devices

CMOS/TTL-Compatible Output: MCP6541/2/3/4

Package Types

Description

The Microchip Technology Inc. MCP6546/6R/6U/7/8/9 family of comparators, is offered in single (MCP6546, MCP6546R, MCP6546U), single with chip select (\overline{CS}) (MCP6548), dual (MCP6547) and quad (MCP6549) configurations. The outputs are open-drain and are capable of driving heavy DC or capacitive loads.

These comparators are optimized for low power, single-supply application with greater than rail-to-rail input operation. The output limits supply current surges and dynamic power consumption while switching. The open-drain output of the MCP6546/6R/6U/7/8/9 family can be used as a level-shifter for up to 10V using a pull-up resistor. It can also be used as a wired-OR logic. The internal Input hysteresis eliminates output switching due to internal noise voltage, reducing current draw. These comparators operate with a single-supply voltage as low as 1.6V and draw a quiescent current of less than 1 μ A/comparator.

The related MCP6541/2/3/4 family of comparators from Microchip has a push-pull output that supports rail-to-rail output swing and interfaces with CMOS/TTL logic.

* SC-70-5 E-Temp parts are not available at this release of the data sheet.

MCP6546U SOT-23-5 is E-Temp only.

1.0 **ELECTRICAL CHARACTERISTICS**

Absolute Maximum Ratings †

V _{DD} - V _{SS} 7.0V
Open-Drain Output V _{SS} + 10.5V
Analog Input (V _{IN} +, V _{IN} -)††V _{SS} - 1.0V to V _{DD} + 1.0V
All Other Inputs and Outputs V_{SS} – 0.3V to V_{DD} + 0.3V
Difference Input Voltage $ V_{DD} - V_{SS} $
Output Short-Circuit Currentcontinuous
Current at Input Pins±2 mA
Current at Output and Supply Pins±30 mA
Storage Temperature65°C to +150°C
Maximum Junction Temperature (T _J)+150°C
ESD Protection on All Pins:
(HBM;MM)2 kV;200V (MCP6546U)
(HBM;MM) 4 kV; 200V (all other parts)

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device, at those or any other conditions above those indicated in the operational listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† See Section 4.1.2 "Input Voltage and Current Limits"

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V_{DD} = +1.6V to +5.5V, V_{SS} = GND, T_A = 25°C, V_{IN} + = $V_{DD}/2$, V_{IN} = V_{SS} , R_{PU} = 2.74 k Ω to V_{PU} = V_{DD} (Refer to Figure 1-3).

Parameters	Sym	Min	Тур	Max	Units	Conditions		
Power Supply								
Supply Voltage	V _{DD}	1.6		5.5	V	$V_{PU} \ge V_{DD}$		
Quiescent Current	ا _م	0.3	0.6	1	μA	I _{OUT} = 0		
(per comparator)								
Input								
Input Voltage Range	V _{CMR}	V _{SS} – 0.3	—	V _{DD} + 0.3	V			
Common Mode Rejection Ratio	CMRR	55	70	—	dB	$V_{DD} = 5V, V_{CM} = -0.3V$ to 5.3V		
Common Mode Rejection Ratio	CMRR	50	65	—	dB	$V_{DD} = 5V$, $V_{CM} = 2.5V$ to 5.3V		
Common Mode Rejection Ratio	CMRR	55	70	—	dB	V_{DD} = 5V, V_{CM} = -0.3V to 2.5V		
Power Supply Rejection Ratio	PSRR	63	80	—	dB	$V_{CM} = V_{SS}$		
Input Offset Voltage	V _{OS}	-7.0	±1.5	+7.0	mV	V _{CM} = V _{SS} (Note 1)		
Drift with Temperature	$\Delta V_{OS} / \Delta T_A$		±3	—	μV/°C	$T_A = -40^{\circ}C$ to $+125^{\circ}C$, $V_{CM} = V_{SS}$		
Input Hysteresis Voltage	V _{HYST}	1.5	3.3	6.5	mV	V _{CM} = V _{SS} (Note 1)		
Linear Temp. Co.	TC ₁		6.7	—	μV/°C	$T_A = -40^{\circ}C$ to $+125^{\circ}C$, $V_{CM} = V_{SS}$ (Note 2)		
Quadratic Temp. Co.	TC ₂	—	-0.035	—	µV/°C²	$T_A = -40^{\circ}C$ to $+125^{\circ}C$, $V_{CM} = V_{SS}$ (Note 2)		
Input Bias Current	I _B		1	—	pА	$V_{CM} = V_{SS}$		
At Temperature (I-Temp parts)	I _B		25	100	pА	$T_A = +85^{\circ}C, V_{CM} = V_{SS}$ (Note 3)		
At Temperature (E-Temp parts)	I _B		1200	5000	pА	$T_A = +125^{\circ}C, V_{CM} = V_{SS}$ (Note 3)		
Input Offset Current	I _{OS}	_	±1	—	pА	$V_{CM} = V_{SS}$		

Note 1: The input offset voltage is the center of the input-referred trip points. The input hysteresis is the difference between the input-referred trip points.

2: V_{HYST} at differential temperatures is estimated using:

 $V_{HYST}(T_A) = V_{HYST} + (T_A - 25^{\circ}C) TC_1 + (T_A - 25^{\circ}C)^2 TC_2.$ 3: Input bias current at temperature is not tested for the SC-70-5 package.

4: Do not short the output above V_{SS} + 10V. Limit the output current to Absolute Maximum Rating of 30 mA. The minimum V_{PU} test limit was V_{DD} before Dec. 2004 (week code 52).

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated, $V_{DD} = +1.6V$ to +5.5V, $V_{SS} = GND$, $T_A = 25^{\circ}C$, $V_{IN} + = V_{DD}/2$, $V_{IN} - = V_{SS}$, $R_{PU} = 2.74$ k Ω to $V_{PU} = V_{DD}$ (Refer to Figure 1-3).

$V_{\text{IN}} = V_{\text{SS}}, \text{ rep}_{\text{U}} = \textbf{E}.7 \text{ rest to } \textbf{V}_{\text{U}}$	$V_{IN} = V_{SS}, H_{PU} = 2.7 H_{S2}$ to $V_{PU} = V_{DD}$ (Here is a right in 0).						
Parameters	Sym	Min	Тур	Max	Units	Conditions	
Common Mode Input Impedance	Z _{CM}	_	10 ¹³ 4	—	Ω∥pF		
Differential Input Impedance	Z _{DIFF}		10 ¹³ 2	—	Ω∥pF		
Open-Drain Output							
Output Pull-Up Voltage	V _{PU}	1.6	_	10	V	(Note 4)	
High-Level Output Current	I _{OH}	-100	—	—	nA	V _{DD} = 1.6V to 5.5V, V _{PU} = 10V (Note 4)	
Low-Level Output Voltage	V _{OL}	V_{SS}	_	$V_{SS} + 0.2$	۷	$I_{OUT} = 2 \text{ mA}, V_{PU} = V_{DD} = 5V$	
Short-Circuit Current	I _{SC}		±1.5	—	mA	V _{PU} = V _{DD} = 1.6V (Note 4)	
	I _{SC}	_	30	—	mA	V _{PU} = V _{DD} = 5.5V (Note 4)	
Output Pin Capacitance	COUT	_	8	_	pF		

Note 1: The input offset voltage is the center of the input-referred trip points. The input hysteresis is the difference between the input-referred trip points.

- 2: V_{HYST} at differential temperatures is estimated using: $V_{HYST} (T_A) = V_{HYST} + (T_A - 25^{\circ}C) TC_1 + (T_A - 25^{\circ}C)^2 TC_2.$
- 3: Input bias current at temperature is not tested for the SC-70-5 package.
- **4:** Do not short the output above V_{SS} + 10V. Limit the output current to Absolute Maximum Rating of 30 mA. The minimum V_{PU} test limit was V_{DD} before Dec. 2004 (week code 52).

AC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $V_{DD} = +1.6V$ to +5.5V, $V_{SS} = GND$, $T_A = 25^{\circ}C$, $V_{IN} + = V_{DD}/2$, Step = 200 mV, Overdrive = 100 mV, $R_{PU} = 2.74 \text{ k}\Omega$ to $V_{PU} = V_{DD}$, and $C_L = 36 \text{ pF}$ (Refer to Figure 1-2 and Figure 1-3).

	,					
Parameters	Sym	Min	Тур	Max	Units	Conditions
Fall Time	t _F	—	0.7	—	μs	(Note 1)
Propagation Delay (High-to-Low)	t _{PHL}	—	4.0	8.0	μs	
Propagation Delay (Low-to-High)	t _{PLH}	—	3.0	8.0	μs	(Note 1)
Propagation Delay Skew	t _{PDS}	—	-1.0	—	μs	(Notes 1 and 2)
Maximum Toggle Frequency	f _{MAX}	—	225	—	kHz	V _{DD} = 1.6V
	f _{MAX}	—	165	—	kHz	V _{DD} = 5.5V
Input Noise Voltage	E _{ni}	_	200	_	μV_{P-P}	10 Hz to 100 kHz

Note 1: t_R and t_{PLH} depend on the load (R_L and C_L); these specifications are valid for the indicated load only.

2: Propagation Delay Skew is defined as: $t_{PDS} = t_{PLH} - t_{PHL}$.

MCP6548 CHIP SELECT (CS) CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $V_{DD} = +1.6V$ to $+5.5V$, $V_{SS} = GND$, $T_A = 25^{\circ}C$, $V_{IN} + = V_{DD}/2$, $V_{IN} - = V_{SS}$, $R_{PU} = 2.74$ k Ω to $V_{PU} = V_{DD}$, and $C_L = 36$ pF (Refer to Figures 1-1 and 1-3).						
Parameters	Sym	Min	Тур	Max	Units	Conditions
CS Low Specifications		·				
CS Logic Threshold, Low	V _{IL}	V _{SS}	—	0.2 V _{DD}	V	
CS Input Current, Low	I _{CSL}	_	5	—	pА	$\overline{\text{CS}} = \text{V}_{\text{SS}}$
CS High Specifications						
CS Logic Threshold, High	V _{IH}	0.8 V _{DD}	_	V_{DD}	V	
CS Input Current, High	I _{CSH}		1	—	pА	$\overline{\text{CS}} = \text{V}_{\text{DD}}$
CS Input High, V _{DD} Current	I _{DD}	_	18	—	pА	$\overline{\text{CS}} = \text{V}_{\text{DD}}$
CS Input High, GND Current	I _{SS}	—	-20	—	pА	$\overline{\text{CS}} = \text{V}_{\text{DD}}$
Comparator Output Leakage	I _{O(LEAK)}	—	1	—	pА	$V_{OUT} = V_{SS} + 10V, \overline{CS} = V_{DD}$
CS Dynamic Specifications						
CS Low to Comparator Output Low Turn-on Time	t _{ON}	_	2	50	ms	$\overline{\text{CS}} = 0.2 \text{V}_{\text{DD}}$ to $\text{V}_{\text{OUT}} = \text{V}_{\text{DD}}/2$, $\text{V}_{\text{IN}} = \text{V}_{\text{DD}}$
CS High to Comparator Output High Z Turn-off Time	t _{OFF}	_	10	—	μs	$\overline{\text{CS}} = 0.8 \text{V}_{\text{DD}}$ to $\text{V}_{\text{OUT}} = \text{V}_{\text{DD}}/2$, $\text{V}_{\text{IN}} = \text{V}_{\text{DD}}$
CS Hysteresis	V_{CS_HYST}		0.6	—	V	$V_{DD} = 5V$
\overline{CS} V_{IL} V_{IH} V_{OFF} V_{OUT} $High-Z$ V_{OUT} $High-Z$ V_{OUT}				V _{IN}	 / _{DD} /2	100 mV ↓ 100 mV ↓ 100 mV ↓ 100 mV ↓ 100 mV
·.ss ·.co pA (typ.) ·.o. σ μA (// I _{CS} 1 pA (typ.) 5 pA (typ.) FIGURE 1-1: Timing D	pA (typ.) pA (typ.) the CS		FIGURE Diagram	V _C • 1-2: •.	Propagation Delay Timing	

pin on the MCP6548.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $V_{DD} = +1.6V$ to +5.5V and $V_{SS} = GND$.						
Parameters	Sym	Min	Тур	Max	Units	Conditions
Temperature Ranges						
Specified Temperature Range	Τ _Α	-40		+85	°C	
Operating Temperature Range	Τ _Α	-40	—	+125	°C	Note
Storage Temperature Range	T _A	-65	—	+150	°C	
Thermal Package Resistances						
Thermal Resistance, 5L-SC-70	θ_{JA}	_	331	_	°C/W	
Thermal Resistance, 5L-SOT-23	θ_{JA}	_	220.7	_	°C/W	
Thermal Resistance, 8L-MSOP	θ_{JA}		211	_	°C/W	
Thermal Resistance, 8L-PDIP	θ_{JA}	_	89.3	_	°C/W	
Thermal Resistance, 8L-SOIC	θ_{JA}	_	149.5	_	°C/W	
Thermal Resistance, 14L-PDIP	θ_{JA}	_	70	_	°C/W	
Thermal Resistance, 14L-SOIC	θ_{JA}	_	95.3	_	°C/W	
Thermal Resistance, 14L-TSSOP	θ_{JA}	_	100	_	°C/W	

Note: The MCP6546/6R/6U/7/8/9 I-temp family operates over this extended temperature range, but with reduced performance. In any case, the Junction Temperature (T_J) must not exceed the absolute maximum specification of +150°C.

1.1 Test Circuit Configuration

This test circuit configuration is used to determine the AC and DC specifications.

FIGURE 1-3: AC and DC Test Circuit for the Open-Drain Output Comparators.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, V_{DD} = +1.6V to +5.5V, V_{SS} = GND, T_A = +25°C, V_{IN} + = $V_{DD}/2$, V_{IN} - = GND, R_{PU} = 2.74 k Ω to V_{PU} = V_{DD} , and C_L = 36 pF.

FIGURE 2-1: Input Offset Voltage at $V_{CM} = V_{SS}$.

FIGURE 2-2:Input Offset Voltage Drift at $V_{CM} = V_{SS}$.

FIGURE 2-3: The MCP6546/6R/6U/7/8/9 Comparators Show No Phase Reversal.

FIGURE 2-4: $V_{CM} = V_{SS}$.

FIGURE 2-5: Input Hysteresis Voltage Linear Temp. Co. (TC_1) at $V_{CM} = V_{SS}$.

FIGURE 2-6: Input Hysteresis Voltage Quadratic Temp. Co. (TC_2) at $V_{CM} = V_{SS}$.

Note: Unless otherwise indicated, $V_{DD} = +1.6V$ to +5.5V, $V_{SS} = GND$, $T_A = +25^{\circ}C$, $V_{IN} + = V_{DD}/2$, $V_{IN} - = GND$, $R_{PU} = 2.74 \text{ k}\Omega$ to $V_{PU} = V_{DD}$, and $C_L = 36 \text{ pF}$.

FIGURE 2-7: Input Offset Voltage vs. Ambient Temperature at $V_{CM} = V_{SS}$.

FIGURE 2-8: Input Offset Voltage vs. Common Mode Input Voltage at $V_{DD} = 1.6V$.

FIGURE 2-9: Input Offset Voltage vs. Common Mode Input Voltage at $V_{DD} = 5.5V$.

FIGURE 2-10: Input Hysteresis Voltage vs. Ambient Temperature at $V_{CM} = V_{SS}$.

FIGURE 2-11: Input Hysteresis Voltage vs. Common Mode Input Voltage at $V_{DD} = 1.6V$.

FIGURE 2-12: Input Hysteresis Voltage vs. Common Mode Input Voltage at $V_{DD} = 5.5V$.

MCP6546/6R/6U/7/8/9

Note: Unless otherwise indicated, $V_{DD} = +1.6V$ to +5.5V, $V_{SS} = GND$, $T_A = +25^{\circ}C$, $V_{IN} + = V_{DD}/2$, $V_{IN} - = GND$, $R_{PU} = 2.74 \text{ k}\Omega$ to $V_{PU} = V_{DD}$, and $C_L = 36 \text{ pF}$.

FIGURE 2-13: CMRR,PSRR vs. Ambient Temperature.

FIGURE 2-14: Input Bias Current, Input Offset Current vs. Ambient Temperature.

FIGURE 2-15: Quiescent Current vs. Common Mode Input Voltage at $V_{DD} = 1.6V$.

FIGURE 2-16: Input Bias Current, Input Offset Current vs. Common Mode Input Voltage.

FIGURE 2-17: Quiescent Current vs. Power Supply Voltage.

FIGURE 2-18: Quiescent Current vs. Common Mode Input Voltage at $V_{DD} = 5.5V$.

Note: Unless otherwise indicated, $V_{DD} = +1.6V$ to +5.5V, $V_{SS} = GND$, $T_A = +25^{\circ}C$, $V_{IN} + = V_{DD}/2$, $V_{IN} - = GND$, $R_{PU} = 2.74 \text{ k}\Omega$ to $V_{PU} = V_{DD}$, and $C_L = 36 \text{ pF}$.

FIGURE 2-19: Supply Current vs. Pull-Up Voltage.

Frequency.

FIGURE 2-21: Output Voltage Headroom vs. Output Current at $V_{DD} = 1.6V$.

FIGURE 2-22: Supply Current vs. Pull-Up to Supply Voltage Difference.

FIGURE 2-23: Output Short Circuit Current Magnitude vs. Power Supply Voltage.

FIGURE 2-24: Output Voltage Headroom vs. Output Current at $V_{DD} = 5.5V$.

Note: Unless otherwise indicated, $V_{DD} = +1.6V$ to +5.5V, $V_{SS} = GND$, $T_A = +25^{\circ}C$, $V_{IN} + = V_{DD}/2$, $V_{IN} - = GND$, $R_{PU} = 2.74 \text{ k}\Omega$ to $V_{PU} = V_{DD}$, and $C_L = 36 \text{ pF}$.

FIGURE 2-25: High-to-Low Propagation Delay.

FIGURE 2-26:

Propagation Delay Skew.

FIGURE 2-27: Propagation Delay vs. Power Supply Voltage.

FIGURE 2-28: Low-to-High Propagation Delay.

FIGURE 2-29: Propagation Delay vs. Ambient Temperature.

FIGURE 2-30: Propagation Delay vs. Input Overdrive.

Note: Unless otherwise indicated, $V_{DD} = +1.6V$ to +5.5V, $V_{SS} = GND$, $T_A = +25^{\circ}C$, $V_{IN} + = V_{DD}/2$, $V_{IN} - = GND$, $R_{PU} = 2.74 \text{ k}\Omega$ to $V_{PU} = V_{DD}$, and $C_L = 36 \text{ pF}$.

FIGURE 2-31: Propagation Delay vs. Common Mode Input Voltage at $V_{DD} = 1.6V$.

FIGURE 2-32: Propagation Delay vs. Pull-up Resistor.

FIGURE 2-33: Propagation Delay vs. Pull-up Voltage.

FIGURE 2-34: Propagation Delay vs. Common Mode Input Voltage at $V_{DD} = 5.5V$.

FIGURE 2-35: Propagation Delay vs. Load Capacitance.

FIGURE 2-36:Output Leakage Current $(\overline{CS} = V_{DD})$ vs. Output Voltage (MCP6548 only).

Note: Unless otherwise indicated, $V_{DD} = +1.6V$ to +5.5V, $V_{SS} = GND$, $T_A = +25^{\circ}C$, $V_{IN} + = V_{DD}/2$, $V_{IN} - = GND$, $R_{PU} = 2.74 \text{ k}\Omega$ to $V_{PU} = V_{DD}$, and $C_L = 36 \text{ pF}$.

FIGURE 2-37: Supply Current (Shootthrough Current) vs. Chip Select (CS) Voltage at $V_{DD} = 1.6V$ (MCP6548 only).

FIGURE 2-38: Supp<u>ly Current (Charging</u> Current) vs. Chip Select (CS) pulse at $V_{DD} = 1.6V$ (MCP6548 only).

FIGURE 2-39: Chip Select $\overline{(CS)}$ Step Response (MCP6548 only).

FIGURE 2-40: Supply Current (Shootthrough Current) vs. Chip Select (CS) Voltage at $V_{DD} = 5.5V$ (MCP6548 only).

FIGURE 2-41:Supply Current (Charging
Current) vs. Chip Select (CS) pulse at
 $V_{DD} = 5.5V$ (MCP6548 only).

FIGURE 2-42: Input Bias Current vs. Input Voltage.

3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in Table 3-1.

MCP6546	MCP6546	MCP6546R	MCP6546U	MCP6547	MCP6548	MCP6549	Symbol	Description	
PDIP, SOIC, MSOP	SC-70, SOT-23	SOT-23-5	SC-70, SOT-23-5	PDIP, SOIC, MSOP	PDIP, SOIC, MSOP	PDIP, SOIC, TSSOP			
6	1	1	4	1	6	1	OUT, OUTA	Digital Output (comparator A)	
2	4	4	3	2	2	2	V _{IN} —, V _{INA} —	Inverting Input (comparator A)	
3	3	3	1	3	3	3	V _{IN} +, V _{INA} +	Non-inverting Input (comparator A)	
7	5	2	5	8	7	4	V _{DD}	Positive Power Supply	
—		—	—	5		5	V _{INB} +	Non-inverting Input (comparator B)	
_		—	_	6		6	V _{INB} –	Inverting Input (comparator B)	
		—	—	7		7	OUTB	Digital Output (comparator B)	
_		—	_	_		8	OUTC	Digital Output (comparator C)	
—		—	—	—	_	9	V _{INC} -	Inverting Input (comparator C)	
—	—	—	—	—	—	10	V _{INC} +	Non-inverting Input (comparator C)	
4	2	5	2	4	4	11	V _{SS}	Negative Power Supply	
_		—	—	—	—	12	V _{IND} +	Non-inverting Input (comparator D)	
—	—	—	—	—		13	V _{IND} -	Inverting Input (comparator D)	
	—	—		—	—	14	OUTD	Digital Output (comparator D)	
				_	8	_	CS	Chip Select	
1, 5, 8			_	_	1, 5		NC	No Internal Connection	

TABLE 3-1: PIN FUNCTION TABLE

3.1 Analog Inputs

The comparator non-inverting and inverting inputs are high-impedance CMOS inputs with low bias currents.

3.2 CS Digital Input

This is a CMOS, Schmitt-triggered input that places the part into a low power mode of operation.

3.3 Digital Outputs

The comparator outputs are CMOS, open-drain digital outputs. They are designed to make level shifting and wired-OR easy to implement.

3.4 Power Supply (V_{SS} and V_{DD})

The positive power supply pin (V_{DD}) is 1.6V to 5.5V higher than the negative power supply pin (V_{SS}). For normal operation, the other pins are at voltages between V_{SS} and V_{DD}, except the output pins which can be as high as 10V above V_{SS}.

Typically, these parts are used in a single (positive) supply configuration. In this case, V_{SS} is connected to ground and V_{DD} is connected to the supply. V_{DD} will need a local bypass capacitor (typically 0.01 μ F to 0.1 μ F) within 2 mm of the V_{DD} pin. These can share a bulk capacitor with nearby analog parts (within 100 mm), but it is not required.

NOTES:

4.0 APPLICATIONS INFORMATION

The MCP6546/6R/6U/7/8/9 family of push-pull output comparators are fabricated on Microchip's state-of-theart CMOS process. They are suitable for a wide range of applications requiring very low power consumption.

4.1 Comparator Inputs

4.1.1 PHASE REVERSAL

The MCP6546/6R/6U/7/8/9 comparator family uses CMOS transistors at the input. They are designed to prevent phase inversion when the input pins exceed the supply voltages. Figure 2-3 shows an input voltage exceeding both supplies with no resulting phase inversion.

4.1.2 INPUT VOLTAGE AND CURRENT LIMITS

The ESD protection on the inputs can be depicted as shown in Figure 4-1. This structure was chosen to protect the input transistors, and to minimize input bias current (IB). The input ESD diodes clamp the inputs when they try to go more than one diode drop below V_{SS} . They also clamp any voltages that go too far above V_{DD} ; their breakdown voltage is high enough to allow normal operation, and low enough to bypass ESD events within the specified limits.

FIGURE 4-1: Simplified Analog Input ESD Structures.

In order to prevent damage and/or improper operation of these amplifiers, the circuits they are in must limit the currents (and voltages) at the V_{IN}+ and V_{IN}- pins (see Absolute Maximum Ratings † at the beginning of **Section 1.0** "Electrical Characteristics"). Figure 4-3 shows the recommended approach to protecting these inputs. The internal ESD diodes prevent the input pins (V_{IN}+ and V_{IN}-) from going too far below ground, and the resistors R₁ and R₂ limit the possible current drawn out of the input pin. Diodes D₁ and D₂ prevent the input pin (V_{IN}+ and V_{IN}-) from going too far above V_{DD}. When implemented as shown, resistors R₁ and R₂ also limit the current through D₁ and D₂.

FIGURE 4-2: Protecting the Analog Inputs.

It is also possible to connect the diodes to the left of resistors R₁ and R₂. In this case, the currents through diodes D₁ and D₂ need to be limited by some other mechanism. The resistor then serves as in-rush current limiter; the DC current into the input pins (V_{IN}+ and V_{IN}-) should be very small.

A significant amount of current can flow out of the inputs when the common mode voltage (V_{CM}) is below ground (V_{SS}); see Figure 2-42. Applications that are high impedance may need to limit the usable voltage range.

4.1.3 NORMAL OPERATION

The input stage of this family of devices uses two differential input stages in parallel, one operates at low input voltages, and the other at high input voltages. With this topology, the input voltage is 0.3V above V_{DD} and 0.3V below V_{SS} . The input offset voltage is measured at both V_{SS} -0.3V and V_{DD} +0.3V to ensure proper operation.

The MCP6546/6R/6U/7/8/9 family has internally-set hysteresis that is small enough to maintain input offset accuracy (<7 mV), and large enough to eliminate output chattering caused by the comparator's own input noise voltage (200 μ V_{P-P}). Figure 4-3 illustrates this capability.

FIGURE 4-3: The MCP6546/6R/6U/7/8/9 Comparators' Internal Hysteresis Eliminates Output Chatter Caused By Input Noise Voltage.

4.2 Open-Drain Output

The open-drain output is designed to make levelshifting and wired-OR logic easy to implement. The output can go as high as 10V for 9V battery-powered applications. The output stage minimizes switching current (shoot-through current from supply-to-supply) when the output changes state. See Figures 2-15, 2-18 and 2-37 through 2-41, for more information.

4.3 MCP6548 Chip Select (CS)

The MCP6548 is a single comparator with a Chip Select (\overline{CS}) pin. When \overline{CS} is pulled high, the total current consumption drops to 20 pA (typical). 1 pA (typical) flows through the \overline{CS} pin, 1 pA (typical) flows through the output pin and 18 pA (typical) flows through the V_{DD} pin, as shown in Figure 1-1. When this happens, the comparator output is put into a high-impedance state. By pulling \overline{CS} low, the comparator will not operate properly. Figure 1-1 shows the output voltage and supply current response to a \overline{CS} pulse.

The internal \overline{CS} circuitry is designed to minimize glitches when cycling the \overline{CS} pin. This helps conserve power, which is especially important in battery-powered applications.

4.4 Externally Set Hysteresis

Greater flexibility in selecting hysteresis, or input trip points, is achieved by using external resistors.

Input offset voltage (V_{OS}) is the center (average) of the (input-referred) low-high and high-low trip points. Input hysteresis voltage (V_{HYST}) is the difference between the same trip points. Hysteresis reduces output chattering when one input is slowly moving past the other, thus reducing dynamic supply current. It also helps in systems where it is best not to cycle between states too frequently (e.g., air conditioner thermostatic control).

4.4.1 INVERTING CIRCUIT

Figure 4-4 shows an inverting circuit for a single-supply application using three resistors, besides the pull-up resistor. The resulting hysteresis diagram is shown in Figure 4-5.

FIGURE 4-4: Inverting Circuit with Hysteresis.

FIGURE 4-5: Hysteresis Diagram for the Inverting Circuit.

In order to determine the trip voltages (V_{THL} and V_{TLH}) for the circuit shown in Figure 4-4, R₂ and R₃ can be simplified to the Thevenin equivalent circuit with respect to V_{DD}, as shown in Figure 4-6.

FIGURE 4-6: Thevenin Equivalent Circuit.

EQUATION 4-1:

$$R_{23} = \frac{R_2 R_3}{R_2 + R_3}$$
$$V_{23} = \frac{R_3}{R_2 + R_3} \times V_{DD}$$

Using this simplified circuit, the trip voltage can be calculated using the following equation:

EQUATION 4-2:

$$V_{THL} = V_{PU} \left(\frac{R_{23}}{R_{23} + R_F + R_{PU}} \right) + V_{23} \left(\frac{R_F + R_{PU}}{R_{23} + R_F + R_{PU}} \right)$$
$$V_{TLH} = V_{OL} \left(\frac{R_{23}}{R_{23} + R_F} \right) + V_{23} \left(\frac{R_F}{R_{23} + R_F} \right)$$
$$V_{TLH} = \text{trip voltage from low to high}$$
$$V_{THL} = \text{trip voltage from high to low}$$

Figures 2-21 and 2-24 can be used to determine typical values for V_{OL} . This voltage is dependent on the output current I_{OL} as shown in Figure 4-4. This current can be determined using the equation below:

EQUATION 4-3:

$$\begin{split} I_{OL} &= I_{PU} + I_{RF} \\ I_{OL} &= \left(\frac{V_{PU} - V_{OL}}{R_{PU}}\right) + \left(\frac{V_{23} - V_{OL}}{R_{23} + R_F}\right) \end{split}$$

V_{OH} can be calculated using the equation below:

EQUATION 4-4:

$$V_{OH} = (V_{PU} - V_{23}) \times \left(\frac{R_{23} + R_F}{R_{23} + R_F + R_{PU}}\right)$$

As explained in Section 4.1 "Comparator Inputs", it is important to keep the non-inverting input below V_{DD} +0.3V when $V_{PU} > V_{DD}$.

4.5 Supply Bypass

With this family of comparators, the power supply pin (V_{DD} for single supply) should have a local bypass capacitor (i.e., 0.01 μ F to 0.1 μ F) within 2 mm for good edge-rate performance.

4.6 Capacitive Loads

Reasonable capacitive loads (e.g., logic gates) have little impact on propagation delay (see Figure 2-27). The supply current increases with increasing toggle frequency (Figure 2-30), especially with higher capacitive loads.

4.7 Battery Life

In order to maximize battery life in portable applications, use large resistors and small capacitive loads. Avoid toggling the output more than necessary. Do not use Chip Select (\overline{CS}) too frequently, in order to conserve power. Capacitive loads will draw additional power at start-up.

4.8 PCB Surface Leakage

In applications where low input bias current is critical, PCB (Printed Circuit Board) surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low-humidity conditions, a typical resistance between nearby traces is $10^{12}\Omega$. A 5V difference would cause 5 pA of current to flow. This is greater than the MCP6546/6R/6U/7/8/9 family's bias current at 25°C (1 pA, typical).

The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 4-7.

FIGURE 4-7: Example Guard Ring Layout for Inverting Circuit.

- 1. For the Inverting Configuration (Figures 4-4 and 4-7):
 - a) Connect the guard ring to the non-inverting input pin (V_{IN} +). This biases the guard ring to the same reference voltage as the comparator (e.g., $V_{DD}/2$ or ground).
 - b) Connect the inverting pin (V_{IN}-) to the input pad, without touching the guard ring.

4.9 Unused Comparators

An unused amplifier in a quad package (MCP6549) should be configured as shown in Figure 4-8. This circuit prevents the output from toggling and causing crosstalk. It uses the minimum number of components and draws minimal current (see Figure 2-15 and Figure 2-18).

Unused Comparators.

4.10 Typical Applications

4.10.1 PRECISE COMPARATOR

Some applications require higher DC precision. An easy way to solve this problem is to use an amplifier (such as the MCP6041) to gain-up the input signal before it reaches the comparator. Figure 4-9 shows an example of this approach.

FIGURE 4-9: Precise Inverting Comparator.

4.10.2 WINDOWED COMPARATOR

Figure 4-10 shows one approach to designing a windowed comparator. The wired-OR connection produces a high output (logic 1) when the input voltage is between V_{RB} and V_{RT} (where $V_{RT} > V_{RB}$).

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

5-Lead SC-70 (MCP6546, MCP6546U)

	De	vice	I-Temp Code	E-Temp Code	
MCP6546			ACNN	Note 2	
MCP6546U			BBNN	Note 2	
Note	1:	I-Temp parts prior to March 2005 are marked "ACN"			
	2:	SC-70-5 E-Temp parts not available at			

this release of the data sheet.

5-Lead SOT-23 (MCP6546, MCP6546R, MCP6546U)

I-Temp Code	E-Temp Code
ACNN	GWNN
AHNN	GXNN
_	AWNN
	I-Temp Code ACNN AHNN —

Note: Applies to 5-Lead SOT-23

Example: (I-temp)

8-Lead PDIP (300 mil) (MCP6546, MCP6547, MCP6548, MCP6549)

CP6549)	
MCP6546 I/P256 State 1148	0

8-Lead SOIC (150 mil) (MCP6546, MCP6547, MCP6548, MCP6549)

		MCP6 I/SN1 © S	547 148 256	OR	MCP6547 SN⊛31148 ○ SS 256
Legend:	XXX Y YY WW NNN (e3)	Customer-specific information Year code (last digit of calendar yea Year code (last 2 digits of calendar Week code (week of January 1 is w Alphanumeric traceability code Pb-free JEDEC designator for Matt	ar) year) /eek '01') e Tin (Sn)		

* This package is Pb-free. The Pb-free JEDEC designator (e3)

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

Examples:

amples:

Package Marking Information (Continued)

8-Lead MSOP (MCP6546, MCP6547, MCP6548)

14-Lead PDIP (300 mil) (MCP6549)

Legend: XX...X

Note:

Υ

YΥ

ww

NNN

(e3)

Example:

Example:

characters for customer-specific information.

Package Marking Information (Continued)

14-Lead SOIC (150 mil) (MCP6549)

Example:

14-Lead TSSOP (MCP6549)

Example:

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (©3)
Note:	In the ever be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available for customer-specific information.

5-Lead Plastic Small Outline Transistor (LT) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimensior	Dimension Limits		NOM	MAX	
Number of Pins	Ν	5			
Pitch	е	0.65 BSC			
Overall Height	Α	0.80	-	1.10	
Molded Package Thickness	A2	0.80	-	1.00	
Standoff	A1	0.00	-	0.10	
Overall Width	E	1.80	2.10	2.40	
Molded Package Width	E1	1.15	1.25	1.35	
Overall Length	D	1.80	2.00	2.25	
Foot Length	L	0.10	0.20	0.46	
Lead Thickness	С	0.08	_	0.26	
Lead Width	b	0.15	_	0.40	

Notes:

- 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-061B

5-Lead Plastic Small Outline Transistor (LT) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	Е	0.65 BSC		
Contact Pad Spacing	С		2.20	
Contact Pad Width	Х			0.45
Contact Pad Length	Y			0.95
Distance Between Pads	G	1.25		
Distance Between Pads	Gx	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2061A

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν	5			
Lead Pitch	е	0.95 BSC			
Outside Lead Pitch	e1	1.90 BSC			
Overall Height	А	0.90	-	1.45	
Molded Package Thickness	A2	0.89	-	1.30	
Standoff	A1	0.00	-	0.15	
Overall Width	E	2.20	-	3.20	
Molded Package Width	E1	1.30	-	1.80	
Overall Length	D	2.70	-	3.10	
Foot Length	L	0.10	-	0.60	
Footprint	L1	0.35	-	0.80	
Foot Angle	¢	0°	-	30°	
Lead Thickness	С	0.08	_	0.26	
Lead Width	b	0.20	_	0.51	

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.

2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-091B

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.95 BSC		
Contact Pad Spacing	С		2.80	
Contact Pad Width (X5)	X			0.60
Contact Pad Length (X5)	Y			1.10
Distance Between Pads	G	1.70		
Distance Between Pads	GX	0.35		
Overall Width	Z			3.90

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091A