imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MCP6N16

Zero-Drift Instrumentation Amplifier

Features:

- · High DC Precision:
 - V_{OS}: ±17 μV (maximum, G_{MIN} = 100)
 - TC₁: ±60 nV/°C (maximum, G_{MIN} = 100)
 - CMRR: 112 dB (minimum, G_{MIN} = 100, V_{DD} = 5.5V)
 - PSRR: 110 dB (minimum, G_{MIN} = 100, V_{DD} = 5.5V)
 - g_E: ±0.15% (maximum, G_{MIN} = 10, 100)
- · Flexible:
 - Minimum Gain (G_{MIN}) Options:
 1, 10 and 100 V/V
 - Rail-to-Rail Input and Output
 - Gain Set by Two External Resistors
- Bandwidth: 500 kHz (typical, Gain = G_{MIN} = 1, 10)
- · Power Supply:
 - V_{DD}: 1.8V to 5.5V
 - I_Q: 1.1 mA (typical)
 - Power Savings (Enable) Pin: EN
- Enhanced EMI Protection:
 - Electromagnetic Interference Rejection Ratio (EMIRR): 111 dB at 2.4 GHz
- Extended Temperature Range: -40°C to +125°C

Typical Applications:

- · High-Side Current Sensor
- · Wheatstone Bridge Sensors
- · Difference Amplifier with Level Shifting
- Power Control Loops

Design Aids:

- · SPICE Macro Model
- Microchip Advanced Part Selector (MAPS)
- · Application Notes

Description:

Microchip Technology Inc. offers the single Zero-Drift MCP6N16 instrumentation amplifier (INA) with Enable pin (EN) and three minimum gain options (G_{MIN}). The internal offset correction gives high DC precision: it has very low offset and offset drift, and negligible 1/f noise.

Two external resistors set the gain, minimizing gain error and drift over temperature. The reference voltage (V_{REF}) shifts the output voltage (V_{OUT}).

The MCP6N16 is designed for single-supply operation, with rail-to-rail input (no common mode crossover distortion) and output performance. The supply voltage range (1.8V to 5.5V) is low enough to support many portable applications. All devices are fully specified from -40°C to +125°C. Each part has EMI filters at the input pins, for good EMI rejection (EMIRR).

These parts have three minimum gain options (1, 10 and 100 V/V). This allows the user to optimize the input offset voltage and input noise for different applications.

Typical Application Circuit

Package Types

Minimum Gain Options

Table 1 shows key specifications that differentiate between the different minimum gain (G_{MIN}) options. See Section 1.0 "Electrical Characteristics", Section 6.0 "Packaging Information" and Product Identification System for further information on G_{MIN} .

Part No.	G _{MIN} (V/V) Nom.	V _{OS} (±µV) Max.	TC ₁ (±nV/°C) Max. T _A = -40 to +125°C	CMRR (dB) Min. V _{DD} = 5.5V	PSRR (dB) Min.	V _{DMH} (V) Min.	GBWP (MHz) Typ.	E _{ni} (μV _{P-P}) Typ. f = 0.1 to 10 Hz	e _{ni} (nV/√Hz) Typ. f < 500 Hz
MCP6N16-001	1	85	1800	89	91	2.7	0.50	19	900
MCP6N16-010	10	22	180	103	104	0.27	5.0	2.2	105
MCP6N16-100	100	17	60	112	110	0.027	35	0.93	45

TABLE 1: KEY DIFFERENTIATING SPECIFICATIONS

Note 1: G_{MIN} is the minimum stable gain (G_{DM}), for a given part option. In other words, $G_{DM} \ge G_{MIN}$.

Figures 1 to 3 show input offset voltage versus temperature for the three gain options (G_{MIN} = 1, 10, 100 V/V).

FIGURE 1: Input Offset Voltage vs. Temperature, with $G_{MIN} = 1$.

FIGURE 2: Input Offset Voltage vs. Temperature, with $G_{MIN} = 10$.

FIGURE 3: Input Offset Voltage vs. Temperature, with $G_{MIN} = 100$.

1.0 ELECTRICAL CHARACTERISTICS

1.1 Absolute Maximum Ratings †

V _{DD} – V _{SS}	
Current at Input Pins (Note 1)	±2 mA
Analog Inputs (V _{IP} and V _{IM}) (Note 1)	$V_{\rm SS}$ – 1.0V to $V_{\rm DD}$ + 1.0V
All Other Inputs and Outputs	$V_{\rm SS}$ – 0.3V to $V_{\rm DD}$ + 0.3V
Difference Input Voltage	
Output Short-Circuit Current	Continuous
Current at Output and Supply Pins	±30 mA
Storage Temperature	65°C to +150°C
Maximum Junction Temperature	+150°C
ESD protection on all pins (HBM, MM)	≥ 4 kV, 400V

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note 1: See Section 4.3.1.2 "Input Voltage Limits" and Section 4.3.1.3 "Input Current Limits".

1.2 Specifications

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated	$_{\rm L}$ = +25°C, V _{DD} = 1.8V to 5.5V, V _{SS} = GND, V _{CM} = V _{DD} /2, V _{DM} = 0V, V _{REF} = V _{DD} /2, V _L = V _{DD} /2, R _L = 10 k	Ω
to V_L , $G_{DM} = G_{MIN}$ and EN = V_{DD} ; see Figures 1-7 and	(Note 1).	

Parameters	Sym.	Min.	Тур.	Max.	Units	G _{MIN}	Conditions	
Input Offset								
Input Offset Voltage	V _{OS}	-85	—	+85	μV	1	T _A = +25°C	
		-22	_	+22		10		
		-17	_	+17		100		
Input Offset Voltage Drift –	TC ₁	-1800	—	+1800	nV/°C	1	T _A = -40°C to +125°C (Note 2)	
Linear Temp. Co.		-180	_	+180		10		
		-60	—	+60		100		
Input Offset Voltage Drift –	TC ₂	—	±560	—	pV/°C ²	1	T _A = -40°C to +125°C	
Quadratic Temp. Co.		—	±63	—		10		
		—	±69	—		100		
Input Offset Aging	ΔV_{OS}	—	±1.0	—	μV	1	408 hr Life Test at +150°C,	
		—	±0.8	—		10	measured at +25°C	
		—	±0.7	—		100		
Power Supply Rejection Ratio	PSRR	91	109	—	dB	1		
		104	122	—		10		
		110	128	—		100		
Output Offset								
Output Offset Voltage	V _{OSO}		0		μV	all		
Input Current and Impedance (Note 3)								
Input Bias Current	Ι _Β	-100	±2	+100	pА	all		
Across Temperature		—	20	—			T _A = +85°C	
Across Temperature		0	250	2000			T _A = +125°C	

Note 1: $V_{CM} = (V_{IP} + V_{IM})/2$, $V_{DM} = (V_{IP} - V_{IM})$ and $G_{DM} = 1 + R_F/R_G$.

2: For Design Guidance only; not tested.

3: These specifications apply to the V_{IP} , V_{IM} input pair (use V_{CM}) and to the V_{REF} , V_{FG} input pair (use V_{REF} instead).

4: This specification applies to the V $_{IP}$ V $_{IM}$, V $_{REF}$ and V $_{FG}$ pins individually.

5: Figures 2-52 and 2-53 show the V_{IVL} , V_{IVH} , V_{DML} and V_{DMH} variation over temperature.

						-	
Parameters	Sym.	Min.	Тур.	Max.	Units	G _{MIN}	Conditions
Input Offset Current	I _{OS}	-800	±300	+800	pА	all	
Across Temperature		—	±320	—			T _A = +85°C
Across Temperature		-1500	±350	+1500			T _A = +125°C
Common Mode Input Impedance	Z _{CM}	—	10 ¹³ 10	—	Ω pF		
Differential Input Impedance	Z _{DIFF}	_	10 ¹³ 4	_			
Input Common Mode Voltage (V _{CM} or V _I	REF) (Note 3)		· · ·				
Input Voltage Range (Note 4, Note 5)	V _{IVL}	—	$V_{SS} - 0.25$	V _{SS} – 0.15	V	all	
	V _{IVH}	V _{DD} + 0.15	V _{DD} + 0.30	_			
Common Mode Rejection Ratio	CMRR	80	98	—	dB	1	$V_{CM} = V_{IVL}$ to V_{IVH} , $V_{DD} = 1.8V$
		94	112	—		10	
		103	121	_		100	$V_{CM} = V_{IVL}$ to V_{IVH} , $V_{DD} = 5.5V$
		89	107	—		1	
		103	121	—		10	
		112	130	_		100	
Common Mode Rejection Ratio at V _{REF}	CMRR2	83	101	—	dB	1	V_{REF} = 0.2V to V_{DD} – 0.2V,
		98	116	—		10	$V_{DD} = 1.8V$
		102	120	—		100	
		94	112	—		1	V_{REF} = 0.2V to V_{DD} – 0.2V,
		109	127	—		10	V _{DD} = 5.5V
		115	133	_		100	1

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Note 1: $V_{CM} = (V_{IP} + V_{IM})/2$, $V_{DM} = (V_{IP} - V_{IM})$ and $\overline{G_{DM}} = 1 + R_F/R_G$.

2: For Design Guidance only; not tested.

3: These specifications apply to the V_{IP} , V_{IM} input pair (use V_{CM}) and to the V_{REF} , V_{FG} input pair (use V_{REF} instead).

4: This specification applies to the V_{IP} , V_{IM} , V_{REF} and V_{FG} pins individually.

5: Figures 2-52 and 2-53 show the V_{IVL} , V_{IVH} , V_{DML} and V_{DMH} variation over temperature.

TABLE 1-1:DC ELECTRICAL SPECIFICATIONS (CONTINUED)Electrical Characteristics:Unless otherwise indicated, $T_A = +25^{\circ}$ C, $V_{DD} = 1.8V$ to 5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$

to V_L , G_{DM} = G_{MIN} and EN = V_{DD} ; see Figu	r <mark>es 1-7</mark> and	1-8 (Note 1).						
Parameters	Sym.	Min.	Тур.	Max.	Units	G _{MIN}	Conditions	
Common Mode Nonlinearity (Note 6)	INL _{CM}	-550	_	+550	ppm	1	$V_{CM} = V_{IVL}$ to V_{IVH} , $V_{DD} = 1.8V$	
		-75	_	+75		10		
		-20	_	+20		100		
		-310	_	+310		1	$V_{CM} = V_{IVL}$ to V_{IVH} , $V_{DD} = 5.5V$	
		-35	—	+35		10		
		-10	_	+10		100		
Input Differential Voltage (V _{DM}) (Note 3)		·						
Differential Input Voltage Range (Note 5)	V _{DML}	—	-3.4/G _{MIN}	-2.7/G _{MIN}	V	all	$V_{DD} \ge 2.9V, V_{REF} = V_{DD}, V_{OUT}$ within ±0.2%	
	V _{DMH}	+2.7/G _{MIN}	+3.4/G _{MIN}	_	-		$V_{DD} \ge 2.9V$, $V_{REF} = 0V$, V_{OUT} within ±0.2%	
Differential Gain Error (Note 6)	9 _E	—	±0.03	_	%	1	V_{DD} = 1.8V, V_{REF} = $V_{DD}/2$,	
		—	±0.02	_	%	10, 100	$V_{DM} = \pm (0.7V)/G_{MIN}$	
		—	±0.03	_		1	$V_{DD} = 5.5V, V_{REF} = V_{DD}/2,$	
		—	±0.02	_		10, 100	$V_{DM} = \pm (2.55V)/G_{MIN}$	
		-0.25	±0.04	+0.25	%	1	V _{DD} = 5.5V, V _{REF} = 0.2V,	
		-0.15	±0.02	+0.15	%	10, 100	$V_{DM} = 0$ to (2.7V)/ G_{MIN}	
		-0.25	±0.04	+0.25	%	1	V _{DD} = 5.5V, V _{REF} = 5.3V,	
		-0.15	±0.02	+0.15	%	10, 100	$V_{DM} = 0$ to (-2.7V)/ G_{MIN}	

MCP6N16

Note 1: $V_{CM} = (V_{IP} + V_{IM})/2$, $V_{DM} = (V_{IP} - V_{IM})$ and $G_{DM} = 1 + R_F/R_G$.

2: For Design Guidance only; not tested.

3: These specifications apply to the V_{IP} , V_{IM} input pair (use V_{CM}) and to the V_{REF} , V_{FG} input pair (use V_{REF} instead).

4: This specification applies to the V $_{IP}$ V $_{IM}$, V $_{REF}$ and V $_{FG}$ pins individually.

5: Figures 2-52 and 2-53 show the V_{IVL} , V_{IVH} , V_{DML} and V_{DMH} variation over temperature.

TABLE 1-1: DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Parameters	Sym.	Min.	Тур.	Max.	Units	G _{MIN}	Conditions
Differential Gain Drift (Note 6)	Δg _E /ΔT _A	_	±3	—	ppm/°C	all	V_{DD} = 1.8V, V_{REF} = $V_{DD}/2$, V_{DM} = ±(0.7V)/ G_{MIN}
			±4	—			V_{DD} = 5.5V, V_{REF} = $V_{DD}/2$, V_{DM} = ±(2.55V)/G _{MIN}
		—	±4	—			V_{DD} = 5.5V, V_{REF} = 0.2V, V_{DM} = 0 to (2.7V)/ G_{MIN}
			±3	—			V_{DD} = 5.5V, V_{REF} = 5.3V, V_{DM} = 0 to (-2.7V)/G _{MIN}
Differential Nonlinearity (Note 6)	INL _{DM}		±300	—	ppm	all	V_{DD} = 1.8V, V_{REF} = $V_{DD}/2$, V_{DM} = ±(0.7V)/ G_{MIN}
		_	±150	—			V_{DD} = 5.5V, V_{REF} = $V_{DD}/2$, V_{DM} = ±(2.55V)/G _{MIN}
			±300	—			V_{DD} = 5.5V, V_{REF} = 0.2V, V_{DM} = 0 to (2.7V)/ G_{MIN}
		_	±300	—			V_{DD} = 5.5V, V_{REF} = 5.3V, V_{DM} = 0 to (-2.7V)/G _{MIN}
DC Open-Loop Gain	A _{OL}	84	102	—	dB	1	V _{DD} = 1.8V,
		100	118	—		10	V _{OUT} = 0.2V to 1.6V
		108	126			100]
		95	113	—		1	V _{DD} = 5.5V,
		111	129	—		10	V _{OUT} = 0.2V to 5.3V
		119	137	—		100]

Note 1: $V_{CM} = (V_{IP} + V_{IM})/2$, $V_{DM} = (V_{IP} - V_{IM})$ and $G_{DM} = 1 + R_F/R_G$.

2: For Design Guidance only; not tested.

3: These specifications apply to the V_{IP} , V_{IM} input pair (use V_{CM}) and to the V_{REF} , V_{FG} input pair (use V_{REF} instead).

4: This specification applies to the V_{IP} , V_{IM} , V_{REF} and V_{FG} pins individually.

5: Figures 2-52 and 2-53 show the V_{IVL} , V_{IVH} , V_{DML} and V_{DMH} variation over temperature.

TABLE 1-1:DC ELECTRICAL SPECIFICATIONS (CONTINUED)Electrical Characteristics:Unless otherwise indicated, $T_A = +25^{\circ}$ C, $V_{DD} = 1.8V$ to 5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REE} = V_{DD}/2$, $V_1 = V_{DD}/2$, $R_1 = 10 \text{ k}\Omega$

Parameters	Sym.	Min.	Тур.	Max.	Units	G _{MIN}	Conditions
Output							
Minimum Output Voltage Swing	V _{OL}	_	V _{SS} + 3	_	mV	all	
		_	V _{SS} + 6	_			
		_	V _{SS} + 60	V _{SS} + 250			
Maximum Output Voltage Swing	V _{OH}	_	V _{DD} – 3	_	mV		
		—	V _{DD} – 6	—			
		V _{DD} – 250	V _{DD} – 60	_			
Output Short-Circuit Current	I _{SC}	—	±10	_	mA		V _{DD} = 1.8V
		—	±35	_			V _{DD} = 5.5V
Power Supply							
Supply Voltage	V _{DD}	1.8	—	5.5	V	all	
Quiescent Current per Amplifier	Ι _Q	0.5	1.1	1.6	mA		I _O = 0
POR Trip Voltage	V _{PRL}	0.9	1.27	_	V		
	V _{PRH}	_	1.33	1.6	V		

Note 1: $V_{CM} = (V_{IP} + V_{IM})/2$, $V_{DM} = (V_{IP} - V_{IM})$ and $G_{DM} = 1 + R_F/R_G$.

2: For Design Guidance only; not tested.

3: These specifications apply to the V_{IP} , V_{IM} input pair (use V_{CM}) and to the V_{REF} , V_{FG} input pair (use V_{REF} instead).

4: This specification applies to the V_{IP}, V_{IM}, V_{REF} and V_FG pins individually.

5: Figures 2-52 and 2-53 show the V_{IVL} , V_{IVH} , V_{DML} and V_{DMH} variation over temperature.

TABLE 1-2: AC ELECTRICAL SPECIFICATIONS

Parameters	Sym.	Min.	Тур.	Max.	Units	G _{MIN}	Conditions
AC Response							
Gain-Bandwidth Product	GBWP	—	0.5	—	MHz	1	
		—	5	—		10	
		_	35	_		100	
Phase Margin	PM		70	—	0	all	
Open-Loop Output Impedance	R _{OL}	_	1.6	_	kΩ		
Power Supply Rejection Ratio	PSRR	—	80	—	dB	1	f = 1 kHz
			98	—		10	
		—	123	—		100	
Common Mode Rejection Ratio at V_{CM} and V_{REF}	CMRR, CMRR2		83	—	dB	1	f = 10 kHz
			80	—		10	
		—	140	—		100	
Step Response (see Section 4.1	I.4 "AC Performar	nce")					
Slew Rate	SR		Note 1		V/µs	all	
Start-Up Time	t _{STR}	—	2	—	ms	1	G_{DM} = 1000, V_{DD} power up to 0.1% V_{OUT} settling (Note 3, Note 4)
		_	0.3	_		10	
		_	0.2	_		100	
Overdrive Recovery, Input Common Mode	t _{IRC}	—	1	—	μs	all	$V_{IP} = V_{IM} = V_{IVH} + 0.5V$ to $V_{DD} - 1V$ (or $V_{IVL} - 0.5V$ to 1V), 90% of V_{OUT} change (I _B ≤ 2 mA) (Note 4)
Overdrive Recovery, Input Differential Mode	t _{IRD}	_	10	—			$ G_{MIN}V_{DM} = G_{MIN}V_{DMH} + 0.5V \text{ to } 0V \text{ (or } G_{MIN}V_{DML} - 0.5V \text{ to } 0V), \\ V_{REF} = 1V \text{ (or } V_{DD} - 1V), 90\% \text{ of } V_{OUT} \text{ change (Note 4)} $
Overdrive Recovery, Output	t _{OR}	—	180	-			G _{DM} V _{DM} = 1.5V to 0V (or -1.5V to 0V), V _{REF} = V _{DD} – 1V (or 1V), 90% of V _{OUT} change (Note 4)

Note 1: The slew rate is limited by the GBWP; the large signal step response is dominated by the small signal bandwidth.

2: These parameters were characterized using the circuit in Figure 1-8. In Figures 2-75 and 2-76, there is an IMD tone at DC, a residual tone at 100 Hz and other IMD tones and clock tones.

3: High gains behave differently; see Section 4.4.4 "Offset at Power-Up".

4: t_{STR}, t_{STL}, t_{IRC}, t_{IRD} and t_{OR} include some uncertainty due to clock edge timing.

TABLE 1-2: AC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = 1.8V$ to 5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, .,
$R_L = 10 \text{ k}\Omega$ to V_L , $C_L = 60 \text{ pF}$, $G_{DM} = G_{MIN}$ and $EN = V_{DD}$; see Figures 1-7 and 1-8.	

Noise Input Noise Voltage Density	e _{ni}						
Input Noise Voltage Density	e _{ni}						
		_	900	—	nV/√Hz	1	f = 500 Hz
		—	105	_		10	
		—	45	—		100	
Input Noise Voltage	E _{ni}	_	19		μV _{P-P}	1	f = 0.1 Hz to 10 Hz
		—	2.2			10	
		—	0.93	—		100	
		—	5.9	—		1	f = 0.01 Hz to 1 Hz
		—	0.69	—		10	
			0.30	—		100	
Input Current Noise Density	i _{ni}	_	7		fA/√Hz	all	f = 1 kHz
Output Noise Voltage Density	e _{no}		0		nV/√Hz		
Output Noise Voltage	E _{no}		0		μV_{P-P}		
Amplifier Distortion (Note 2)							
Intermodulation Distortion (AC)	IMD		5	—	μV _{PK}	all	V _{CM} tone = 100 mV _{PK} at 100 Hz
EMI Protection							
EMI Rejection Ratio	EMIRR	—	103	—	dB	all	V _{IN} = 0.1 V _{PK} , f = 400 MHz
		—	106	—			V _{IN} = 0.1 V _{PK} , f = 900 MHz
		—	106	—			V _{IN} = 0.1 V _{PK} , f = 1800 MHz
			111				V _{IN} = 0.1 V _{PK} , f = 2400 MHz

Note 1: The slew rate is limited by the GBWP; the large signal step response is dominated by the small signal bandwidth.

2: These parameters were characterized using the circuit in Figure 1-8. In Figures 2-75 and 2-76, there is an IMD tone at DC, a residual tone at 100 Hz and other IMD tones and clock tones.

3: High gains behave differently; see Section 4.4.4 "Offset at Power-Up".

4: t_{STR} , t_{STL} , t_{IRC} , t_{IRD} and t_{OR} include some uncertainty due to clock edge timing.

TABLE 1-3: **DIGITAL ELECTRICAL SPECIFICATIONS Electrical Characteristics:** Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = 1.8V$ to 5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $V_L = V_{DD}/2$, $V_{DD} = 1.8V$ to 5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_L =$ R_L = 10 k Ω to $V_L,\,C_L$ = 60 pF, G_{DM} = G_{MIN} and EN = $V_{DD};$ see Figures 1-7 and 1-8. Units G_{MIN} Conditions Sym. Min. Тур. Max. Parameters **EN Low Specifications** EN Logic Threshold, Low $0.2V_{\text{DD}}$ V_{IL} V all —

EN Input Current, Low	I _{ENL}	—	-10	—	pА		EN = 0V
GND Current	I _{SS}	-8	-2	_	μA		EN = 0V, V _{DD} = 5.5V
Amplifier Output Leakage	I _{O(LEAK)}	_	-1	_	nA		EN = 0V
EN High Specifications							
EN Logic Threshold, High	VIH	0.8V _{DD}	_	_	V	all	
EN Input Current, High	I _{ENH}		10		pА		$EN = V_{DD}$
EN Dynamic Specifications							
EN Input Hysteresis	V _{HYST}	—	0.16V _{DD}	_	V	all	
EN Input Resistance	R _{PD}	—	10 ¹³	_	Ω		
EN Low to Amplifier Output High Z Turn-Off Time	t _{OFF}	—	0.1	2	μs		EN = $0.2V_{DD}$ to V_{OUT} = $0.1(V_{DD}/2)$, V_L = $0V$
EN High to Amplifier Output On Time	t _{ON}	—	12	100			V_{DD} = 1.8V, EN = 0.8V _{DD} to V_{OUT} = 0.9(V_{DD} /2), V_{L} = 0V
			30	100			V_{DD} = 5.5V, EN = 0.8V _{DD} to V_{OUT} = 0.9(V_{DD} /2), V_{L} = 0V
EN Low to EN High hold time	t _{ENLH}	50	_	_			Minimum time before releasing EN (Note 1)
EN High to EN Low setup time	t _{ENHL}	50	_	_			Minimum time before exerting EN (Note 1)
POR Dynamic Specifications							
$V_{DD} \downarrow$ to Output Off	t _{PHL}		10		μs	all	V_L = 0V, V_{DD} = 1.8V to V_{PRL} – 0.1V step, 90% of V_{OUT} change
$V_{DD} \uparrow$ to Output On	t _{PLH}		100				$V_L = 0V, V_{DD} = 0V$ to $V_{PRH} + 0.1V$ step, 90% of V_{OUT} change

Note 1: For design guidance only; not tested.

TABLE 1-4: TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, all limits are specified for: V _{DD} = 1.8V to 5.5V, V _{SS} = GND.						
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Specified Temperature Range	T _A	-40	_	+125	°C	
Operating Temperature Range	T _A	-40	—	+125	-	Note 1
Storage Temperature Range	T _A	-65	—	+150	-	
Thermal Package Resistances						·
Thermal Resistance, 8L-DFN (3×3)	θ _{JA}	_	57	_	°C/W	
Thermal Resistance, 8L-MSOP	θ _{JA}		211	_		

Note 1: Operation must not cause T_J to exceed the Absolute Maximum Junction Temperature specification (+150°C).

1.3 Timing Diagrams

FIGURE 1-1: Amplifier Start-Up Timing Diagram.

FIGURE 1-3: Differential Mode Input Overdrive Recovery Timing Diagram.

FIGURE 1-4: Output Overdrive Recovery Timing Diagram.

FIGURE 1-6: EN Timing Diagram.

1.4 DC Test Circuits

1.4.1 INPUT OFFSET TEST CIRCUIT

Figure 1-7 is a simple circuit that can test the INA's input offset errors and input voltage range (V_E , V_{IVL} and V_{IVH} ; see Section 1.5.1 "Input Offset Related Errors" and Section 1.5.2 "Input Offset Common Mode Nonlinearity"). U₂ is part of a control loop that forces V_{OUT} to equal V_{CNT} ; U₁ can be set to any bias point.

FIGURE 1-7: Simple Test Circuit for Common Mode (Input Offset).

When MCP6N16 is in its normal range of operation, the DC output voltages are (where V_E is the sum of input offset errors and g_E is the gain error):

EQUATION 1-1:

$G_{DM} = l + R_F / R_G$	
$V_{OUT} = V_{CNT}$	
$V_M = V_{REF} + G_{DM}(1 + g_E)V_E$	

Table 1-5 shows the resulting behavior for different $G_{\mbox{\scriptsize MIN}}$ options.

TABLE 1-5:	RESULTS
------------	---------

G _{MIN} (V/V) Nom.	R _F (kΩ) Typ.	G _{DM} (kV/V) Typ.	G _{DM} V _{OS} (±mV) Max.	BW (kHz) Typ. at V _{OUT}	BW (Hz) Typ. at V _M
1	100	1.00	85	0.50	0.50
10	402	4.02	88	1.2	
100			68	8.7	

1.4.2 DIFFERENTIAL GAIN TEST CIRCUIT

Figure 1-8 is a simple circuit that can test the INA's differential gain error, nonlinearity and input voltage range (g_E, INL_{DM}, V_{DML} and V_{DMH}; see Section 1.5.3 "Differential Gain Error and Nonlinearity"). R_F and R_G are 0.01% for accurate gain error measurements.

The output voltages are (where V_E is the sum of input offset errors and g_E is the gain error):

EQUATION 1-2:

$$\begin{split} G_{DM} &= 1 + R_F / R_G \\ V_{OUT} &= V_{REF} + G_{DM} (1 + g_E) (V_{DM} + V_E) \\ V_M &= V_{REF} + G_{DM} (1 + g_E) (V_{DM} + V_E) \end{split}$$

FIGURE 1-8: Simple Test Circuit for Differential Mode.

For different values of V_{REF}, V_{DM} sweeps over different ranges to keep V_{REF}, V_{FG} and V_{OUT} within their ranges.

Table 1-6 shows the recommended R_F and R_G ; they produce a 10 k Ω load. V_L can usually be left open.

TABLE 1-6: SELECTING R_F AND R_G

G _{MIN} (V/V) Nom.	R _F (kΩ) Nom.	R _G (kΩ) Nom.	G _{DM} (V/V) Nom.	
1	0	Open	1.0000	
10	10.0 90.9	1.00	10.009	
100	10.0 1000	100	100.01	

1.4.3 DYNAMIC TESTING OF INPUT BEHAVIOR

The circuit in Figure 1-8 can test the input's dynamic behavior (i.e., IMD, t_{STR} , t_{STL} , t_{IRC} , t_{IRD} and t_{OR}); measure the output at V_{OUT}, instead of at V_M.

1.5 **Explanation of DC Error Specifications**

1.5.1 INPUT OFFSET RELATED ERRORS

The input offset error (V_F) is extracted from input offset measurements (see Section 1.4.1 "Input Offset Test Circuit"), based on Equation 1-1:

EQUATION 1-3:

$$V_E = (V_M - V_{REF}) / (G_{DM}(1 + g_E))$$

V_F has several terms, which assume a linear response to changes in $V_{DD},\,V_{SS},\,V_{CM},\,V_{OUT}$ and T_A (all of which are in their specified ranges):

EQUATION 1-4:

$$V_{E} = V_{OS} + \frac{\Delta V_{DD} - \Delta V_{SS}}{PSRR} + \frac{\Delta V_{CM}}{CMRR} + \frac{\Delta V_{REF}}{CMRR2} + \frac{\Delta V_{OUT}}{A_{OL}} + \Delta T_{A} \cdot TC_{I}$$
Where:

$$PSRR, CMRR, CMRR2 \text{ and } A_{OL} \text{ are in}$$

units of V/V

 ΔT_A is in units of °C

TC₁ is in units of V/°C

 $V_{DM} = 0$

Equation 1-2 shows how V_E affects V_{OUT}.

1.5.2 INPUT OFFSET COMMON MODE NONLINEARITY

The input offset error (V_E) changes nonlinearly with $V_{\text{CM}}.$ Figure 1-9 shows V_{E} vs. $V_{\text{CM}},$ as well as a linear fit line (V_E $_{\mbox{LIN}}$) based on V_OS and CMRR. The INA is in standard conditions ($\Delta V_{OUT} = 0$, $V_{DM} = 0$, etc.). V_{CM} is swept from V_{IVL} to V_{IVH} . The test circuit is in Section 1.4.1 "Input Offset Test Circuit" and V_E is calculated using Equation 1-3.

FIGURE 1-9: Input Offset Error vs. Common Mode Input Voltage.

Based on the measured V_{E} data, we obtain the following linear fit:

EQUATION 1-5:

$$V_{E_LIN} = V_{OS} + (V_{CM} - V_{DD}/2)/CMRR$$

Where:
$$V_{OS} = V_2$$
$$1/CMRR = (V_3 - V_1)/(V_{IVH} - V_{IVL})$$

The remaining error (ΔV_E) is described by the Common Mode Nonlinearity spec:

EQUATION 1-6:

$$\begin{split} INL_{CMH} &= max(\varDelta V_E) / (V_{IVH} - V_{IVL}) \\ INL_{CML} &= min(\varDelta V_E) / (V_{IVH} - V_{IVL}) \\ INL_{CM} &= INL_{CMH}, \quad |INL_{CMH}| \ge |INL_{CML}| \\ &= INL_{CML}, \quad otherwise \end{split}$$

 Where:
$$\varDelta V_E = V_E - V_{E_LIN}$$

The same common mode behavior applies to V_F when V_{REF} is swept, instead of V_{CM} , since both input stages are designed the same:

EQUATION 1-7:

1.5.3 DIFFERENTIAL GAIN ERROR AND NONLINEARITY

The differential errors are extracted from differential gain measurements (see Section 1.4.2 "Differential Gain Test Circuit"), based on Equation 1-2. These errors are the differential gain error (g_E) and the input offset error (V_E , which changes nonlinearly with V_{DM}):

EQUATION 1-8:

$$\begin{split} G_{DM} &= l + R_F / R_G \\ V_M &= G_{DM} (l + g_E) (V_{DM} + V_E) \end{split}$$

These errors are adjusted for the expected output, then referred back to the input, giving the differential input error (V_{ED}) as a function of V_{DM} :

EQUATION 1-9:

$$V_{ED} = V_M / G_{DM} - V_{DM}$$

Figure 1-10 shows V_{ED} vs. V_{DM}, as well as a linear fit line (V_{ED_LIN}) based on V_{ED} and g_E. The INA is in standard conditions (ΔV_{OUT} = 0, etc.). V_{DM} is swept from V_{DML} to V_{DMH}.

FIGURE 1-10: Differential Input Error vs. Differential Input Voltage.

Based on the measured V_{ED} data, we obtain the following linear fit:

EQUATION 1-10:

$$\begin{split} V_{ED_LIN} &= (1+g_E)V_E + g_E V_{DM} \\ \text{Where:} \\ g_E &= (V_3 - V_1) / (V_{DMH} - V_{DML}) - 1 \\ V_E &= V_2 / (1+g_E) \end{split}$$

Note that the V_E value measured here is not as accurate as the one obtained in Section 1.5.1 "Input Offset Related Errors".

The remaining error (ΔV_{ED}) is described by the Differential Nonlinearity spec:

EQUATION 1-11:

$$\begin{split} INL_{DMH} &= max(\Delta V_{ED})/(V_{DMH} - V_{DML})\\ INL_{DML} &= min(\Delta V_{ED})/(V_{DMH} - V_{DML})\\ INL_{DM} &= INL_{DMH}, \quad |INL_{DMH}| \ge |INL_{DML}|\\ &= INL_{DML}, \quad \text{otherwise} \\ \end{split}$$

$$\end{split}$$

$$\cr \textbf{Where:} \\ \Delta V_{ED} &= V_{ED} - V_{ED \ LIN} \end{split}$$

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: G_{MIN} = 1.

 $G_{MIN} = 10.$

 $G_{MIN} = 100.$

FIGURE 2-4: Input Offset Voltage Drift, with $G_{MIN} = 1$.

FIGURE 2-5: Input Offset Voltage Drift, with $G_{MIN} = 10$.

FIGURE 2-6: Input Offset Voltage Drift, with $G_{MIN} = 100$.

FIGURE 2-8: Quadratic Input Offset Voltage Drift, with $G_{MIN} = 10$.

FIGURE 2-9: Quadratic Input Offset Voltage Drift, with $G_{MIN} = 100$.

FIGURE 2-10: Input Offset Voltage vs. Output Voltage, with $G_{MIN} = 1$.

FIGURE 2-11:Input Offset Voltage vs.Output Voltage, with $G_{MIN} = 10.$

FIGURE 2-12: Input Offset Voltage vs. Output Voltage, with $G_{MIN} = 100$.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = 1.8V$ to 5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L , $C_L = 60 \text{ pF}$, $G_{DM} = G_{MIN}$ and $EN = V_{DD}$; see Figures 1-7 and 1-8.

FIGURE 2-14: Input Offset Voltage vs. Power Supply Voltage, with $V_{CM} = 0V$ and $G_{MIN} = 10$.

FIGURE 2-15: Input Offset Voltage vs. Power Supply Voltage, with $V_{CM} = 0V$ and $G_{MIN} = 100$.

FIGURE 2-16: Input Offset Voltage vs. Power Supply Voltage, with $V_{CM} = V_{DD}$ and $G_{MIN} = 1$.

FIGURE 2-17: Input Offset Voltage vs. Power Supply Voltage, with $V_{CM} = V_{DD}$ and $G_{MIN} = 10$.

FIGURE 2-18: Input Offset Voltage vs. Power Supply Voltage, with $V_{CM} = V_{DD}$ and $G_{MIN} = 100$.

FIGURE 2-19: Input Offset Voltage vs. Common Mode Voltage, with $V_{DD} = 1.8V$ and $G_{MIN} = 1$.

FIGURE 2-20: Input Offset Voltage vs. Common Mode Voltage, with $V_{DD} = 1.8V$ and $G_{MIN} = 10$.

FIGURE 2-21: Input Offset Voltage vs. Common Mode Voltage, with $V_{DD} = 1.8V$ and $G_{MIN} = 100$.

FIGURE 2-22: Input Offset Voltage vs. Common Mode Voltage, with $V_{DD} = 5.5V$ and $G_{MIN} = 1$.

FIGURE 2-23: Input Offset Voltage vs. Common Mode Voltage, with $V_{DD} = 5.5V$ and $G_{MIN} = 10$.

FIGURE 2-24: Input Offset Voltage vs. Common Mode Voltage, with $V_{DD} = 5.5V$ and $G_{MIN} = 100$.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = 1.8V$ to 5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L , $C_L = 60 \text{ pF}$, $G_{DM} = G_{MIN}$ and $EN = V_{DD}$; see Figures 1-7 and 1-8.

FIGURE 2-26: Input Offset Voltage vs. Reference Voltage, with $G_{MIN} = 10$.

FIGURE 2-27: Input Offset Voltage v Reference Voltage, with $G_{MIN} = 100$.

MCP6N16

FIGURE 2-32: CMRR2, with $G_{MIN} = 10$.

FIGURE 2-35: PSRR, with $G_{MIN} = 10$.

FIGURE 2-36: PSRR, with $G_{MIN} = 100$.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$, $V_{DD} = 1.8V$ to 5.5V, $V_{SS} = GND$, $V_{CM} = V_{DD}/2$, $V_{DM} = 0V$, $V_{REF} = V_{DD}/2$, $V_L = V_{DD}/2$, $R_L = 10 \text{ k}\Omega$ to V_L , $C_L = 60 \text{ pF}$, $G_{DM} = G_{MIN}$ and $EN = V_{DD}$; see Figures 1-7 and 1-8.

FIGURE 2-38: DC Open-Loop Gain, with $G_{MIN} = 10$.

 $G_{MIN} = 100.$

FIGURE 2-40: CMRR vs. Ambier Temperature.

FIGURE 2-41:CMRR2 vs. AmbientTemperature.

Temperature.

FIGURE 2-43: DC Open-Loop Gain vs. Ambient Temperature.

FIGURE 2-44: Input Bias and Offset Currents vs. Common Mode Input Voltage, with $T_A = +85^{\circ}C$.

FIGURE 2-45: Input Bias and Offset Currents vs. Common Mode Input Voltage, with $T_A = +125^{\circ}C$.

FIGURE 2-46: Input Bias and Offset Currents vs. Ambient Temperature, with $V_{DD} = 5.5V.$

FIGURE 2-47: Input Bias Current Magnitude vs. Input Voltage (below V_{SS}).

FIGURE 2-48: Gain Error vs. Ambient Temperature.

MCP6N16

FIGURE 2-50: Gain Error, with $G_{MIN} = 10$.

FIGURE 2-51: Gain Error, with $G_{MIN} = 100$.