imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MCP9800 Thermal Sensor PICtail[™] Demo Board User's Guide

© 2006 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Table of Contents

Preface	1
Chapter 1. Product Overview	5
1.1 Introduction	5
1.2 What is the MCP9800 Thermal Sensor PICtail™ Demo Board?	5
1.3 What the MCP9800 Thermal Sensor PICtail™ Demo Board Kit includes	5
Chapter 2. Installation and Operation	7
2.1 Introduction	7
2.2 Features	7
2.3 Getting Started	7
2.4 Functional Description10	C
Appendix A. Schematic and Layouts1؛	5
A.1 Introduction	5
A.2 Board Schematic	3
A.3 Board - Top Layer1	7
A.4 Board - Silk Screen Layer	3
A.5 Board - Bottom Layer	9
Appendix B. Bill Of Materials (BOM)21	1
Worldwide Sales and Service22	2

NOTES:

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXA", where "XXXXX" is the document number and "A" is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB[®] IDE on-line help. Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the MCP9800 Thermal Sensor PICtail[™] Demo Board. Items discussed in this chapter include:

- Document Layout
- Conventions Used in this Guide
- Recommended Reading
- The Microchip Web Site
- Customer Support
- Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MCP9800 Thermal Sensor PICtail[™] Demo Board. The manual layout is as follows:

- Chapter 1. "Product Overview" Important information about the MCP9800 Thermal Sensor PICtail™ Demo Board.
- Chapter 2. "Installation and Operation" Includes a detailed description of each function of the demo board and instructions on how to begin using the board.
- Appendix A. "Schematic and Layouts" Shows the schematic and layout diagrams for the MCP9800 Thermal Sensor PICtail™ Demo Board.
- Appendix B. "Bill Of Materials (BOM)" Lists the parts used to build the MCP9800 Thermal Sensor PICtail™ Demo Board.

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description	Represents	Examples	
Arial font:		•	
Italic characters	Referenced books	MPLAB [®] IDE User's Guide	
	Emphasized text	is the only compiler	
Initial caps	A window	the Output window	
	A dialog	the Settings dialog	
	A menu selection	select Enable Programmer	
Quotes	A field name in a window or dialog	"Save project before build"	
Underlined, italic text with right angle bracket	A menu path	<u>File>Save</u>	
Bold characters	A dialog button	Click OK	
	A tab	Click the Power tab	
N'Rnnnn	A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.	4'b0010, 2'hF1	
Text in angle brackets < >	A key on the keyboard	Press <enter>, <f1></f1></enter>	
Courier New font:	·	•	
Plain Courier New	Sample source code	#define START	
	Filenames	autoexec.bat	
	File paths	c:\mcc18\h	
	Keywords	_asm, _endasm, static	
	Command-line options	-Opa+, -Opa-	
	Bit values	0, 1	
	Constants	OxFF, 'A'	
Italic Courier New	A variable argument	<i>file.o</i> , where <i>file</i> can be any valid filename	
Square brackets []	Optional arguments	<pre>mcc18 [options] file [options]</pre>	
Curly brackets and pipe character: { }	Choice of mutually exclusive arguments; an OR selection	errorlevel {0 1}	
Ellipses	Replaces repeated text	<pre>var_name [, var_name]</pre>	
	Represents code supplied by user	<pre>void main (void) { }</pre>	

RECOMMENDED READING

The following Microchip documents are available and recommended as supplemental reference resources.

MCP9800 Data Sheet, "2-Wire High-Accuracy Temperature Sensor" (DS21909) This data sheet provides detailed information regarding the MCP9800 device.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- · Development Systems Information Line

Customers should contact their distributor, representative or field application engineer for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY

Revision B (May 2006)

· Updated Bill of Materials (BOM) to show RoHS-compliant part numbers

Revision A (January 2005)

• Initial Release of this Document.

NOTES:

Chapter 1. Product Overview

1.1 INTRODUCTION

This chapter provides an overview of the MCP9800 Thermal Sensor PICtail[™] Demo Board and covers the following topics:

- What is the MCP9800 Thermal Sensor PICtail[™] Demo Board?
- What the MCP9800 Thermal Sensor PICtail™ Demo Board Kit includes

1.2 WHAT IS THE MCP9800 THERMAL SENSOR PICTAIL[™] DEMO BOARD?

The MCP9800 Thermal Sensor PICtailTM Demo Board demonstrates how to interface the MCP9800 to a PICmicro[®] microcontroller using the PICkitTM 1 Flash Starter Kit as a platform. A PIC16F684 14-pin, Flash-based, 8-bit CMOS microcontroller device is included with the demo board and can be used with the PICkit 1 Flash Starter Kit. Also included is firmware that provides the I²CTM interface and temperature conversion routines to communicate with the MCP9800 and convert the serial data to temperature.

The MCP9800 Thermal Sensor PICtail[™] Demo Board can also be used as a "stand-alone" module to quickly add thermal-sensing capability to any existing application. This basic sensor functionality is implemented on a small Printed Circuit Board (PCB) and an interface via a standard 100 mil header.

1.3 WHAT THE MCP9800 THERMAL SENSOR PICTAIL[™] DEMO BOARD KIT INCLUDES

This MCP9800 Thermal Sensor PICtail™ Demo Board Kit includes:

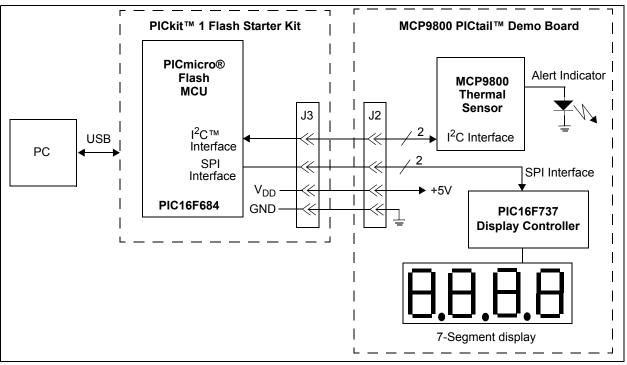
- The MCP9800 Thermal Sensor PICtail™ Demo Board
- MCP9800 Thermal Sensor PICtail™ Demo Board User's Guide (DS51528)
- MCP9800 Data Sheet, "2-Wire High-Accuracy Temperature Sensor" (DS21909)
- PIC16F684 14-pin, Flash-based, 8-bit, CMOS Microcontroller
- PIC16F684 Firmware

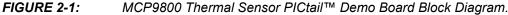
NOTES:

Chapter 2. Installation and Operation

2.1 INTRODUCTION

The MCP9800 Thermal Sensor PICtail[™] Demo Board demonstrates how to interface the MCP9800 to a microcontroller for use by the system designer as an example of how to integrate a digital temperature sensor into a system. In addition, the designer can serially transmit the temperature data to the on board, 7-segment LED display to show the temperature.


2.2 FEATURES


The MCP9800 Thermal Sensor PICtail™ Demo Board has the following features:

- Small PCB layout
- Standard 100 mil 14-pin header (J2) for easy interface to the PICkit 1 Flash Starter Kit or custom application
- · 7-segment LED display to display temperature in °C or °F
- Temperature alert-indicating LED

2.3 GETTING STARTED

This section describes how to quickly configure the MCP9800 Thermal Sensor PICtail[™] Demo Board and PICkit 1 Flash Starter Kit. A block diagram of the configuration is shown in Figure 2-1.

2.3.1 Hardware Setup

- Connect the J2 header of the MCP9800 Thermal Sensor PICtail Demo Board to the J3 connector on the PICkit 1 Flash Starter Kit. Refer to Figure 2-2 for proper orientation of the MCP9800 Thermal Sensor PICtail[™] Demo Board and Figure 2-3 for a simplified board schematic.
- 2. Insert the PIC16F684 into the evaluation socket of the PICkit 1 Flash Starter Kit.
- 3. Connect the PICkit 1 Flash Starter Kit USB cable from the USB port of the PC to the USB port (J1) on the PICkit 1 Flash Starter Kit. +5V of power is supplied to the PICkit 1 Flash Starter Kit via the USB cable. The green power LED and the red busy LED will turn on, indicating that power is being supplied to the board.

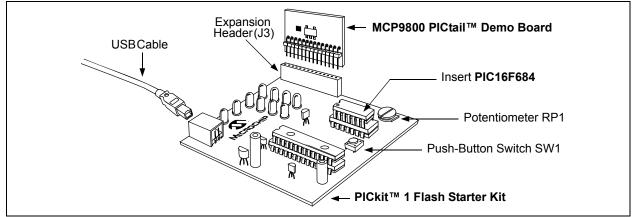
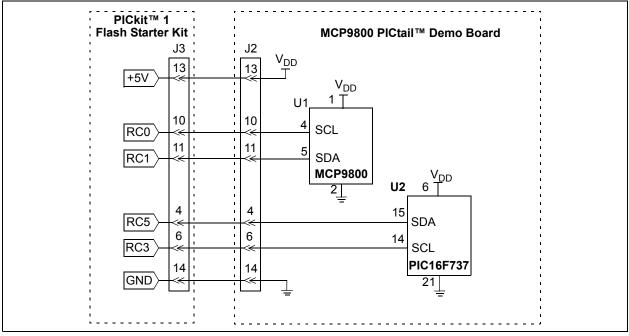



FIGURE 2-2: MCP9800 Thermal Sensor PICtail[™] Demo Board and PICkit[™]1 Flash Starter Kit.

Simplified MCP9800 Thermal Sensor PICtail™ Demo Board Schematic.

2.3.2 Programming the PIC16F684

- 1. Download and install the PICkit 1 Flash Starter Kit software onto your PC.
- 2. Copy the 00031R1-1.HEX file (supplied on the CD that came with this kit) onto your PC.
- 3. When the PICkit 1 Flash Starter Kit is started, the main window will be displayed on the PC, as indicated in Figure 2-4.

Program Memory 0000 0000 28DB 3FFF 3FFF 0000 0E03 1283 0001 0008 0804 0042 0804 0083 100B 207E 03A5 1903 0010 1429 0822 0084 0823 0084 0E21 0083 0EA0 0018 0E20 0009 138B 1683 23FF 0090 1283 1683 0020 303F 0085 3036 0087 1283 1519 1499 1419 0028 1683 1399 1283 139F 131F 1683 131F 129F 0030 161F 1391 1311 1291 111 1191 1110 1091 0038 1411 1283 1000 1283 1683 138C 130C 1283 0048 1701 1281 1201 1181 1101 1481 1001 1283 0050 1683 3000 009B 1283 138C 138C 138C 008	File Programme				
0008 080Å 00Å2 080Å 00Å3 110B 207E 03Å5 1903 0010 1429 0822 008Å 0823 0084 0E21 0083 0EA0 0018 0E20 0009 138B 1683 23FF 0090 1283 1683 0020 303F 0085 3036 0087 1283 1519 1499 1419 0028 1683 1399 1283 139F 131F 1683 131F 129F 0030 161F 1391 1311 1291 1211 1191 1110 1190 129F 0030 161F 1391 1311 1291 1211 1191 1110 1190 1290 0040 1210 1310 1683 3000 0095 1283 1683 1781 0048 1701 1281 1201 1181 1011 1481 1001 1283 0050 1683 3000 0096 1283 1683 138E 0008 0088 008		,		1000 0014	_
0018 0E20 0009 138B 1683 23FF 0090 1283 1683 0020 303F 0085 3036 0087 1283 1519 1499 1419 0028 1683 1399 1283 139F 131F 1683 131F 129F 0030 161F 1391 1311 1291 1111 1191 1111 1091 0038 1411 1283 101F 1010 1090 1110 1190 1290 0040 1210 1310 1683 3000 0095 1283 1683 1781 0048 1701 1281 1201 1181 1101 1481 1001 1283 0050 1683 3000 0096 1283 1683 138C 130C 118C 0058 100C 1283 1681 1208 138E 130C 118C 0058 100C 1283 1681 1208 138C 130E 188 110C I 0060 1683 <td></td> <td></td> <td></td> <td></td> <td>4</td>					4
0020 303F 0085 3036 0087 1283 1519 1499 1419 0028 1683 1399 1283 139F 131F 1683 131F 129F 0030 161F 1391 1311 1291 1211 1191 1111 1091 0038 161F 1391 1311 1291 1211 1191 1111 1091 0038 161F 1391 1311 1291 1211 1191 1111 1091 0038 1411 1283 101F 1010 1090 1100 1290 0040 1210 1310 1683 3000 0095 1283 1683 130C 118C 0048 100C 1283 1683 130E 138C 130C 118C 0050 1683 3000 0096 1283 1683 138E 108E 151C 0058 100C 1283 1681 1282 0008 1683 151C 0068 3055 009D 30AA					
0030 161F 1391 1311 1291 1211 1191 1111 1091 0038 1411 1283 101F 1010 1090 1110 1190 1290 0040 1210 1310 1683 3000 0095 1283 1683 1781 0048 1701 1281 1201 1181 1101 1481 1001 1283 0050 1683 3000 0096 1283 1683 130C 118C 0058 100C 1283 168B 120B 118B 130B 138B 008 0060 1683 009B 141C 081A 1283 0008 1683 151C 0068 3055 009D 30AA 009D 149C 189C 286D 111C ▼ EEDATA Memory 00 FF FF <td></td> <td></td> <td></td> <td></td> <td></td>					
0038 1411 1283 101F 1010 1090 1110 1190 1290 0040 1210 1310 1683 3000 0095 1283 1683 1781 0048 1701 1281 1201 1181 1101 1481 1001 1283 0050 1683 3000 0096 1283 1683 138C 130C 118C 0058 100C 1283 1688 120B 118B 130D 138B 0008 0058 100C 1283 168B 120B 118B 130D 138B 0008 0058 100C 1283 168B 120B 148C 130C 118C 0058 100C 1283 168B 120B 149C 189C 286D 111C ▼ EEDATA Memory 00 FF FF <td></td> <td></td> <td></td> <td></td> <td></td>					
0048 1701 1281 1201 1181 1101 1481 1001 1283 0050 1683 3000 0096 1283 1683 138C 130C 118C 0058 100C 1283 168B 120B 118B 130B 138B 0008 0060 1683 009B 141C 081A 1283 008 1683 151C 0068 3055 009D 30AA 009D 149C 189C 286D 111C ▼ EEDATA Memory 00 FF FF <td>0038 141:</td> <td>. 1283 101F</td> <td>1010 1090 1110</td> <td>1190 1290</td> <td></td>	0038 141:	. 1283 101F	1010 1090 1110	1190 1290	
0050 1683 3000 0096 1283 1683 138C 130C 118C 0058 100C 1283 168B 120B 118B 130B 138D 008 0060 1683 009B 141C 081A 1283 0008 1683 151C 0068 3055 009D 30AA 009D 149C 189C 286D 111C ▼ EEDATA Memory 00 FF FF <td></td> <td></td> <td></td> <td></td> <td></td>					
0060 1683 009B 141C 081A 1283 0008 1683 151C 0068 3055 009D 30AA 009D 149C 189C 286D 111C EEDATA Memory 00 FF	0050 1683	3000 0096	1283 1683 138C	130C 118C	
EEDATA Memory 00 FF					
00 FF FF <t< td=""><td>0068 3059</td><td>5 009D 30AA</td><td>009D 149C 189C</td><td>286D 111C</td><td>-</td></t<>	0068 3059	5 009D 30AA	009D 149C 189C	286D 111C	-
00 FF FF <t< td=""><td>EEDATA Mem</td><td>ory</td><td>- B</td><td>oard Controls</td><td></td></t<>	EEDATA Mem	ory	- B	oard Controls	
10 FF FF <t< td=""><td></td><td></td><td>FFFFF 🔺</td><td></td><td></td></t<>			FFFFF 🔺		
20 FF FF <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
28 FF FF <t< td=""><td></td><td></td><td></td><td>📃 2.5 kHz Osc</td><td></td></t<>				📃 2.5 kHz Osc	
Read Device ₩rite Device ¥erify Erase Quit Device Configuration Device PIC16F676 Configuration Word 0x3FC4 User IDs 0x7F7F7F7F OSCCAL 0x34D8	28 FF FF	FF FF FF FI	F FF FF		
Device Configuration Device PIC16F676 User IDs 0x7F7F7F7F OSCCAL 0x34D8	30 FF FF	FF FF FF FI	FFFFF		
Device Configuration Device PIC16F676 User IDs 0x7F7F7F7F OSCCAL 0x34D8	Deed Devie		uine Mariter	5 [. 1
Device PIC16F676 Configuration Word 0x3FC4 User IDs 0x7F7F7F7F OSCCAL 0x34D8	Read Devic				
User IDs 0x7F7F7F7F OSCCAL 0x34D8		-		0.0504	
Firmware Version: 1.0.0			- '		

FIGURE 2-4: PICkit[™] 1 Flash Starter Kit GUI Window on the PC.

- Switch off the device power by unchecking the Device Power box under Board Controls in the PICkit 1 Flash Starter Kit window (Figure 2-4). The busy LED on the PICkit 1 Flash Starter Kit will switch off when the device power is switched off.
- 5. Click on the **Erase** button in the window to ensure that the PIC16F684 device has been erased.
- 6. From the **File** pull-down menu, select **Import HEX**. A file window will appear. Select and open 00031R1-1.HEX.
- Click on the Write Device button in the PICkit 1 Flash Starter Kit window. The PIC16F684 device will be written to with the 00031R1-1.HEX firmware. Once completed, the status bar at the bottom of the window will indicate Write Successful.
- Switch on the device power by checking the Device Power box under Board Controls in the PICkit 1 Flash Starter Kit window. The busy LED on the PICkit 1 Flash Starter Kit will turn on when the device power is switched on.
- 9. The 7-segment display on the MCP9800 Thermal Sensor PICtail[™] Demo Board will show ambient temperature (°C).

2.4 FUNCTIONAL DESCRIPTION

2.4.1 The MCP9800 Thermal Sensor PICtail[™] Demo Board

This demo board has the MCP9800 temperature sensor device and a 7-segment LED display circuit. The user can read the ambient temperature data from the MCP9800 using the PICkit 1 Flash Starter Kit and display the data using the 7-segment display on the MCP9800 Thermal Sensor PICtail[™] Demo Board. It's also possible to transmit the data to a PC for a display using the PICkit 1 Flash Starter Kit software strip-chart display tool.

This demo board has a 14-pin header that connects to the PICkit 1 Flash Starter Kit. The header connects the +5V supply, ground and all serial I/O pins to the MCP9800 Thermal Sensor PICtailTM Demo Board. There are four serial I/O lines used to communicate with the MCP9800 and the 7-segment display circuit. The MCP9800 uses two I/O lines for the I²CTM interface to transmit temperature data, while the 7-segment display circuit uses two I/O lines for the SPI interface to display temperature data.

The user can develop custom firmware to communicate with the MCP9800 and the 7-segment display using most 14-pin PICmicro[®] microcontrollers and the PICkit 1 Flash Starter Kit. In addition, Microchip provides a demo firmware that uses the PIC16F684 microcontroller. This firmware will be referenced throughout the user's guide to show the various functions of the demo board.

2.4.2 The MCP9800

The MCP9800 comes with user-programmable registers that provide flexibility for temperature-sensing applications. The register settings allow user-selectable 9-bit to 12-bit temperature measurement resolution, configuration of the power-saving Shutdown and One-Shot (single conversion on command while in Shutdown) modes and the specification of both temperature alert output and hysteresis limits. When the temperature changes beyond the specified limits, the MCP9800 outputs an alert signal. The user has the option of setting the alert output signal polarity as an active-low or active-high comparator output for thermostat operation, or as a temperature event interrupt output for microprocessor-based systems

This device has I²C/SMBus-compatible serial interface (refer to the MCP9800 data sheet (DS21909) for further details).

2.4.3 User-Selectable Features

The demo firmware programs the Temperature Limit and Hysteresis Limit registers (T_{SET} and T_{HYST} , respectively) according to the position of the RP1 potentiometer, located on the PICkit 1 Flash Starter Kit. The potentiometer is connected to the PIC16F684 analog input pin. The voltage across the potentiometer wiper terminal determines T_{SET} . The wiper position provides 15 possible T_{SET} limits from 10°C to 55°C, in 3°C increments. T_{HYST} is programmed 5°C below T_{SET} (5°C hysteresis). When the ambient temperature exceeds the programmed T_{SET} limit, the MCP9800 outputs an alert signal using the ALERT output pin. This pin is an open-drain output that is configured as an active-high output. When this pin is high, the D₁ diode lights up and remains lit until the temperature drifts beyond the hysteresis limit (T_{HYST}).

This firmware also converts degree Celsius to degree Fahrenheit using the SW1 switch located on the PICkit 1 Flash Starter Kit. When the user presses the momentary push-button switch, the 7-segment display shows the ambient temperature in degree Fahrenheit.

In addition, the user has the option of changing the MCP9800 temperature measurement resolution (default resolution is 10-bit). However, this requires modifying a firmware variable and recompiling the firmware. The 00031R1-1.asm firmware can be edited and compiled using Microchip's MPLAB[®] IDE, which can be downloaded from Microchip's web site at www.microchip.com. This particular variable is identified in text within the firmware, with an instruction provided about how to change the variable to select a resolution. Once the variable is changed according to the instruction given in the 00031R1-1.asm firmware, the user can recompile the firmware and program the PIC16F684 with the 00031R1-1.HEX file, as shown in **Section 2.3.2 "Programming the PIC16F684"**.

This demo board and demo firmware provides a platform to easily develop a custom firmware and evaluate the various features of the MCP9800.

2.4.4 Displaying the Temperature Data

2.4.4.1 THE 7-SEGMENT LED DISPLAY

The PIC16F684 microcontroller firmware, located on the PICkit 1 Flash Starter Kit, reads the ambient temperature from the MCP9800 temperature sensor and sends the data to the 7-segment LED display.

The 7-segment LED display is controlled using another PICmicro microcontroller that is located on the MCP9800 Thermal Sensor PICtail[™] Demo Board. This PICmicro microcontroller controls the LED segments and display frequency. It receives data from the PICkit 1 Flash Starter Kit using ports RC3 and RC5, via the SPI protocol. Once the data is successfully received, the PICmicro microcontroller displays the corresponding LED segments.

The temperature data from the PICkit 1 Flash Starter Kit has to be formatted to Binary Code Decimal (BCD) before transmission. A 4-bit instruction and a 4-bit BCD has to be transmitted for each of the four digits on the 7-segment display. The location and definition of the instruction bits and BCD bits are shown in Table 2-1.

TABLE 2-1:SERIAL DATA FORMAT

Instruction					BCD	
Start	Dot	No display	Dash	MSb		LSb
bit 7						bit 0

bit 7 START: Start-of-display bit

- 1 = This BCD is the first digit
- 0 = This BCD is not the first digit

bit 6 **DOT:** Display dot bit

- 1 = Display dot after this BCD, which indicates that the next BCD is a decimal point
- 0 = No dot displayed
- bit 5 **NO DISPLAY:** No digit to be displayed
 - 1 = Digit not displayed
 - 0 = Digit displayed

bit 4 **DASH:** Display dash for negative number bit

- 1 = Display dash (—) to indicate negative number
- 0 = Dash not displayed
- bit 3 0 BCD: BCD bits MSb first

This format requires that a 32-bit data (8 bits at a time) needs to be transmitted in order to display four-digit temperature data on the 7-segment display.

Table 2-2 shows examples on displaying temperature data.

TABLE 2-2:TEMPERATURE DATA FORMAT FOR DISPLAY

Temperature	1 st byte	2 nd byte	3 rd byte	4 th byte
125.5	1000 0001	0000 0010	0100 0101	0000 0101
25.25	1000 0010	0100 0101	0000 0010	0000 0101
5.25	1010 0000	0100 0101	0000 0010	0000 0101
-5.25	1001 0000	0100 0101	0000 0010	0000 0101
-55.5	1001 0000	0000 0101	0100 0101	0000 0101

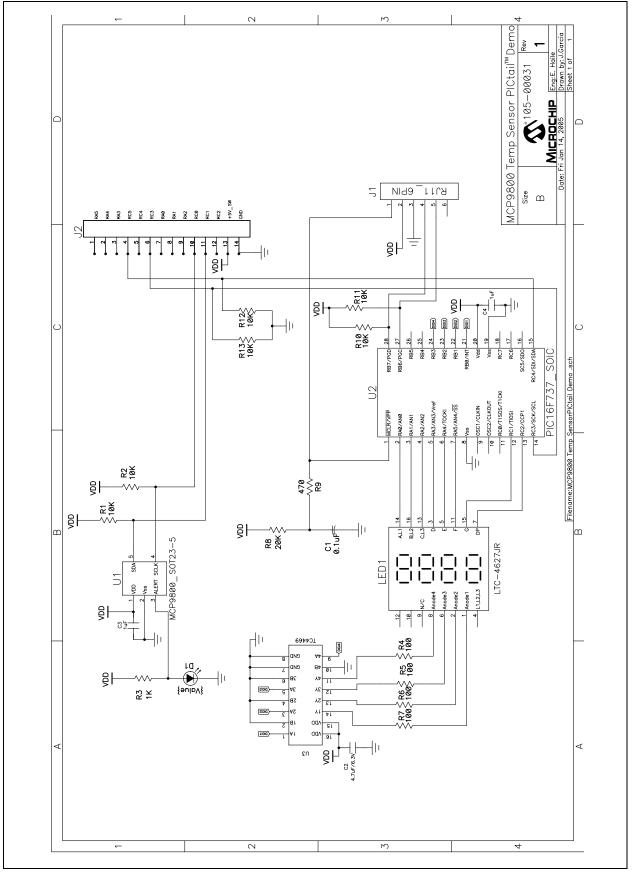
This format ensures proper protocol between the microcontrollers on the PICkit 1 Flash Starter Kit and the MCP9800 Thermal Sensor PICtail[™] Demo Board. In addition, this display protocol makes the 7-segment display circuit generic for use in applications other than temperature data display. The 7-segment display controller firmware (00031R1-2.HEX) can be customized using Microchip's MPLAB[®] ICD 2 programming tool. A header can be soldered on the MCP9800 Thermal Sensor PICtail Demo Board for the MPLAB ICD 2 programmer. The PIC16F737 microcontroller cannot be programmed using the PICkit 1 Flash Starter Kit.

2.4.4.2 STRIP-CHART DISPLAY ON PC

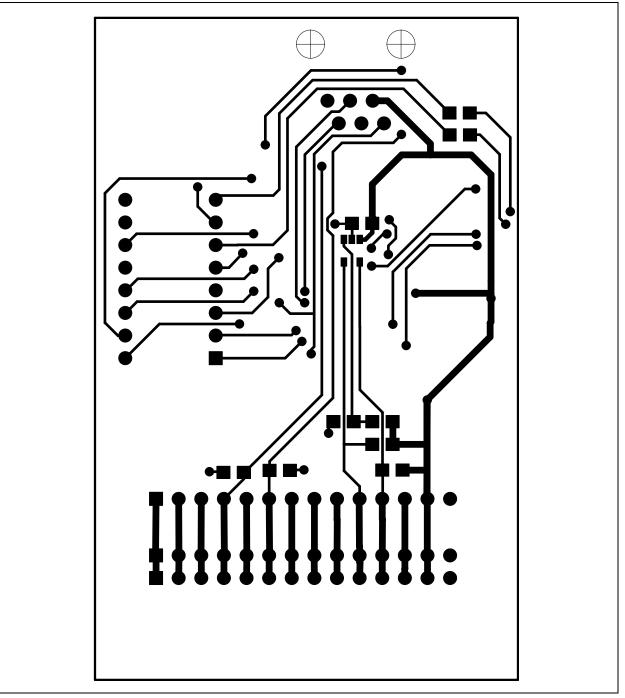
Once the hardware is connected to the PICkit 1 Flash Starter Kit, as shown in **Section 2.3.1 "Hardware Setup"**, and the PIC16F684 MCU is programmed as indicated in **Section 2.3.2 "Programming the PIC16F684"**, the user can use the strip-chart tool available on the PICkit 1 Flash Starter Kit software. This is done by selecting the stripchart tool on the software and clicking **GO**.

The strip-chart display shows the ambient temperature data from the MCP9800. This display does not support negative numbers. Therefore, the data is offset by 1024. In addition, the tool does not support 11-bit and 12-bit data.

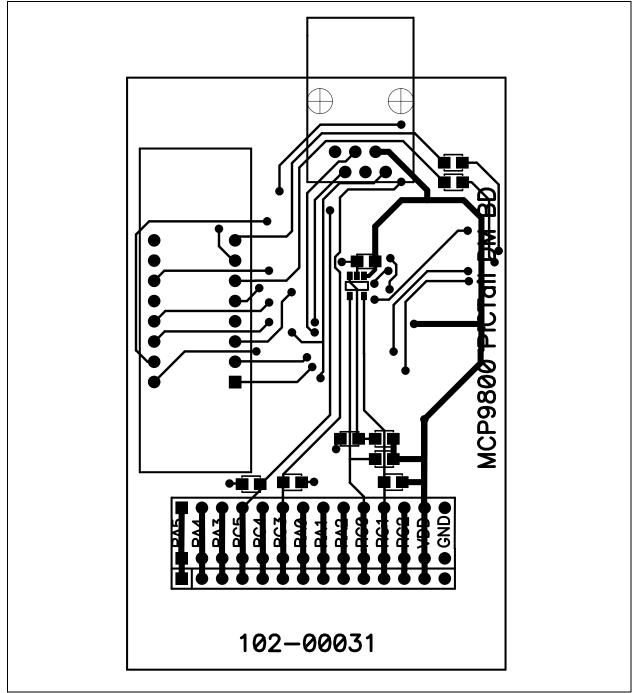
NOTES:

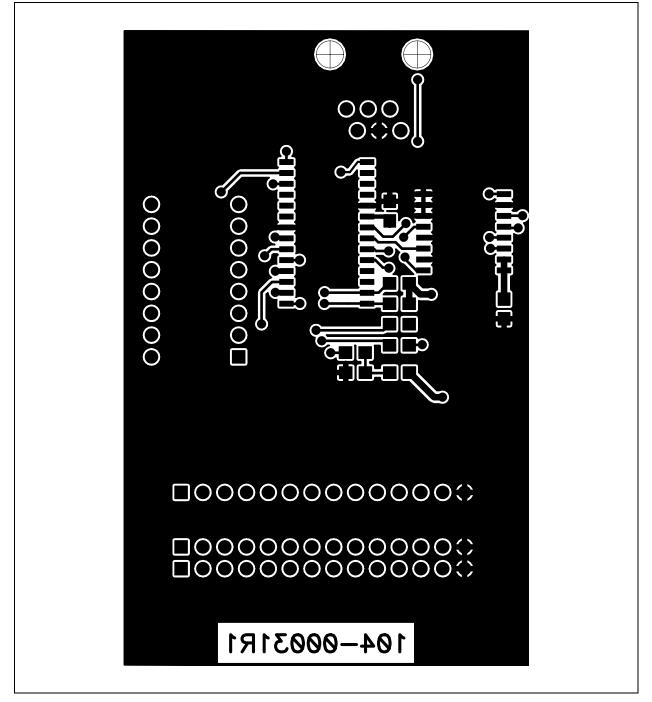

Appendix A. Schematic and Layouts

A.1 INTRODUCTION


This appendix contains the following schematics and layouts for the MCP9800 Thermal Sensor PICtail[™] Demo Board:

- Board Schematic
- · Board Top Layer
- Board Silk-Screen Layer
- Board Bottom Layer


A.2 BOARD SCHEMATIC


A.3 BOARD - TOP LAYER

A.4 BOARD - SILK SCREEN LAYER

A.5 BOARD - BOTTOM LAYER

NOTES:

Appendix B. Bill Of Materials (BOM)

IABL	ABLE B-1: BILL OF MATERIALS (BOM)								
Qty Reference		erence Description		Part Number					
4	C1, C2, C3, C4	CAP .1UF 16V CERAMIC X7R 0805	Panasonic [®] - ECG	ECJ-2VB1C104K					
1	D1	LED RED CLEAR 0805 SMD	Lite-On Trading USA Inc	LTST-C170CKT					
1	LED1	LED 7 Segment .4" 4DGT SUPER RED CA	Panasonic - ECG	LTC-4627JR					
1	J1	"NOT POPULATED" CONN MOD JACK 6-6 R/A PCB 50AU	AMP [®] /Tyco [®] Electronics	5520470-3					
1	J2	CONN HEADER VERT 14POS .100 TIN	AMP/Tyco Electronics	1-640454-4					
6	R1, R2, R10, R11, R12, R13	RES 10.0K OHM 1/10W 1% 0805 SMD	Panasonic - ECG	ERJ-6ENF1002V					
5	R3, R4, R5, R6, R7	RES 100 OHM 1/10W 1% 0805 SMD	Panasonic - ECG	ERJ-6ENF1000V					
1	R8	RES 20.0K OHM 1/10W 1% 0805 SMD	Panasonic - ECG	ERJ-6ENF2002V					
1	R9	RES 475 OHM 1/10W 1% 0805 SMD	Yageo [®] America	RC0805FR-07475RL					
1	U1	2-wire High-Accuracy Temperature Sensor	Microchip Technology, Inc.	MCP9800AOT-M/TOG					
1	U2	8-bit CMOS Flash Microcontroller	Microchip Technology, Inc.	PIC16F737-I/SO					
1	U3	Logic-Input CMOS Quad Drivers	Microchip Technology, Inc.	TC4469COE					

TABLE B-1: BILL OF MATERIALS (BOM)