

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Preferred Device

Silicon Controlled Rectifiers

Reverse Blocking Thyristors

Designed for high volume, low cost, industrial and consumer applications such as motor control; process control; temperature, light and speed control.

Features

- Small Size
- Passivated Die for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- Epoxy Meets UL 94 V-0 @ 0.125 in
- ESD Ratings: Human Body Model, 3B > 8000 V Machine Model, C > 400 V
- Pb-Free Packages are Available

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) (T _J = -40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open) MCR12DCM MCR12DCN	V _{DRM,} V _{RRM}	600 800	V
On–State RMS Current (180° Conduction Angles; T _C = 90°C)	I _{T(RMS)}	12	Α
Average On–State Current (180° Conduction Angles; T _C = 90°C)	I _{T(AV)}	7.8	Α
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, T _J = 125°C)	I _{TSM}	100	Α
Circuit Fusing Consideration (t = 8.3 msec)	l ² t	41	A ² sec
Forward Peak Gate Power (Pulse Width \leq 1.0 μ sec, T _C = 90°C)	P _{GM}	5.0	W
Forward Average Gate Power (t = 8.3 msec, T _C = 90°C)	P _{G(AV)}	0.5	W
Forward Peak Gate Current (Pulse Width $\leq 1.0 \mu sec$, $T_C = 90^{\circ}C$)	I _{GM}	2.0	Α
Operating Junction Temperature Range	T_J	-40 to 125	°C
Storage Temperature Range	T _{stg}	-40 to 150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. V_{DRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the device are exceeded.

Littelfuse.com

SCRs 12 AMPERES RMS 600 - 800 VOLTS

CASE 369C STYLE 4

MARKING DIAGRAM

Year ww Work Week R12DCx Device Code x = M or N= Pb-Free Package

PIN ASSIGNMENT				
1	1 Cathode			
2	Anode			
3	Gate			
4	Anode			

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

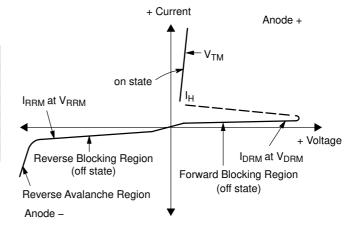
Preferred devices are recommended choices for future use and best overall value.

1

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance - Junction-to-Case - Junction-to-Ambient - Junction-to-Ambient (Note 2)	$egin{aligned} R_{ hetaJC} \ R_{ hetaJA} \ R_{ hetaJA} \end{aligned}$	2.2 88 80	°C/W
Maximum Lead Temperature for Soldering Purposes (Note 3)	TL	260	°C

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		_	•			
Peak Repetitive Forward or Reverse Blocking Current $(V_{AK} = Rated V_{DRM} or V_{RRM}, Gate Open)$	T _J = 25°C T _J = 125°C	I _{DRM,} I _{RRM}	- -	_ _	0.01 5.0	mA
ON CHARACTERISTICS						
Peak Forward On–State Voltage (Note 4) (I _{TM} = 20 A)		V _{TM}	-	1.3	1.9	V
Gate Trigger Current (Continuous dc) $(V_D = 12 \text{ V}, R_L = 100 \Omega)$	$T_{J} = 25^{\circ}C$ $T_{J} = -40^{\circ}C$	I _{GT}	2.0	7.0 –	20 40	mA
Gate Trigger Voltage (Continuous dc) $(V_D = 12 \text{ V}, R_L = 100 \Omega)$	$T_{J} = 25^{\circ}C$ $T_{J} = -40^{\circ}C$	V _{GT}	0.5 -	0.65 -	1.0 2.0	V
Gate Non-Trigger Voltage $(V_D = 12 \text{ V}, R_L = 100 \Omega)$	T _J = 125°C	$V_{\sf GD}$	0.2	-	-	V
Holding Current (V _D = 12 V, Initiating Current = 200 mA, Gate Open)	$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$	lн	4.0	22 -	40 80	mA
Latching Current $(V_D = 12 \text{ V}, I_G = 20 \text{ mA}, T_J = 25^{\circ}\text{C})$ $(V_D = 12 \text{ V}, I_G = 40 \text{ mA}, T_J = -40^{\circ}\text{C})$		lι	4.0	22 -	40 80	mA
DYNAMIC CHARACTERISTICS						
Critical Rate of Rise of Off–State Voltage (V _D = Rated V _{DRM} , Exponential Waveform, Gate Open	en, T _J = 125°C)	dv/dt	50	200	_	V/μs


These ratings are applicable when surface mounted on the minimum pad sizes recommended.
 1/8" from case for 10 seconds.
 Pulse Test: Pulse Width ≤ 2.0 msec, Duty Cycle ≤ 2%.

ORDERING INFORMATION

Device	Package	Shipping
MCR12DCMT4	DPAK	2500 / Tape and Reel
MCR12DCMT4G	DPAK (Pb-Free)	2500 / Tape and Reel
MCR12DCNT4	DPAK	2500 / Tape and Reel
MCR12DCNT4G	DPAK (Pb-Free)	2500 / Tape and Reel

Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Off-State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Off-State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Peak On-State Voltage
IH	Holding Current

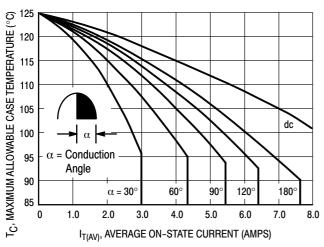


Figure 1. Average Current Derating

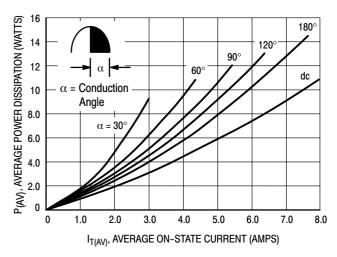


Figure 2. On-State Power Dissipation

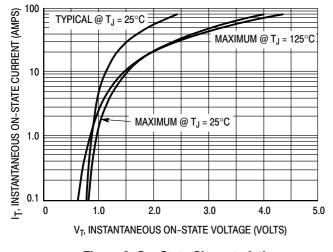
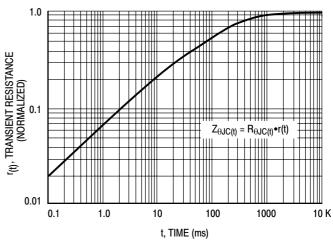



Figure 3. On-State Characteristics

Figure 4. Transient Thermal Response

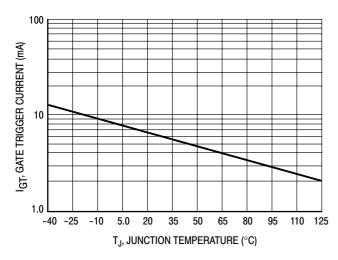


Figure 5. Typical Gate Trigger Current versus Junction Temperature

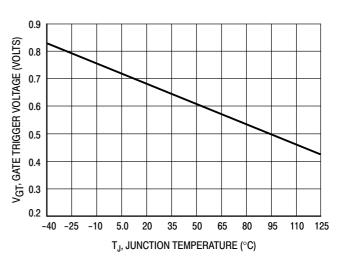


Figure 6. Typical Gate Trigger Voltage versus
Junction Temperature

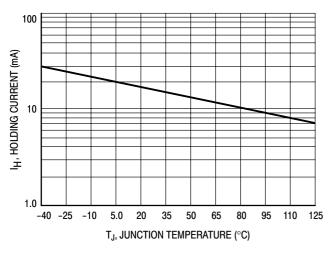


Figure 7. Typical Holding Current versus Junction Temperature

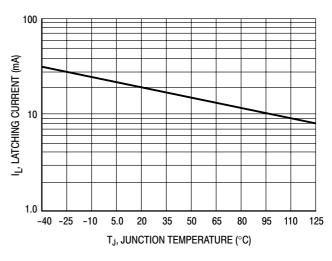


Figure 8. Typical Latching Current versus Junction Temperature

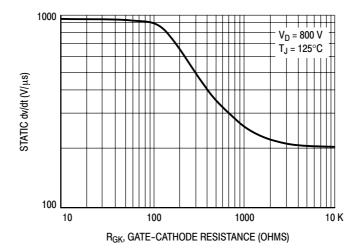
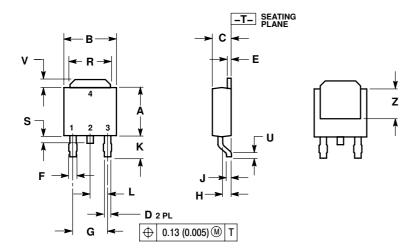



Figure 9. Exponential Static dv/dt versus Gate-Cathode Resistance

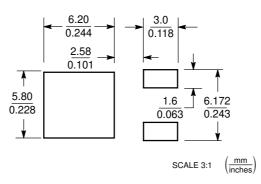
PACKAGE DIMENSIONS

DPAK CASE 369C ISSUE O

NOTES:

- OTLES.

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.


 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
C	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.180	BSC	3SC 4.58 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.090	BSC	2.29	BSC
R	0.180	0.215	4.57	5.45
S	0.025	0.040	0.63	1.01
U	0.020		0.51	
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE

4 ANODE

SOLDERING FOOTPRINT

Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

Littelfuse.com