

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Sensitive Gate Silicon Controlled Rectifiers

Reverse Blocking Thyristors

Designed for high volume, low cost, industrial and consumer applications such as motor control; process control; temperature, light and speed control; CDI (Capacitive Discharge Ignition); and small engines.

Features

- Small Size
- Passivated Die for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- Epoxy Meets UL 94 V-0 @ 0.125 in
- ESD Ratings: Human Body Model, 3B > 8000 V
 - Machine Model, C > 400 V
- These are Pb-Free Devices

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) (T _J = -40 to 110°C, Sine Wave, 50 Hz to 60 Hz) MCR12DSM MCR12DSN	V _{DRM,} V _{RRM}	600 800	V
On–State RMS Current (180° Conduction Angles; T _C = 75°C)	I _{T(RMS)}	12	Α
Average On-State Current (180° Conduction Angles; T _C = 75°C)	I _{T(AV)}	7.6	Α
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, T _J = 110°C)	I _{TSM}	100	Α
Circuit Fusing Consideration (t = 8.3 msec)	I ² t	41	A ² sec
Forward Peak Gate Power (Pulse Width ≤ 10 μsec, T _C = 75°C)	P _{GM}	5.0	W
Forward Average Gate Power (t = 8.3 msec, T _C = 75°C)	P _{G(AV)}	0.5	W
Forward Peak Gate Current (Pulse Width \leq 10 µsec, T_C = 75°C)	I _{GM}	2.0	Α
Operating Junction Temperature Range	T_{J}	-40 to 110	°C
Storage Temperature Range	T _{stg}	-40 to 150	°C

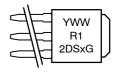
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the device are exceeded.

Littelfuse.com

SCRs 12 AMPERES RMS 600 - 800 VOLTS

MARKING DIAGRAMS



DPAK CASE 369C STYLE 4

IPAK CASE 369D STYLE 4

PIN ASSIGNMENT			
1	Cathode		
2	Anode		
3	Gate		
4	Anode		

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL CHARACTERISTICS

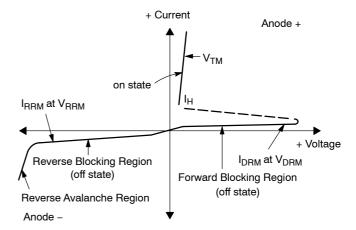
Characteristic	Symbol	Max	Unit
Thermal Resistance,- Junction-to-Case - Junction-to-Ambient - Junction-to-Ambient (Note 2)	$egin{aligned} R_{ hetaJC} \ R_{ hetaJA} \ R_{ hetaJA} \end{aligned}$	2.2 88 80	°C/W
Maximum Lead Temperature for Soldering Purposes (Note 3)	TL	260	°C

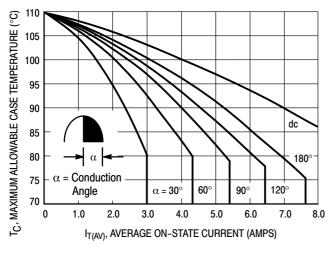
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Characteristics			Тур	Max	Unit	
DFF CHARACTERISTICS						
Peak Repetitive Forward or Reverse Blocking Current (Note 4) $(V_{AK} = Rated \ V_{DRM} \ or \ V_{RRM}; \ R_{GK} = 1.0 \ K\Omega) \qquad \qquad T_J = 25^{\circ}C \\ T_J = 110^{\circ}C$			- -	10 500	μΑ	
	V_{GRM}	10	12.5	18	V	
	I _{GRM}	_	_	1.2	μΑ	
	V_{TM}	-	1.3	1.9	V	
$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$	I _{GT}	5.0 -	12 -	200 300	μΑ	
Gate Trigger Voltage (Continuous dc) (Note 6) $(V_D=12~V,~R_L=100~\Omega) \\ T_J=25^{\circ}C \\ T_J=-40^{\circ}C \\ T_J=110^{\circ}C$			0.65 - -	1.0 1.5 –	V	
$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$	lн	0.5	1.0 -	6.0 10	mA	
$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$	ΙL	0.5 -	1.0 -	6.0 10	mA	
Turn–On Time (Source Voltage = 12 V, R_S = 6.0 KΩ, I_T = 16 A(pk), R_{GK} = 1.0 KΩ) (V_D = Rated V_{DRM} , Rise Time = 20 ns, Pulse Width = 10 μs)		-	2.0	5.0	μs	
	$T_J = 25^{\circ}C$ $T_J = 110^{\circ}C$ $T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$ $T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$ $T_J = 110^{\circ}C$ $T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$ $T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$ $T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$	$T_{J} = 25^{\circ}C$ $T_{J} = 110^{\circ}C$ V_{GRM} I_{GRM} V_{TM} $T_{J} = 25^{\circ}C$ $T_{J} = -40^{\circ}C$ $T_{J} = -40^{\circ}C$ $T_{J} = 110^{\circ}C$ V_{GT} $V_{$				

Critical Rate of Rise of Off-State Voltage	dv/dt				V/μs
$(V_D = 0.67 \text{ x Rated } V_{DRM}, \text{ Exponential Waveform, } R_{GK} = 1.0 \text{ K}\Omega, T_J = 110^{\circ}\text{C})$		2.0	10	_	
Critical Rate of Rise of On-State Current	di/dt				A/μs
$(I_{PK} = 50 \text{ A}, P_W = 40 \mu \text{sec}, \text{diG/dt} = 1 \text{ A/} \mu \text{sec}, I_{GT} = 10 \text{ mA})$		-	50	100	

^{2.} These ratings are applicable when surface mounted on the minimum pad sizes recommended.

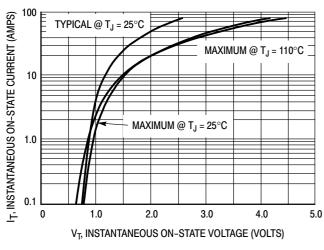

^{3. 1/8&}quot; from case for 10 seconds.


^{4.} Ratings apply for negative gate voltage or R_{GK} = 1.0 kΩ. Devices shall not have a positive gate voltage concurrently with a negative voltage on the anode. Devices should not be tested with a constant current source for forward and reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.

^{5.} Pulse Test: Pulse Width \leq 2.0 msec, Duty Cycle \leq 2%. 6. R_{GK} current not included in measurement.

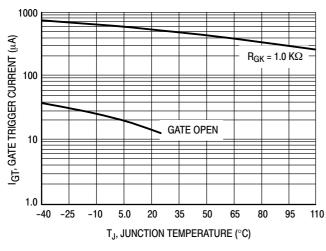
Voltage Current Characteristic of SCR

	-
Symbol	Parameter
V _{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Peak On State Voltage
I _H	Holding Current



P(AV), AVERAGE POWER DISSIPATION (WATTS) 16 180° 120° 14 90° 12 60° dc α = Conduction 10 Angle 8.0 $\alpha = 30^{\circ}$ 6.0 4.0 2.0 0 3.0 4.0 5.0 6.0 7.0 8.0 $I_{T(AV)}$, AVERAGE ON-STATE CURRENT (AMPS)

Figure 1. Average Current Derating


Figure 2. On-State Power Dissipation

1.0 (NORWAL RESISTANCE (I) TRANSIENT THERMAL RESISTANCE (II) (II) (III) (III)

Figure 3. On-State Characteristics

Figure 4. Transient Thermal Response

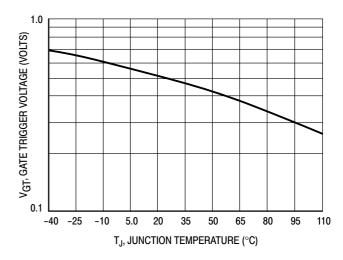
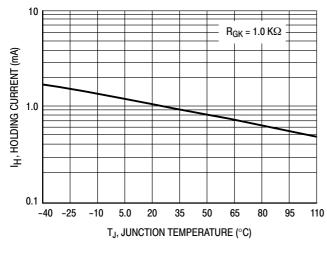



Figure 5. Typical Gate Trigger Current versus Junction Temperature

Figure 6. Typical Gate Trigger Voltage versus Junction Temperature

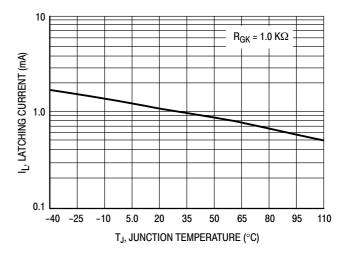
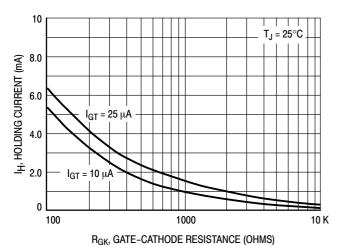
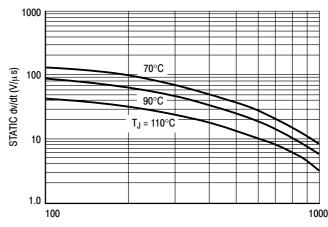




Figure 7. Typical Holding Current versus Junction Temperature

Figure 8. Typical Latching Current versus Junction Temperature

R_{GK}, GATE-CATHODE RESISTANCE (OHMS)

Temperature

V_D = 800 V

 $T_{.1} = 110^{\circ}C$

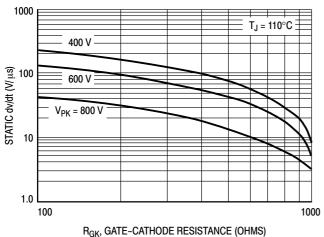

1000

Figure 9. Holding Current versus Gate-Cathode Resistance

Figure 10. Exponential Static dv/dt versus Gate-Cathode Resistance and Junction

1000

100

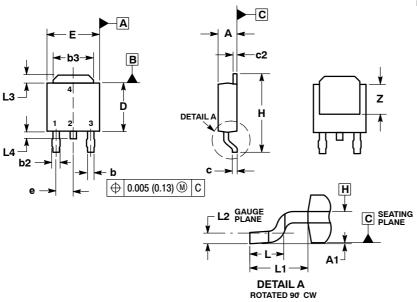
TIGK, GATE-OATHODE REGIONANCE (OTIMO)

100 | I_{GT} = 25 μA | I_{GT} = 10 μA

R_{GK}, GATE-CATHODE RESISTANCE (OHMS)

Figure 11. Exponential Static dv/dt versus Gate-Cathode Resistance and Peak Voltage

Figure 12. Exponential Static dv/dt versus Gate-Cathode Resistance and Gate Trigger Current Sensitivity


ORDERING INFORMATION

Device	Package Type	Package	Shipping
MCR12DSMT4G	DPAK (Pb-Free)	369C	2500 / Tape & Reel
MCR12DSN-1G	IPAK (Pb-Free)	369D	75 Units / Rail
MCR12DSNT4G	DPAK (Pb-Free)	369C	2500 / Tape & Reel

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)

CASE 369C ISSUE D

NOTES:

- NOTES:

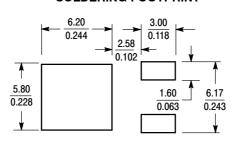
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: INCHES.

 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

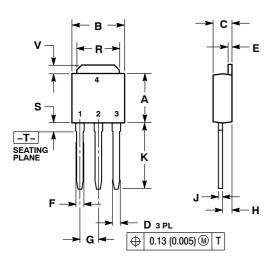
 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

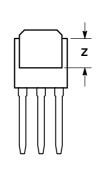

 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090 BSC		2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108	0.108 REF		REF
L2	0.020	BSC	0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE

- 4. ANODE


SOLDERING FOOTPRINT



SCALE 3:1

PACKAGE DIMENSIONS

IPAK CASE 369D **ISSUE C**

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
O	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090	BSC	2.29 BSC		
Η	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
s	0.025	0.040	0.63	1.01	
٧	0.035	0.050	0.89	1.27	
7	0.155		3 03		

STYLE 4:

PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE

Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

Littelfuse.com