

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Silicon Controlled RectifiersReverse Blocking Thyristors

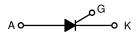
Designed for overvoltage protection in crowbar circuits.

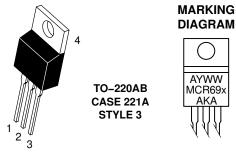
Features

- Glass-Passivated Junctions for Greater Parameter Stability and Reliability
- Center-Gate Geometry for Uniform Current Spreading Enabling High Discharge Current
- Small Rugged, Thermowatt Package Constructed for Low Thermal Resistance and Maximum Power Dissipation and Durability
- High Capacitor Discharge Current, 750 Amps
- Pb-Free Packages are Available

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) (T _J = -40 to +125°C, Gate Open) MCR69-2 MCR69-3	V _{DRM,} V _{RRM}	50 100	V
Peak Discharge Current (Note 2)	I _{TM}	750	Α
On-State RMS Current (180° Conduction Angles; T _C = 85°C)	I _{T(RMS)}	25	Α
Average On-State Current (180° Conduction Angles; T _C = 85°C)	I _{T(AV)}	16	Α
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, T _J = 125°C)	I _{TSM}	300	Α
Circuit Fusing Considerations (t = 8.3 ms)	I ² t	375	A ² s
Forward Peak Gate Current $(t \le 1.0 \mu s, T_C = 85^{\circ}C)$	I _{GM}	2.0	Α
Forward Peak Gate Power (t ≤ 1.0 µs, T _C = 85°C)	P _{GM}	20	W
Forward Average Gate Power (t = 8.3 ms, T _C = 85°C)	$P_{G(AV)}$	0.5	W
Operating Junction Temperature Range	T _J	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C
Mounting Torque	_	8.0	in. lb.


Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


- V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.
- Ratings apply for t_w = 1 ms. See Figure 1 for I_{TM} capability for various duration of an exponentially decaying current waveform, t_w is defined as 5 time constants of an exponentially decaying current pulse.
- 3. Test Conditions: $I_G = 150 \text{ mÅ}$, $V_D = \text{Rated } V_{DRM}$, $I_{TM} = \text{Rated } V_{alue}$, $I_J = 125 ^{\circ}\text{C}$.

Littelfuse.com

SCRs 25 AMPERES RMS 50 thru 100 VOLTS

A = Assembly Location

Y = Year WW = Work Week MCR69 = Device Code x = 2 or 3 AKA = Location Code

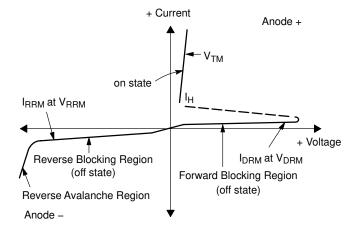
PIN ASSIGNMENT		
1	Cathode	
2	Anode	
3	Gate	
4	Anode	

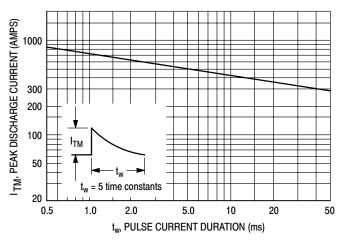
ORDERING INFORMATION

Device	Package	Shipping
MCR69-2	TO220AB	500/Box
MCR69-2G	TO220AB (Pb-Free)	500/Box
MCR69-3	TO220AB	500/Box
MCR69-3G	TO220AB (Pb-Free)	500/Box

THERMAL CHARACTERISTICS

Characteristic		Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	1.5	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	60	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8 in from Case for 10 Seconds	T _L	260	°C

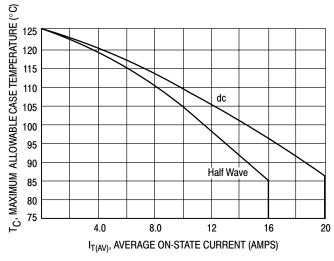

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Peak Repetitive Forward or Reverse Blocking Current $(V_{AK} = Rated \ V_{DRM} \ or \ V_{RRM}, \ Gate \ Open)$ $T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	I _{DRM} , I _{RRM}	- -	_ _	10 2.0	μA mA
ON CHARACTERISTICS					
Peak Forward On-State Voltage (I _{TM} = 50 A) (Note 4) (I _{TM} = 750 A, t _w = 1 ms) (Note 5)	V _{TM}	1 1	- 6.0	1.8 -	V
Gate Trigger Current (Continuous dc) $(V_D = 12 \text{ V}, R_L = 100 \Omega)$	l _{GT}	2.0	7.0	30	mA
Gate Trigger Voltage (Continuous dc) $(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega)$	V _{GT}	-	0.65	1.5	V
Gate Non–Trigger Voltage $(V_D = 12 \text{ Vdc}, R_L = 100 \Omega, T_J = 125^{\circ}\text{C})$	V _{GD}	0.2	0.40	-	V
Holding Current (V _D = 12 V, Initiating Current = 200 mA, Gate Open)	I _H	3.0	15	50	mA
Latching Current (V _D = 12 Vdc, I _G = 150 mA)	IL	-	-	60	mA
Gate Controlled Turn-On Time (Note 6) $(V_D = Rated V_{DRM}, I_G = 150 \text{ mA})$ $(I_{TM} = 50 \text{ A Peak})$	t _{gt}	-	1.0	-	μs
DYNAMIC CHARACTERISTICS	•				
Critical Rate-of-Rise of Off-State Voltage $(V_D = Rated\ V_{DRM},\ Gate\ Open,\ Exponential\ Waveform,\ T_J = 125^{\circ}C)$	dv/dt	10	_	-	V/μs
Critical Rate-of-Rise of On-State Current $I_G = 150 \text{ mA}$ $T_J = 125^{\circ}\text{C}$	di/dt	-	-	100	A/μs


 ^{4.} Pulse duration ≤ 300 μs, duty cycle ≤ 2%.
 5. Ratings apply for t_w = 1 ms. See Figure 1 for I_{TM} capability for various durations of an exponentially decaying current waveform. t_w is defined as 5 time constants of an exponentially decaying current pulse.

6. The gate controlled turn-on time in a crowbar circuit will be influenced by the circuit inductance.

Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Peak On State Voltage
I _H	Holding Current



0.8 0.8 0.6 0.2 0.2 0.2 5 50 75 100 125 T_C, CASE TEMPERATURE (°C)

Figure 1. Peak Capacitor Discharge Current

Figure 2. Peak Capacitor Discharge Current Derating

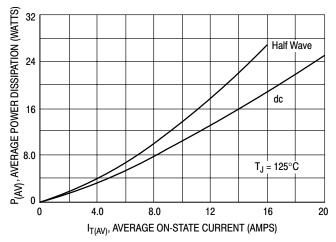


Figure 4. Maximum Power Dissipation

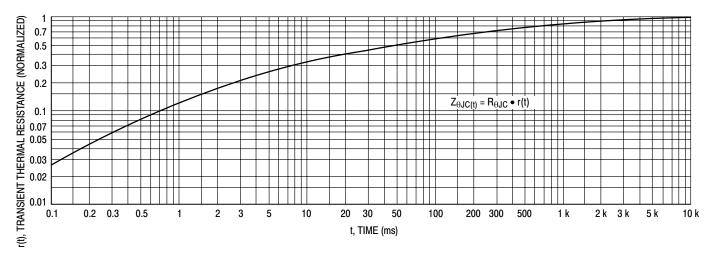
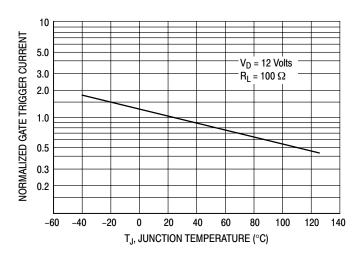



Figure 5. Thermal Response

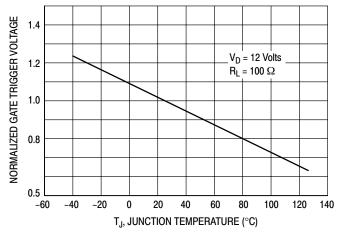


Figure 6. Gate Trigger Current

Figure 7. Gate Trigger Voltage

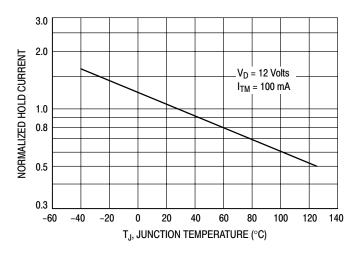
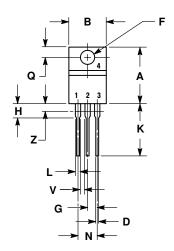
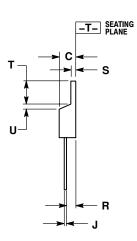




Figure 8. Holding Current

PACKAGE DIMENSIONS

TO-220AB CASE 221A-07 **ISSUE AA**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INC	HES	MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.014	0.022	0.36	0.55
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
7		0.080		2 0/1

STYLE 3:
PIN 1. CATHODE
2. ANODE
3. GATE
ANODE

- ANODE

Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

Littelfuse.com