imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MCR8SDG, MCR8SMG, MCR8SNG

Sensitive Gate Silicon Controlled Rectifiers Reverse Blocking Thyristors

Designed primarily for half-wave ac control applications, such as motor controls, heating controls, and power supplies; or wherever half-wave, silicon gate-controlled devices are needed.

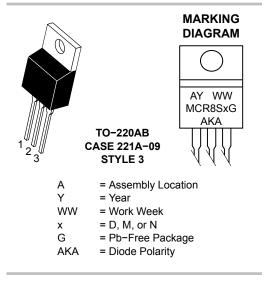
Features

- Sensitive Gate Allows Triggering by Microcontrollers and other Logic Circuits
- Blocking Voltage to 800 V
- On–State Current Rating of 8 A RMS at 80°C
- High Surge Current Capability 80 A
- Rugged, Economical TO-220AB Package
- Glass Passivated Junctions for Reliability and Uniformity
- Minimum and Maximum Values of IGT, VGT and IH Specified for Ease of Design
- Immunity to dv/dt 5 V/µsec Minimum at 110°C
- These are Pb–Free Devices

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (T _J = -40 to 110°C, Sine Wave, 50 to 60 Hz) MCR8SDG MCR8SMG MCR8SNG	Vdrm, V _{rrm}	400 600 800	V
On-State RMS Current (180° Conduction Angles; T _C = 80°C)	I _{T(RMS)}	8.0	A
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, T _J = 110°C)	I _{TSM}	80	A
Circuit Fusing Consideration (t = 8.33 ms)	l ² t	26.5	A ² sec
Forward Peak Gate Power (Pulse Width \leq 10 µs, T _C = 80°C)	P _{GM}	5.0	W
Forward Average Gate Power (t = 8.3 ms, T_C = 80°C)	P _{G(AV)}	0.5	W
Forward Peak Gate Current (Pulse Width \leq 10 μ s, T _C = 80°C)	I _{GM}	2.0	A
Operating Junction Temperature Range	TJ	-40 to 110	°C
Storage Temperature Range	T _{stg}	-40 to 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Littelfuse.com

	PIN ASSIGNMENT
1	Cathode
2	Anode
3	Gate
4	Anode

ORDERING INFORMATION

Device	Package	Shipping
MCR8SDG	TO-220AB (Pb-Free)	50 Units / Rail
MCR8SMG	TO-220AB (Pb-Free)	50 Units / Rail
MCR8SNG	TO-220AB (Pb-Free)	50 Units / Rail

MCR8SDG, MCR8SMG, MCR8SNG

THERMAL CHARACTERISTICS

	Characteristic	Symbol	Value	Unit
Thermal Resistance,	Junction-to-Case Junction-to-Ambient	$R_{ extsf{ heta}JC} \ R_{ heta}JA$	2.2 62.5	°C/W
Maximum Lead Temperat	ure for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
FF CHARACTERISTICS						
Peak Repetitive Forward or Reverse Blocking Current (Note 3) (V _D = Rated V _{DRM} and V _{RRM} ; R _{GK} = 1 k Ω)	T _J = 25°C T _J = 110°C	I _{DRM} , I _{RRM}			10 500	μΑ
N CHARACTERISTICS						
Peak Forward On-State Voltage (Note 2) (I _{TM} = 16 A)		V _{TM}	-	-	1.8	V
Gate Trigger Current (Continuous dc) (Note 4) (V _D = 12 V; R _L = 100 Ω)		I _{GT}	5.0	25	200	μA
Holding Current (Note 3) (V _D = 12 V, Gate Open, Initiating Current = 200 mA)		Ι _Η	-	0.5	6.0	mA
Latch Current (Note 4) (V _D = 12 V, $I_G = 200 \ \mu A$)		١L	-	0.6	8.0	mA
Gate Trigger Voltage (Continuous dc) (Note 4) (V _D = 12 V; R _L = 100 Ω)	$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$	V _{GT}	0.3 -	0.65 -	1.0 1.5	V
Gate Non-Trigger Voltage (V_D = 12 V, R_L = 100 Ω)	T _J = 110°C	V_{GD}	0.2	-	-	V

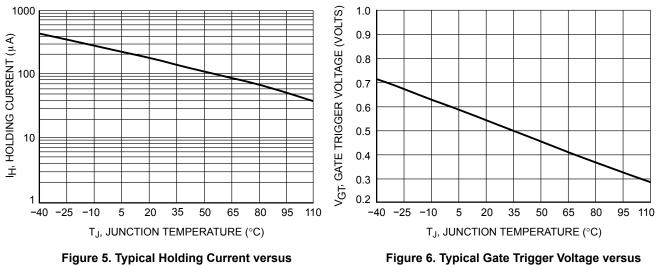
Critical Rate of Rise of Off-State Voltage (V_D = 67% V_{DRM} , R_{GK} = 1 K Ω , C_{GK} = 0.1 μ F, T_J = 110°C)	dv/dt	5.0	15	-	V/μs
Critical Rate of Rise of On-State Current IPK = 50 A, Pw = 40 μsec, diG/dt = 1 A/μsec, lgt = 10 mA	di/dt	-	-	100	A/μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Indicates Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2%.

3. R_{GK} = 1000 Ohms included in measurement.

4. Does not include R_{GK} in measurement.

MCR8SDG, MCR8SMG, MCR8SNG


+ Current

Voltage Current Characteristic of SCR

				rent	Anode +
			1	`	
Symbol	Parameter			< ∨ _{TM}	
V _{DRM}	Peak Repetitive Off State Forward Voltage			*	
I _{DRM}	Peak Forward Blocking Current		on state /		
V _{RRM}	Peak Repetitive Off State Reverse Voltage	I _{RRM} at V _{RRM}		<u>ин</u> — — — — — —	
RRM	Peak Reverse Blocking Current				
V _™	Peak On State Voltage			Ī	+ Volta
I _H	Holding Current	Reverse Bloc (off st			I _{DRM} at V _{DRM} ocking Region state)
		Reverse Avalan Anode –	che Region	(011)	slate)
110			1 1 1		1 1 1
105		P(AV), AVERAGE POWER DISSIPATION (WATTS)			
100					
95		9 BIPAT			180°
				<u>90°</u> 120°	
90		- H 6		ΪΛ.	
85		Q	+ 30°		
00		<u> ш</u> 3			
80	30° 60° 90° 120° 180°	RA I			
75 L	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 2 3	8 4	5 6 7
	$I_{T(RMS)}$, RMS ON-STATE CURRENT (AMPS)	—			CURRENT (AMPS)
	Figure 1. Typical RMS Current Derating				
00 ———		100			
00 ———	Figure 1. Typical RMS Current Derating				
00 ———	ICAL (CAL) T _J = 25°C				
	ICAL @ T _J = 25°C				
	ICAL (CAL) T _J = 25°C				
	ICAL @ T _J = 25°C				
	ICAL @ T _J = 25°C				
00 TYPI	ICAL @ T _J = 25°C				
	ICAL @ T _J = 25°C				
	ICAL @ T _J = 25°C	100 001 02 03 07 08 06 07 08 09 07 08 00 01 02 03 01 01 01 03 01 01 01 03 01 01 01 03 01 01 01 03 01 01 03 04 05 01 04 05 04 01 05 04 05 01 05 04 05 01 05 04 05 01 05 04 05 02 05 05 05 03 05 05 05 04 05 05 05 05 06 07 08 06 07 08 06 07 08 08 06 08 08 08 08 09 09 08 08			
00 TYP 10 10 10 10 10 10 10 10 10 10 10 10 10 1	ICAL (a) T _J = 25°C MAXIMUM (a) T _J = 110°C MAXIMUM (a) T _J = 25°C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
00 TYPI	ICAL (a) T _J = 25°C MAXIMUM (a) T _J = 110°C MAXIMUM (a) T _J = 25°C	GATE TRIGGER CURRENT (µA) GATE TRIGGER CURRENT (µA) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 -10 5		
00 TYP 10 10 10.5	ICAL (a) T _J = 25°C MAXIMUM (a) T _J = 110°C MAXIMUM (a) T _J = 25°C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		20 35 50 ON TEMPER	

Junction Temperature

MCR8SDG, MCR8SMG, MCR8SNG

Junction Temperature

Figure 6. Typical Gate Trigger Voltage versus Junction Temperature

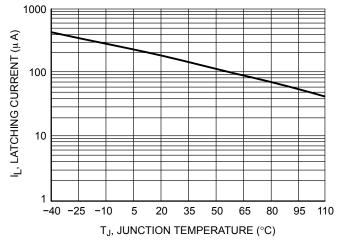
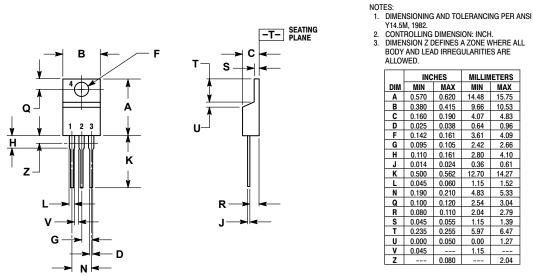



Figure 7. Typical Latching Current versus **Junction Temperature**

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 **ISSUE AH**

	INC	INCHES		MILLIMETERS		
DIM	MIN	IIN MAX MIN M.				
Α	0.570	0.620	14.48	15.75		
В	0.380	0.415	9.66	10.53		
С	0.160	0.190	4.07	4.83		
D	0.025	0.038	0.64	0.96		
F	0.142	0.161	3.61	4.09		
G	0.095	0.105	2.42	2.66		
Н	0.110	0.161	2.80	4.10		
J	0.014	0.024	0.36	0.61		
Κ	0.500	0.562	12.70	14.27		
L	0.045	0.060	1.15	1.52		
Ν	0.190	0.210	4.83	5.33		
Q	0.100	0.120	2.54	3.04		
R	0.080	0.110	2.04	2.79		
s	0.045	0.055	1.15	1.39		
Т	0.235	0.255	5.97	6.47		
U	0.000	0.050	0.00	1.27		
۷	0.045		1.15			
Ζ		0.080		2.04		

STYLE 3: PIN 1. CATHODE 2. ANODE GATE 3. 4. ANODE

Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

Littelfuse.com