imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

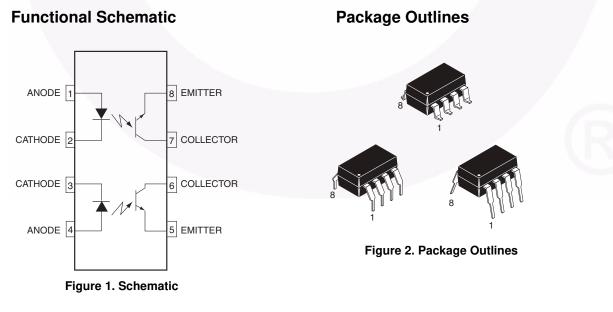
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

August 2016

MCT6, MCT61, MCT62 8-Pin Dual Channel Phototransistor Optocouplers

Features


- Two Isolated Channels Per Package
 - Safety and Regulatory Approvals:
 - UL1577, 5,000 VAC_{RMS} for 1 Minute
 - DIN-EN/IEC60747-5-5, 890 V Peak Working Insulation Voltage

Applications

- AC line/digital logic isolate high voltage transients
- Digital logic/digital logic eliminate spurious grounds
- Digital logic/AC triac control isolate high voltage
- transients
- Twisted pair line receiver eliminate ground loop
- feedthrough
- Telephone/telegraph line receiver isolate high
- voltage transients
- High frequency power supply feedback control –
- maintain floating grounds and transients
- · Relay contact monitor isolate floating grounds and
- transients
- Power supply monitor isolate transients

Description

The general purpose optocouplers, MCT6, MCT61, and MCT62, have two isolated channels in a standard plastic 8-pin dual-in-line (DIP) package for density applications. Each channel consists of a gallium arsenide infrared emitting diode driving a NPN silicon planar phototransistor. For four channel applications, two packages fit into a standard 16-pin DIP socket.

MCT6, MCT61, MCT62 8-Pin Dual Channel Phototransistor Optocouplers

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Characteristics
Installation Classifications per DIN VDE	< 150 V _{RMS}	I–IV
0110/1.89 Table 1, For Rated Mains Voltage	< 300 V _{RMS}	I–IV
Climatic Classification		55/115/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with t _m = 10 s, Partial Discharge < 5 pC	1424	V _{peak}
V _{PR}	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with t _m = 1 s, Partial Discharge < 5 pC	1668	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	890	V _{peak}
V _{IOTM}	Highest Allowable Over-Voltage	8000	V _{peak}
	External Creepage	≥ 7	mm
	External Clearance	≥ 7	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	mm
Τ _S	Case Temperature ⁽¹⁾	175	°C
I _{S,INPUT}	Input Current ⁽¹⁾	60	mA
Ps,output	Output Power ⁽¹⁾	150	mW
R _{IO}	Insulation Resistance at T_S , V_{IO} = 500 $V^{(1)}$	> 10 ⁹	Ω

Note:

1. Safety limit values - maximum values allowed in the event of a failure.

MCT6, MCT61, MCT62 8-Pin Dual Channel Phototransistor Optocouplers

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Value	Unit
T _{STG}	Storage Temperature	-55 to +150	°C
T _{OPR}	Operating Temperature	-55 to +100	°C
Т _Ј	Junction Temperature	-55 to +125	°C
T _{SOL}	Lead Solder Temperature	260 for 10 sec- onds	°C
P	Total Device Power Dissipation @ T _A = 25°C	400	mW
PD	Derate Above 25°C	5.33	mW/°C
EMITTER (Eac	h channel)		
۱ _F	DC / Average Forward Input Current	60	mA
l _F (pk)	Forward Current - Peak (PW = 1µs, 300pps)	3	А
V _R	Reverse Input Voltage	3	V
P	Total Power Dissipation @ T _A = 25°C	100	mW
P _{D(EMITTER)}	Derate Above 25°C	1.3	mW/°C
DETECTOR			
Ι _C	Continuous Collector Current	30	mA
D	Total Power Dissipation @ T _A = 25°C	150	mW
P _{D(DETECTOR)}	Derate Above 25°C	2.0	mW/°C

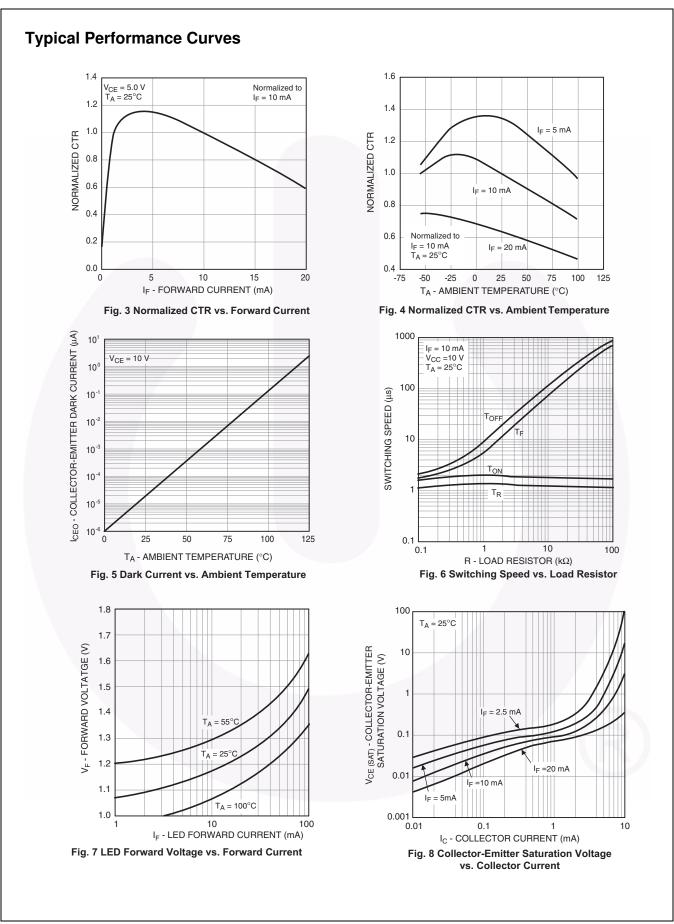
Electrical Characteristics

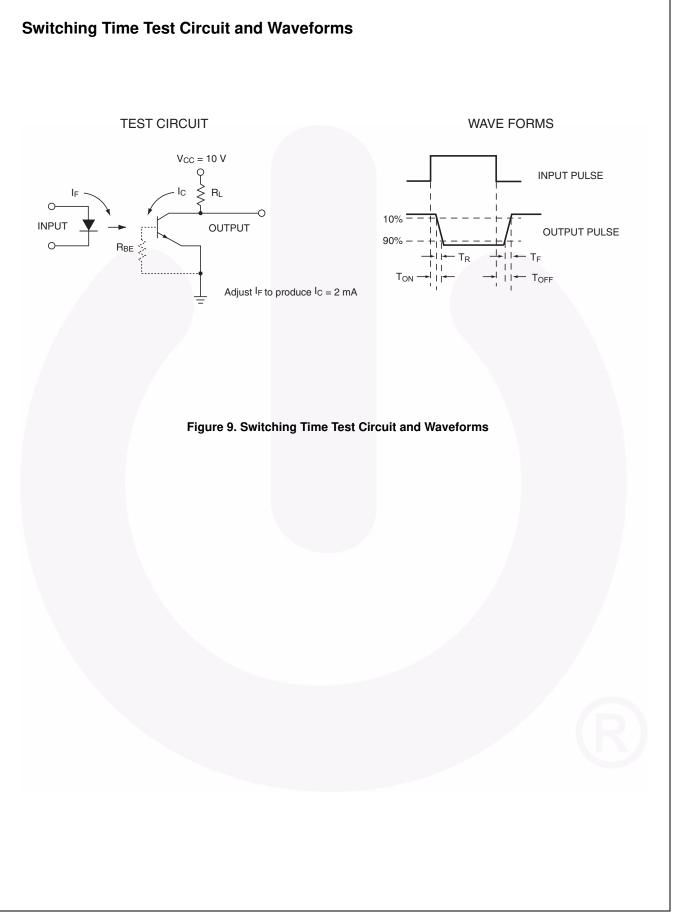
 T_A = 25°C unless otherwise specified.

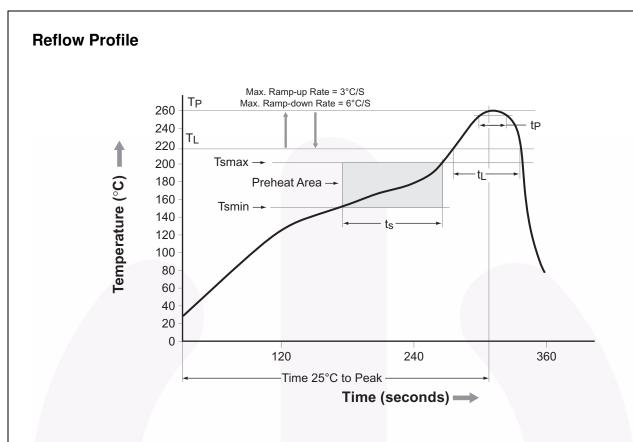
Individual Component Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
EMITTER	•					
V _F	Input Forward Voltage	I _F = 20 mA		1.2	1.5	V
V _R	Reverse Voltage	I _R = 10 μA	3	25		V
I _R	Reverse Leakage Current	V _R = 5 V		0.001	10	μA
CJ	Junction Capacitance	V _F = 0 V, f = 1 MHz		50		pF
DETECTO	DR		•	•		
BV _{CEO}	Collector-to-Emitter Breakdown Voltage	I _C = 1.0 mA, I _F = 0	30	85		V
BV _{ECO}	Emitter-to-Collector Breakdown Voltage	I _E = 100 μA, I _F = 0	6	13		V
I _{CEO}	Collector-to-Emitter Dark Current	V _{CE} = 10 V, I _F = 0		5	100	nA
C _{CE}	Capacitance	V _{CE} = 0 V, f = 1 MHz		8		pF

Transfer Characteristics


Symbol	Parameter	Device	Test Conditions	Min.	Тур.	Max.	Unit
DC CHAR	ACTERISTICS						
		MCT6	I _F = 10 mA, V _{CE} = 10 V	20			
CTR	Current Transfer Ratio, Collector-	MCT61	$I_{\rm E} = 5 {\rm mA}$. V _{CE} = 5 V	50			%
		MCT62		100			
VCE _(SAT)	Saturation Voltage, Collector-to- Emitter	ALL	I _F = 16 mA, I _C = 2 mA		0.15	0.4	V


AC CHARACTERISTICS


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Non-Satu	rated			•		
T _{ON}	Turn-On Time			3.0		μs
T _{OFF}	Turn-Off Time	$R_{\rm I}$ = 100 Ω, I _C = 2 mA, V _{CC} = 10 V		3.0		μs
T _R	Rise Time	$T_{L} = 100.22, T_{C} = 2.11A, V_{CC} = 10.0$		2.4		μs
Τ _F	Fall Time			2.4		μs
Saturated	I			3		
T _{ON}	Turn-On Time	I _E = 16 mA, R _I = 1.9 kΩ, V _{CE} = 5 V		2.4		μs
T _{OFF}	Turn-Off Time	$T_{\rm F} = 10 \text{mA}, \text{K}_{\rm L} = 1.9 \text{K}_{\rm Z}, \text{V}_{\rm CE} = 5 \text{V}$		25.0		μs

Isolation Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{ISO}	Input-Output Isolation Voltage	$I_{I-O} \le 10 \ \mu A, t = 1 \ Minute$	5,000			VAC _{RMS}
C _{ISO}	Isolation Capacitance	f = 1 MHz		0.5		pF
R _{ISO}	Isolation Resistance	V _{I-O} = 500 VDC	10 ¹¹			Ω

Pb-Free Assembly Profile		
150°C		
200°C		
60–120 seconds		
3°C/second max.		
217°C		
60–150 seconds		
260°C +0°C / -5°C		
30 seconds		
6°C/second max.		
8 minutes max.		

7

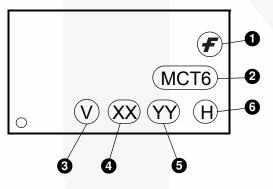
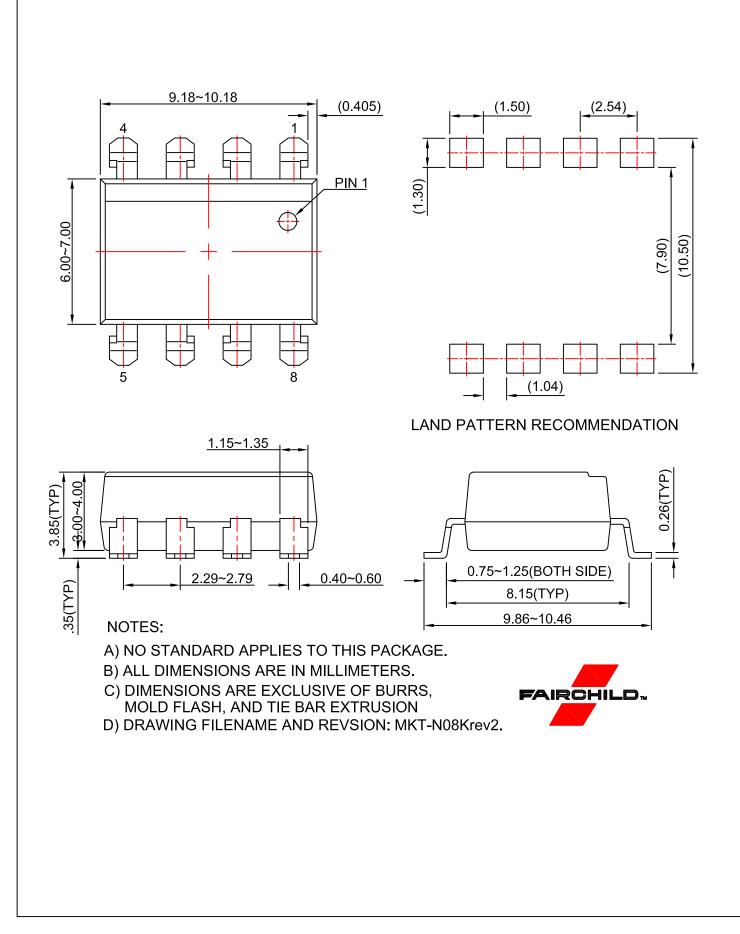
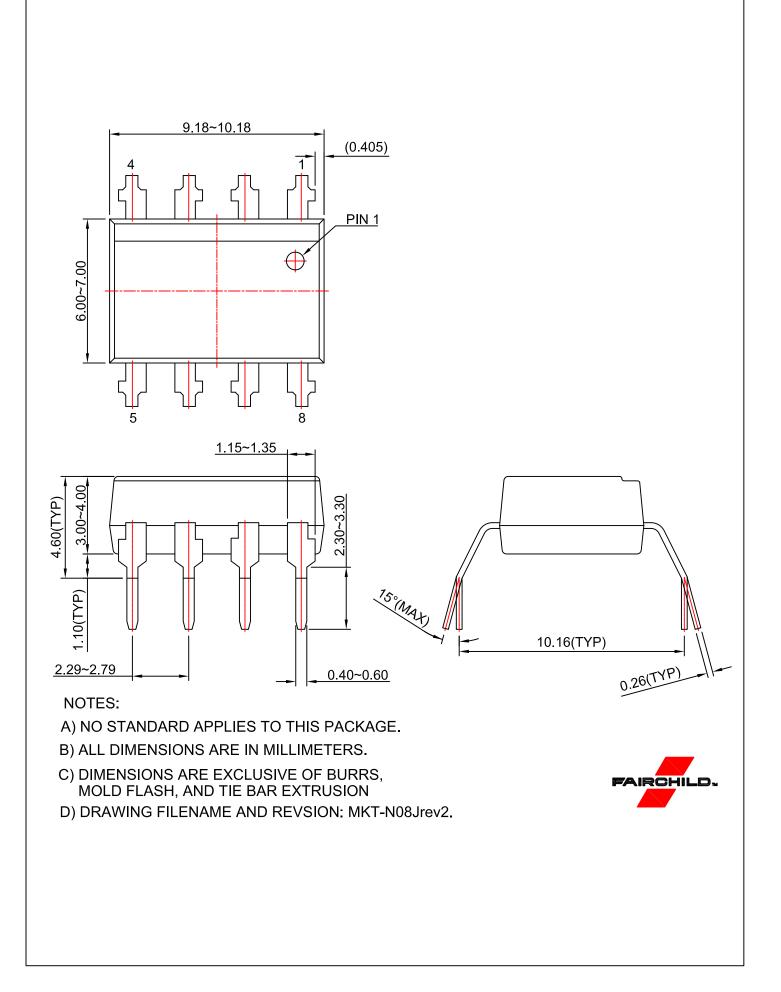
Ordering Information

Part Number	Package	Packing Method
MCT6	DIP 8-Pin	Tube (50 units per tube)
MCT6S	SMT 8-Pin (Lead Bend)	Tube (50 units per tube)
MCT6SD	SMT 8-Pin	Tape and Reel (1,000 units per reel)
MCT6300	DIN EN/IEC 60747-5-5 Option	Tube (50 units per tube)
MCT63S	SMT 8-Pin (Lead Bend); DIN EN/IEC 60747-5-5 Option	Tube (50 units per tube)
MCT63SD	SMT 8-Pin; DIN EN/IEC 60747-5-5 Option	Tape and Reel (1,000 units per reel)
MCT6300W	0.4" Lead Spacing; DIN EN/IEC 60747-5-5 Option	Tube (50 units per tube)

Note

1. The product orderable part number system listed in this table also applies to the MCT61 and MCT62.

Marking Information

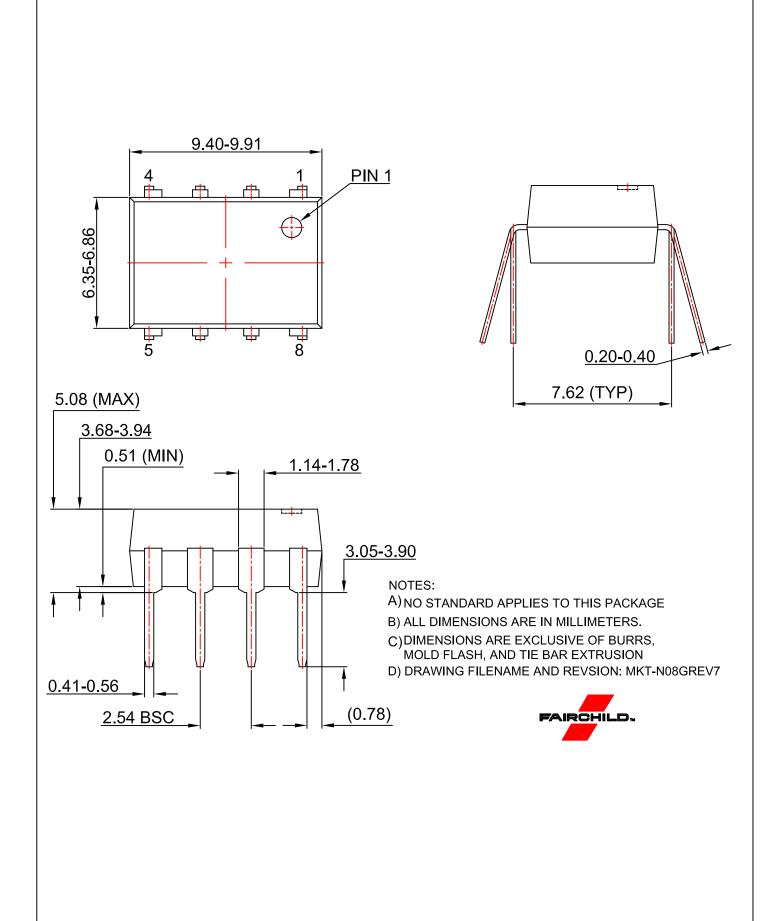

Figure 10. Top Mark

Table 1. Top Mark Definitions

1	Fairchild Logo
2	Device Number
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)
4	Two-Digit Year Code, e.g., "16"
5	Digit Work Week, Ranging from "01" to "53"
6	Assembly Package Code

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC