

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

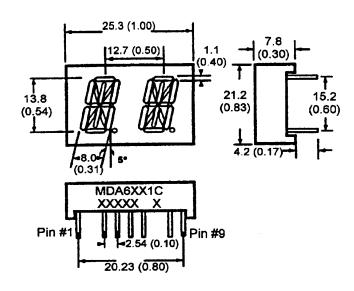
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



BRIGHT RED MDA6141C YELLOW MDA6341C GREEN MDA6441C HIGH EFF. RED MDA6941C

PACKAGE DIMENSIONS

FEATURES

Easy to read digits.

2 digit common cathode.

Multiplexing pin out
Low power consumption.

Bold segments that are highly visible.

High brightness with high contrast

White segments on a grey face.

Directly compatible with integrated circuits.

Rugged plastic/epoxy construction.

APPLICATIONS

Digital readout displays. Instrument panels.

NOTES: Dimensions are in mm (inch).

All pins are 0.5 (0.02) diameter

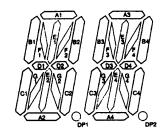
Tolerances are ± 0.25 (0.1) unless otherwise noted.

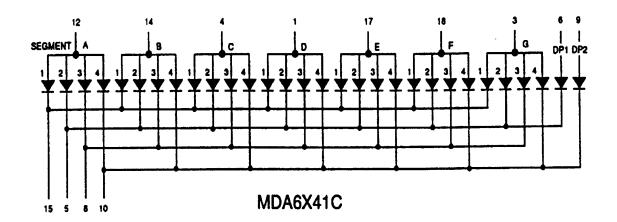
MODEL NUMBERS

Part number	Color	<u>Description</u>				
MDA6141C	Bright Red	2 Digit; Common Cathode; Rt.Hand Decimal				
MDA6341C	Yellow	2 Digit; Common Cathode; Rt.Hand Decimal				
MDA6441C	Green	2 Digit; Common Cathode; Rt Hand Decimal				
MDA6941C	High Eff. Red	2 Digit; Common Cathode; Rt Hand Decimal				
(For other color options, contact your local area Sales Office)						

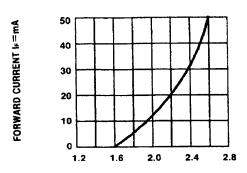
ABSOLUTE MAXIMUM RATING (Ta=25°C unless otherwise specified)

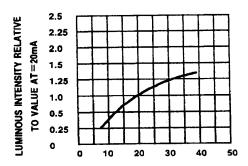
Don't assess on	B.Red MDA	Yellow MDA	Green MDA	High Eff. Red MDA	
Part number	6141C	6341C	6441C	6941C	Unit
Continuous forward current (I _f)					
Per Segment	15	20	30	30	mA
Peak forward current per die (I _f). (at f = 1.0 KHz, Duty factor = 1/10)	50	80	90	160	mA
Power dissipation (P _D)	40*	70*	70*	90*	mW
*Derate Linearly From 25°C	0.17	0.25	0.33	0.33	mW/°C
Reverse voltage per dice5					
Operating and Storage temperate					
Lead soldering time (at 1/16 inch from					

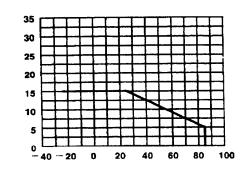

ELECTRO - OPTICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)


	B. Red MDA	Yellow MDA	Green MDA	High Eff. Red MDA	i Test
Part number	6141C	6341C	6441C	6941C	Condition
Luminous intensity (ucd)					
minimum	500	1000	750	1000	$I_F = 20 \text{ mA}$
typical	1400	4000	5000	4000	l, = 20 mA
Forward voltage (V _F)					·
typical	2.1	2.1	2.1	2.0	l, = 20 mA
maximum	2.6	2.8	2.8	2.8	l, = 20 mA
Peak wavelength (nm)	697	590	570	635	$I_F = 20 \text{ mA}$
Spectral line half width (nm)	90	30	30	35	i, = 20 mA
Reverse breakdown voltage (\	/ _R) 5	5	5	5	$I_{R} = 100 \text{ uA}$

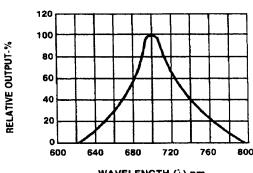
PINOUT


MDA6X41C - Common Cathode

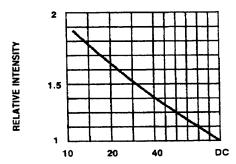



GRAPHICAL DETAIL: Bright Red

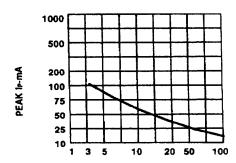
FORWARD VOLTAGE (Vr)-VOLTS
Fig.1 FORWARD CURRENT VS. FORWARD VOLTAGE.



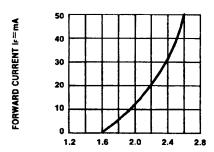
IF-FORWARD CURRENT-MA
Fig.3 RELATIVE LUMINOUS INTENSITY
VS. FORWARD CURRENT

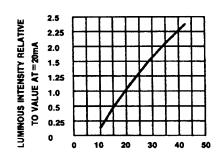


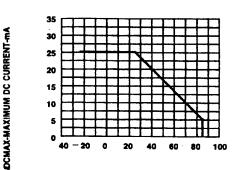
DCMAX-MAXIMUM DC CURRENT-MA

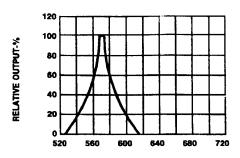

TA AMBIENT TEMPERATURE °C
FIG.4 MAXIMUM ALLOWABLE DC CURRENT PER
SEGMENT VS. A FUNCTION OF AMBIENT
TEMPERATURE.

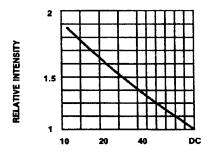
WAVELENGTH (λ)-nm Fig.2 SPECTRAL RESPONSE

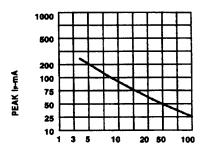

DUTY CYCLE % PER SEGMENT
(AVERAGE IF=10mA)
Fig.5 LUMINOUS INTENSITY VS. DUTY CYCLE


DUTY CYCLE %
Fig. 6 MAX PEAK CURRENT VS. DUTY CYCLE %
(REFRESH RATE != 1 KHz)

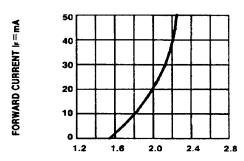

GRAPHICAL DETAIL: Green

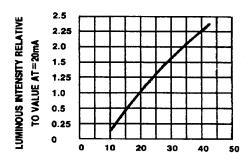

FORWARD VOLTAGE (V_F)-VOLTS
Fig.1 FORWARD CURRENT VS. FORWARD VOLTAGE.

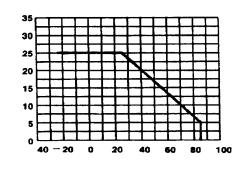

IF-FORWARD CURRENT-MA
Fig.3 RELATIVE LUMINOUS INTENSITY
VS. FORWARD CURRENT


TA AMBIENT TEMPERATURE C Fig.4 MAXIMUM ALLOWABLE DC CURRENT PER SEGMENT CS. A FUNCTION OF AMBIENT TEMPERATURE.

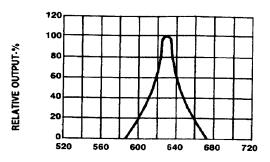
WAVELENGTH (λ)-nm Fig.2 SPECTRAL RESPONSE


DUTY CYCLE % PER SEGMENT
(AVERAGE I;=10mA)
Fig.5 LUMINOUS INTENSITY VS. DUTY CYCLE

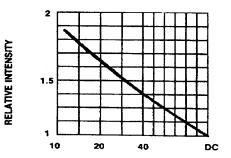

DUTY CYCLE %
Fig. 6 MAX PEAK CURRENT VS. DUTY CYCLE %
(REFRESH RATE (=1 KHz)


GRAPHICAL DETAIL: High Efficiency Red

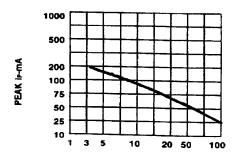
FORWARD VOLTAGE (Vr)-VOLTS
Fig.1 FORWARD CURRENT VS. FORWARD VOLTAGE.



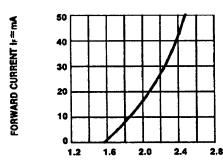
IF-FORWARD CURRENT-MA
FIG.3 RELATIVE LUMINOUS INTENSITY
VS. FORWARD CURRENT

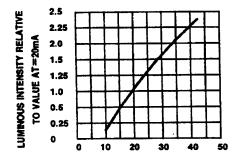


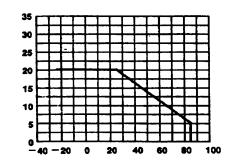
DCMAX-MAXIMUM DC CURRENT-mA


TA AMBIENT TEMPERATURE ©
Fig.4 MAXIMUM ALLOWABLE DC CURRENT PER
SEGMENT VS. A FUNCTION OF AMBIENT
TEMPERATURE.

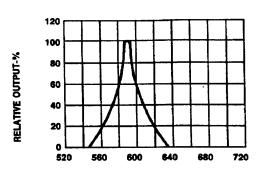
WAVELENGTH (λ)-nm Fig.2 SPECTRAL RESPONSE


DUTY CYCLE % PER SEGMENT (AVERAGE Ir=10mA) Fig.5 LUMINOUS INTENSITY VS. DUTY CYCLE

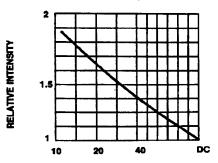

DUTY CYCLE %
Fig. 6 MAX PEAK CURRENT VS. DUTY CYCLE %
(REFRESH RATE (=1 KHz)


GRAPHICAL DETAIL: Yellow

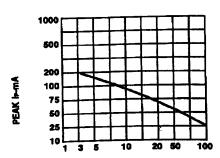
FORWARD VOLTAGE (V_F)-VOLTS Fig.1 FORWARD CURRENT VS. FORWARD VOLTAGE.



IP-FORWARD CURRENT-MA
Fig.3 RELATIVE LUMINOUS INTENSITY
VS. FORWARD CURRENT



IDCMAX-MAXIMUM DC CURRENT-mA


TA MBIENT TEMPERATURE C
Fig.4 MAXIMUM ALLOWABLE DC CURRENT PER
SEGMENT VS. A FUNCTION OF AMBIENT
TEMPERATURE.

WAVELENGTH (λ)-nm Fig.2 SPECTRAL RESPONSE

DUTY CYCLE % PER SEGMENT
(AVERAGE I==10mA)
Fig.5 LUMINOUS INTENSITY VS.DUTY CYCLE

DUTY CYCLE %
Fig. 6 MAX PEAK CURRENT VS. DUTY CYCLE %
(REFRESH RATE (=1 KHz)

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.