

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

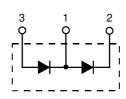
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

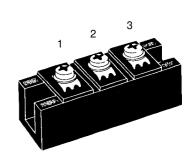
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





High Power Diode Modules

 $I_{FRMS} = 2x 300 A$ $I_{FAVM} = 2x 190 A$ $V_{RRM} = 800-1800 V$

V _{RSM}	V _{RRM}	Туре
900	800	MDD 172-08N1
1300	1200	MDD 172-12N1
1500	1400	MDD 172-14N1
1700	1600	MDD 172-16N1
1900	1800	MDD 172-18N1

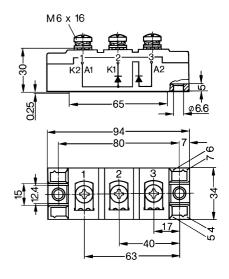
Symbol	Test Conditions		Maximum	Maximum Ratings	
FRMS	$T_{VJ} = T_{VJM}$		300		
FAVM	$T_{\rm C} = 100^{\circ} \rm C; 180^{\circ} \rm s$	sine	190	A	
I _{FSM}	$T_{V,I} = 45^{\circ}C;$	t = 10 ms (50 Hz), s	ine 6600	Α	
	$V_R = 0$	t = 8.3 ms (60 Hz), s	ine 7290	Α	
	$T_{VJ} = T_{VJM}$	t = 10 ms (50 Hz), s	ine 5600	Α	
	$V_R = 0$	t = 8.3 ms (60 Hz), s	ine 6200	Α	
∫i²dt	$T_{V,I} = 45^{\circ}C$	t = 10 ms (50 Hz), s	ine 218 000	A ² s	
	$V_{R}^{VO} = 0$	t = 8.3 ms (60 Hz), s	ine 221 000	A^2s	
	$T_{VJ} = T_{VJM}$	t = 10 ms (50 Hz), s	ine 157 000	A ² s	
	$V_R = 0$	t = 8.3 ms (60 Hz), s	ine 160 000	A^2s	
T _{vJ}			-40+150	°C	
T _{V-IM}			150	_	
T _{stg}			-40+125	°C	
V _{ISOL}	50/60 Hz, RMS	t = 1 min	3000	V~	
	$I_{ISOL} \le 1 \text{ mA}$	t = 1 s	3600	V~	
M _d	9 1 ()		2.25-2.75/20-25 4.5-5.5/40-48		
Weight	Typical including screws		120	g	

Symbol	Test Conditions	Characteristic \	/alues
I _R	$T_{VJ} = T_{VJM}; V_R = V_{RRM}$	20	mA
V _F	$I_F = 300 \text{ A}; T_{VJ} = 25^{\circ}\text{C}$	1.15	V
V _{T0}	For power-loss calculations only	0.8	٧
r _T	$T_{VJ} = T_{VJM}$	0.8	$m\Omega$
$\overline{\mathbf{Q}_{s}}$	$T_{VJ} = 125^{\circ}C; I_{F} = 300 \text{ A}, -di/dt = 50 \text{ A}/\mu\text{s}$	550	μС
I _{RM}		235	Α
R _{thJC}	per diode; DC current	0.21	K/W
	per module other values	0.105	K/W
R_{thJK}	per diode; DC current (see Fig. 6/7	0.31	K/W
	per module	0.155	K/W
d_s	Creepage distance on surface	12.7	mm
dÃ	Strike distance through air	9.6	mm
aÎ	Maximum allowable acceleration	50	m/s ²

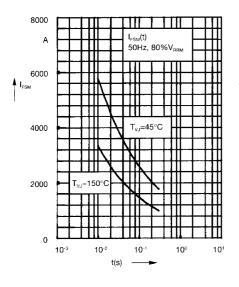
Data according to IEC 60747 and refer to a single diode unless otherwise stated. IXYS reserves the right to change limits, test conditions and dimensions

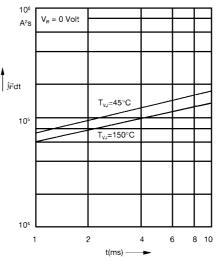
Features

- International standard package
- Direct copper bonded Al₂O₃ -ceramic base plate
- Planar passivated chips
- Isolation voltage 3600 V~
- UL registered, E 72873


Applications

- Supplies for DC power equipment
- DC supply for PWM inverter
- Field supply for DC motors
- Battery DC power supplies


Advantages


- · Space and weight savings
- · Simple mounting
- Improved temperature and power cycling
- · Reduced protection circuits

Dimensions in mm (1 mm = 0.0394")

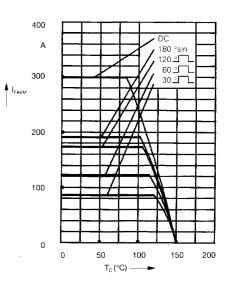


Fig. 1 Surge overload current I_{FSM} : Crest value, t: duration

Fig. 2 Ji²dt versus time (1-10 ms)

Fig. 2a Maximum forward current at case temperature

Fig. 3 Power dissipation versus forward current and ambient temperature (per diode)

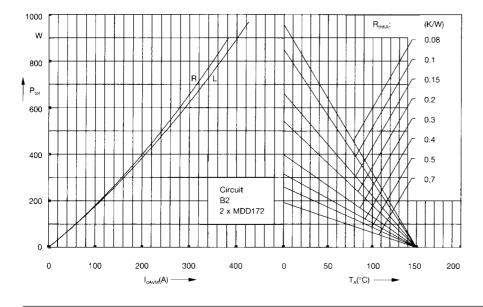


Fig. 4 Single phase rectifier bridge:
Power dissipation versus direct
output current and ambient
temperature
R = resistive load

L = inductive load

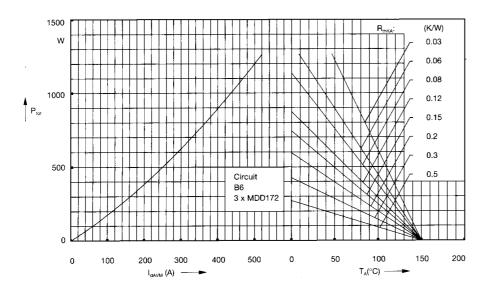


Fig. 5 Three phase rectifier bridge:
Power dissipation versus direct
output current and ambient
temperature

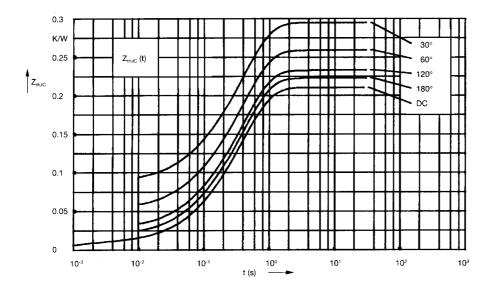


Fig. 6 Transient thermal impedance junction to case (per diode)

 $\boldsymbol{R}_{\text{thJC}}$ for various conduction angles d:

d	R_{thJC} (K/W)
DC	0.210
180°	0.223
120°	0.233
60°	0.260
30°	0.295

Constants for Z_{th,IC} calculation:

ı		trioo	
	i	R_{thi} (K/W)	t _i (s)
	1	0.0087	0.001
	2	0.0163	0.065
	3	0.185	0.4

Fig. 7 Transient thermal impedance junction to heatsink (per diode)

 $\boldsymbol{R}_{thJ\boldsymbol{K}}$ for various conduction angles d:

d	R _{thJK} (K/W)
DC	0.31
180°	0.323
120°	0.333
60°	0.360
30°	0.395

Constants for Z_{thJK} calculation:

tion		
i	R _{thi} (K/W)	t _i (s)
1	0.0087	0.001
2	0.0163	0.065
3	0.185	0.4
4	0.1	1.29