imall

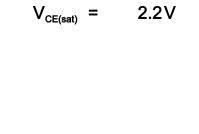
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


MDI75-12A3

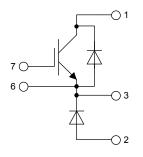
1200V

90A

IGBT (NPT) Module

Part number MDI75-12A3

=


=

 V_{CES}

| _{C25}

Backside: isolated **S** E72873

Features / Advantages:

- NPT IGBT technology
- low saturation voltage
- low switching losses
- switching frequency up to 30 kHz
- square RBSOA, no latch up
- high short circuit capability
 positive temperature coefficient for
- easy parallelling
- MOS input, voltage controlled
- ultra fast free wheeling diodes

Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipment
 Switched-mode and resonant-mode
- power supplies • Inductive heating, cookers
- Pumps, Fans

Package: Y4

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

IXYS reserves the right to change limits, conditions and dimensions.

MDI75-12A3

Free Wheeling Diode FWD			Ratings				
Symbol	Definition	Conditions		min.	typ.	max.	Unit
	max. non-repetitive reverse block	ing voltage	$T_{VJ} = 25^{\circ}C$			1200	V
	max. repetitive reverse blocking v	oltage	$T_{VJ} = 25^{\circ}C$			1200	V
I _R	reverse current, drain current	V _R = 1200 V	$T_{VJ} = 25^{\circ}C$			650	μA
		V _R = 1200 V	T _{vJ} = 125°C			2	mA
V _F	forward voltage drop	I _F = 50 A	$T_{vJ} = 25^{\circ}C$			2.50	V
		I _F = 100 A				3.00	V
		I _F = 50 A	T _{vJ} = 125°C			1.90	V
		I _F = 100 A				2.30	V
I _{FAV}	average forward current	$T_c = 80^{\circ}C$	T _{vJ} = 150°C			60	Α
		DC current d = 1					
V _{F0}	threshold voltage		T _{vJ} = 150°C			1.30	V
r _F	slope resistance } for power lo	oss calculation only				12	mΩ
R _{thJC}	thermal resistance junction to cas	e				0.66	K/W
R _{thCH}	thermal resistance case to heatsing	nk			0.66		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			190	W
	max. forward surge current	t = 10 ms; (50 Hz), sine; $V_R = 0 V$	$T_{vJ} = 45^{\circ}C$			400	A
C	junction capacitance	V_{R} = 600 V f = 1 MHz	$T_{VJ} = 25^{\circ}C$		30		pF

IXYS reserves the right to change limits, conditions and dimensions.

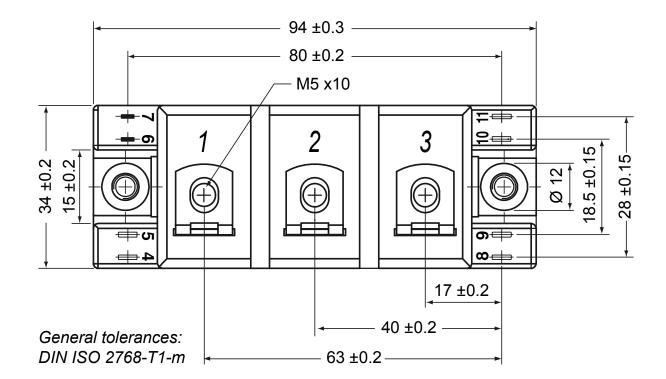
MDI75-12A3

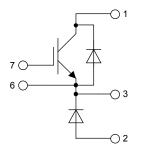
Buck IG					Ratings		ļ
Symbol	Definition	Conditions		min.	typ.	max.	Un
V _{CES}	collector emitter voltage		$T_{VJ} = 25^{\circ}C$			1200	\
V _{GES}	max. DC gate voltage					±20	١
V _{GEM}	max. transient gate emitter voltage					±30	<u>i</u>
I _{C25}	collector current		$T_c = 25^{\circ}C$			90	1
I _{C 80}			$T_c = 80^{\circ}C$			60	1
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			370	۷
V _{CE(sat)}	collector emitter saturation voltage	I _C = 50A; V _{GE} = 15 V	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		2.2 2.7	2.7	\ \
V	gate emitter threshold voltage	$I_c = 2mA; V_{GE} = V_{CE}$	$T_{VJ} = 125 \text{ C}$ $T_{VJ} = 25^{\circ}\text{C}$	4.5	5.5	6.5	Ň
V _{GE(th)}	collector emitter leakage current	$V_{CE} = V_{CES}; V_{GE} = 0 V$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 25^{\circ}C$	4.5	0.0	4	!
ICES	conector enniter reakage current	$\mathbf{v}_{CE} = \mathbf{v}_{CES}, \ \mathbf{v}_{GE} = 0 \ \mathbf{v}$	$T_{VJ} = 25 C$ $T_{VJ} = 125 °C$		6	4	m/
I _{GES}	gate emitter leakage current	$V_{GE} = \pm 20 V$				200	n/
Q _{G(on)}	total gate charge	V_{CE} = 600 V; V_{GE} = 15 V; I_{C} =	50 A		240		nC
t _{d(on)}	turn-on delay time)			100		n
t,	current rise time		_ /		70		n
t _{d(off)}	turn-off delay time	inductive load	$T_{VJ} = 125^{\circ}C$		500		n
t _f	current fall time	$V_{CE} = 600 \text{ V}; \text{ I}_{C} = 50 \text{ A}$			70		n
Eon	turn-on energy per pulse	$V_{GE} = \pm 15 \text{ V}; \text{ R}_{G} = 22 \Omega$			7.6		m
Eoff	turn-off energy per pulse	J			5.6		m
RBSOA	reverse bias safe operating area	$V_{GE} = \pm 15 \text{ V}; \text{ R}_{G} = 22 \Omega$	T _{vJ} = 125°C				1
I _{CM}		$\int V_{CEmax} = 1200V$				100	
SCSOA	short circuit safe operating area	γ V _{CEmax} = 1200 V					
t _{sc}	short circuit duration	$V_{CE} = 1200 \text{ V}; \text{ V}_{GE} = \pm 15 \text{ V}$	T _{vJ} = 125°C			10	μ
l _{sc}	short circuit current	R_{g} = 22 Ω ; non-repetitive			180		
R _{thJC}	thermal resistance junction to case					0.33	!
	thermal resistance case to heatsink				0.33	0.00	K/V
• • • • • • • • • • • • • • • • • • •					0.00		
Buck Die	ode BD						
V _{RRM}	max. repetitive reverse voltage		$T_{VJ} = 25^{\circ}C$			1200	١
_{F25}	forward current		$T_c = 25^{\circ}C$			100	ŀ
I _{F 80}			$T_c = 80^{\circ}C$			60	ļ
V _F	forward voltage	I _F = 50A	$T_{VJ} = 25^{\circ}C$			2.50	١
			T _{vJ} = 125°C		1.80		١
I _R	reverse current	$V_{R} = V_{RRM}$	$T_{VJ} = 25^{\circ}C$			0.65	m/
			T _{vJ} = 125°C		1		m/
Q _r	reverse recovery charge	٦			3.5		μC
I _{RM}	max. reverse recovery current	V _R = 600 V			40		-
t _π	reverse recovery time	 -di_F/dt = 400 A/µs I_F = 50A; V_{GE} = 0 V 	$T_{v_{J}} = 125^{\circ}C$		200		n
E _{rec}	reverse recovery energy	$I_{\rm F} = 50$ A; $V_{\rm GE} = 0$ V			1		m
- rec		2		L	1		
R _{thJC}	thermal resistance junction to case					0.66	K \/ \

IXYS reserves the right to change limits, conditions and dimensions.

MDI75-12A3

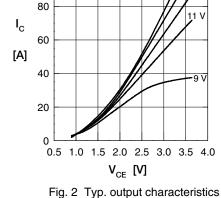
Package	e Y4					Ratings	6	
Symbol	Definition	Conditions			min.	typ.	max.	Unit
	RMS current	per terminal					300	Α
T _{vj}	virtual junction temperature				-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		125	°C
Weight						108		g
M _D	mounting torque				2.25		2.75	Nm
Μ _τ	terminal torque				4.5		5.5	Nm
d Spp/App	creenage distance on surfac	ce striking distance through air	terminal to terminal	14.0	10.0			mm
d _{Spb/Apb}	creepage distance on surrac	te Sunking distance unough an	terminal to backside	16.0	16.0			mm
	isolation voltage	t = 1 second	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA		3600			V
		t = 1 minute			3000			V


Assembly DIXYS Circuit Diagram Line Date Code Part No. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY	2D Matrix


[Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
	Standard	MDI75-12A3	MDI75-12A3	Box	6	474207

IXYS reserves the right to change limits, conditions and dimensions.

Outlines Y4



IXYS reserves the right to change limits, conditions and dimensions.

MDI75-12A3

Buck IGBT

T_{VJ} = 125°C

V_{GE} =17 V

15 \

120

120

100

24

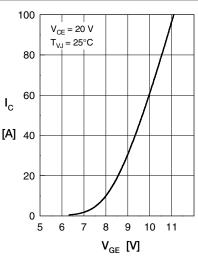


Fig. 3 Typ. transfer characteristics

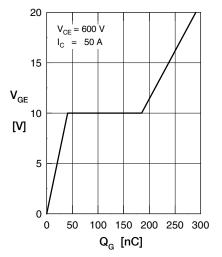
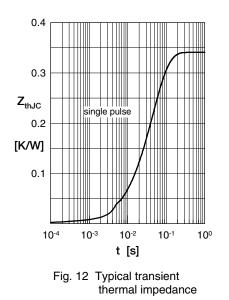
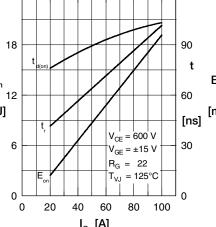




Fig. 4 Typ. turn-on gate charge

18 90 t E_{on} 12 60 [mJ] t V_{CE} = 600 V 6 30 V_{GE} = ±15 V $R_G = 22$ T_{VJ} = 125°C 0 0 0 20 40 60 80 100 I_c [A]

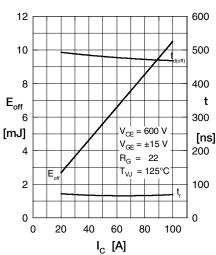
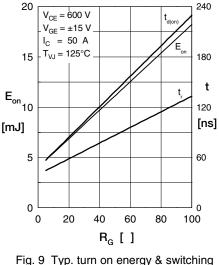



Fig. 5 Typ. turn on energy & switching times versus collector current

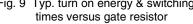


Fig.6 Typ. turn off energy & switching times versus collector current

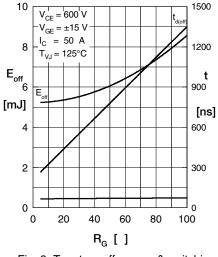
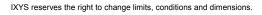
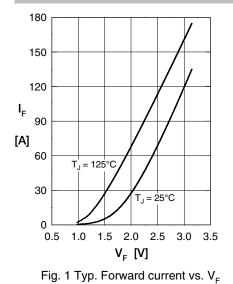




Fig. 9 Typ. turn off energy & switching times versus gate resistor

Buck Diode BD

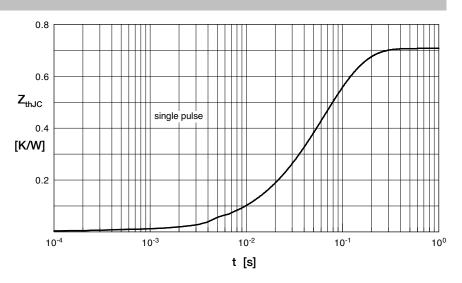


Fig. 2 Typ. transient thermal impedance junction to case

IXYS reserves the right to change limits, conditions and dimensions.