

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

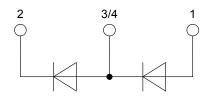
Standard Rectifier Module

= 2x 1600 V

200A

1.06 V

Phase leg


Part number

MDMA200P1600SA

Backside: isolated

Features / Advantages:

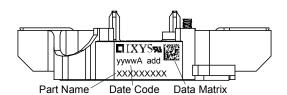
- Planar passivated chips
- Very low leakage currentVery low forward voltage drop
- Improved thermal behaviour

Applications:

- Diode for main rectification
- For single and three phase bridge configurations

Package: SimBus A

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Gate: Spring contacts for solder-free PCB-mounting
- Height: 17 mm
- Base plate: Copper internally DCB isolated
- Advanced power cycling



Rectifier					Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
V _{RSM}	max. non-repetitive reverse bloc	king voltage	$T_{VJ} = 25^{\circ}C$			1700	V	
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1600	V	
I _R	reverse current	V _R = 1600 V	$T_{VJ} = 25^{\circ}C$			200	μΑ	
		V _R = 1600 V	$T_{VJ} = 150^{\circ}C$			15	mΑ	
V _F	forward voltage drop	I _F = 200 A	$T_{VJ} = 25^{\circ}C$			1.13	V	
		$I_F = 400 \text{ A}$				1.33	٧	
		I _F = 200 A	T _{VJ} = 125 °C			1.06	V	
		$I_F = 400 \text{ A}$				1.32	٧	
I _{FAV}	average forward current	T _c = 110°C	T _{VJ} = 150°C			200	Α	
		rectangular d = 0.5						
V _{F0}	threshold voltage		T _{VJ} = 150°C			0.76	V	
r _F	slope resistance \(\) for power	loss calculation only				1.4	mΩ	
R _{thJC}	thermal resistance junction to ca	ase				0.15	K/W	
R _{thCH}	thermal resistance case to heats	sink			0.08		K/W	
P _{tot}	total power dissipation		$T_{\rm C} = 25^{\circ}{\rm C}$			830	W	
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			6.00	kA	
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			6.48	kA	
		t = 10 ms; (50 Hz), sine	T _{VJ} = 150°C			5.10	kA	
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			5.51	kA	
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			180.0	kA2s	
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			174.7	kA²s	
		t = 10 ms; (50 Hz), sine	T _{VJ} = 150°C			130.1	kA ² s	
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			126.3	kA²s	
C	junction capacitance	$V_R = 400 \text{ V; } f = 1 \text{ MHz}$	T _{VJ} = 25°C		273		pF	

MDMA200P1600SA

Package SimBus A			Ratings					
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					300	Α
T _{VJ}	virtual junction temperature	9			-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		125	°C
Weight						152		g
M _D	mounting torque				3		5	Nm
M _T	terminal torque				2.5		5	Nm
d _{Spp/App}	araanaga diatanaa an aurfa	ace striking distance through air	terminal to terminal	14.0	10.0			mm
d _{Spb/Apb}	creepage distance on surra	ice Striking distance tillough all	terminal to backside 14.0		10.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA		4800			V
		t = 1 minute			4000			V

Part number

M = Module

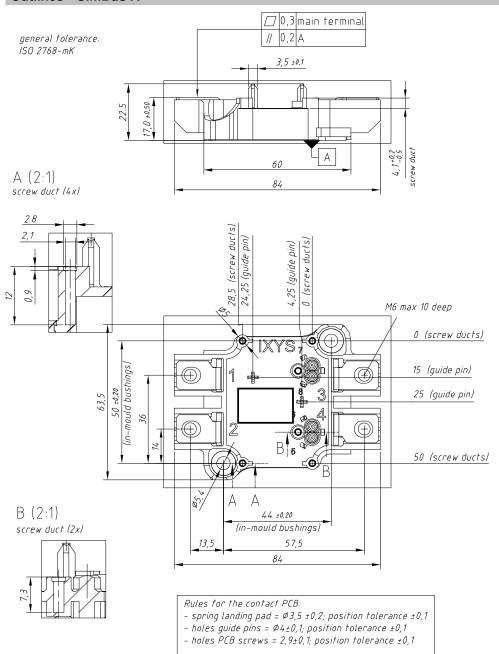
D = Diode

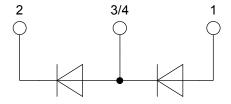
M = Standard Rectifier

A = (up to 1800V) 200 = Current Rating [A]

P = Phase leg

1600 = Reverse Voltage [V]


SA = SimBus A


Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.	
Standard	MDMA200P1600SA	MDMA200P1600SA	Blister	9	510373	

Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150 ^{\circ}C$
$I \rightarrow V_0$	R_0	Rectifier		
V _{0 max}	threshold voltage	0.76		V
R _{0 max}	slope resistance *	8.0		mΩ

Outlines SimBus A

Rectifier

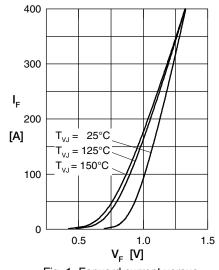


Fig. 1 Forward current versus voltage drop per diode

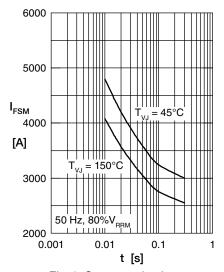


Fig. 2 Surge overload current vs. time per diode

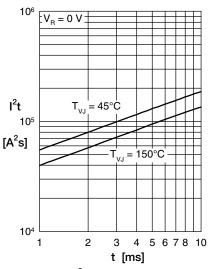


Fig. 3 I²t versus time per diode

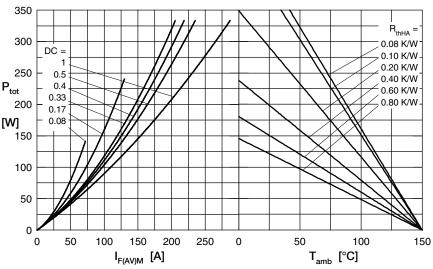


Fig. 4 Power dissipation vs. forward current and ambient temperature per diode

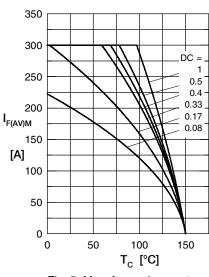


Fig. 5 Max. forward current vs. case temperature per diode

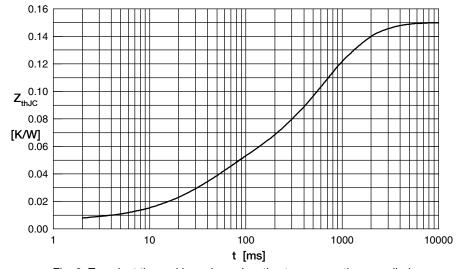


Fig. 6 Transient thermal impedance junction to case vs. time per diode

Constants for \mathbf{Z}_{thJC} calculation:

i	R_{thi} (K/W)	t _i (s)
1	0.006	0.0005
2	0.035	0.0400
3	0.079	0.5500
4	0.030	1.5000