

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

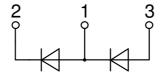
Standard Rectifier Module

= 2x 1200 V

85 A

 V_{F} 1.1 V

Phase leg


Part number

MDMA85P1200TG

Backside: isolated

F1 E72873

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

- Diode for main rectification
- For single and three phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Height: 30 mm
- Base plate: DCB ceramic
- · Reduced weight
- Advanced power cycling

Terms _Conditions of usage:

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact your local sales office.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office.

Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

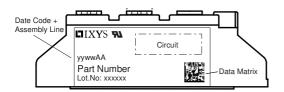
to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

Data according to IEC 60747 and per semiconductor unless otherwise specified

20161222c



Rectifier				1	Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
V _{RSM}	max. non-repetitive reverse bloc	cking voltage	$T_{VJ} = 25^{\circ}C$			1300	V	
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1200	V	
I _R	reverse current	V _R = 1200 V	$T_{VJ} = 25^{\circ}C$			100	μΑ	
		$V_R = 1200 \text{ V}$	$T_{VJ} = 150$ °C			2	mΑ	
V _F	forward voltage drop	I _F = 85 A	$T_{VJ} = 25^{\circ}C$			1.15	V	
		$I_F = 170 A$				1.38	٧	
		I _F = 85 A	T _{VJ} = 125°C			1.10	V	
		$I_F = 170 \text{ A}$				1.39	V	
I FAV	average forward current	T _C = 100°C	T _{vJ} = 150°C			85	Α	
		rectangular d = 0.5						
V _{F0}	threshold voltage		T _{vJ} = 150°C			0.79	V	
r _F	slope resistance } for power	loss calculation only				3.5	mΩ	
R _{thJC}	thermal resistance junction to ca	ase				0.35	K/W	
R _{thCH}	thermal resistance case to heats	sink			0.20		K/W	
P _{tot}	total power dissipation		$T_{\text{C}} = 25^{\circ}\text{C}$			350	W	
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			1.50	kA	
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			1.62	kA	
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			1.28	kA	
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			1.38	kA	
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			11.3	kA2s	
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			10.9	kA2s	
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150$ °C			8.13	kA2s	
		t = 8.3 ms; (60 Hz), sine	$V_R = 0 V$			7.87	kA2s	
C _J	junction capacitance	$V_{R} = 400 \text{ V}; f = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		60		pF	

MDMA85P1200TG

Package TO-240AA			Ratings					
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal					200	Α
T _{VJ}	virtual junction temperature				-40		150	°C
T _{op}	operation temperature			-40		125	°C	
T _{stg}	storage temperature			-40		125	°C	
Weight						76		g
M _D	mounting torque				2.5		4	Nm
$\mathbf{M}_{_{T}}$	terminal torque			2.5		4	Nm	
d _{Spp/App}	creepage distance on surface	terminal to terminal 13.0		9.7			mm	
$d_{\text{Spb/Apb}}$	creepage distance on surface [Striking distance through an	terminal to backside 16.0		16.0			mm
V _{ISOL}	isolation voltage	t = 1 second			4800			٧
	t = 1 minute		50/60 Hz, RMS; I _{ISOL} ≤ 1 mA		4000			٧

Part description

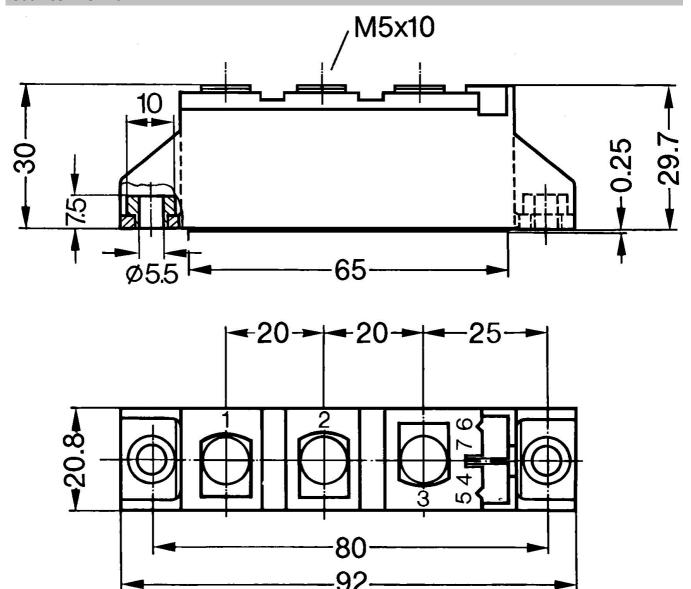
M = Module

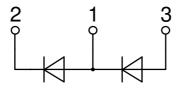
D = Diode
M = Standard Rectifier

A = (up to 1800V) 85 = Current Rating [A]

P = Phase leg

1200 = Reverse Voltage [V]


TG = TO-240AA


Orderin	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standar	MDMA85P1200TG	MDMA85P1200TG	Box	36	513015

Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150 ^{\circ}\text{C}$
$I \rightarrow V_0$	R_0	Rectifier		
V _{0 max}	threshold voltage	0.79		V
$R_{0 \; \text{max}}$	slope resistance *	2.3		$m\Omega$

Outlines TO-240AA

Rectifier

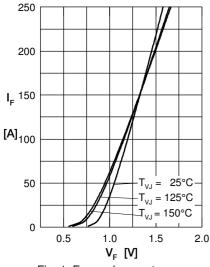


Fig. 1 Forward current versus voltage drop per diode

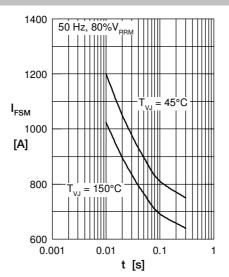


Fig. 2 Surge overload current vs. time per diode

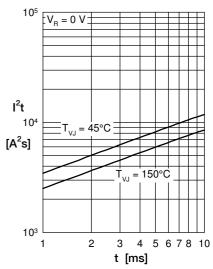


Fig. 3 I²t versus time per diode

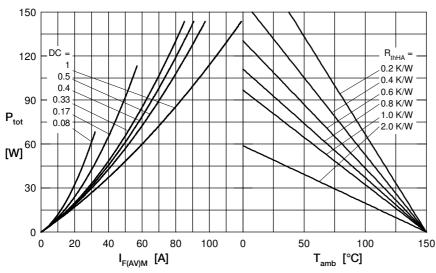


Fig. 4 Power dissipation vs. forward current and ambient temperature per diode

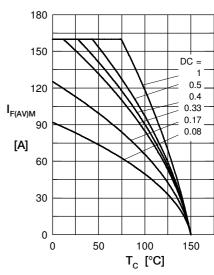


Fig. 5 Max. forward current vs. case temperature per diode

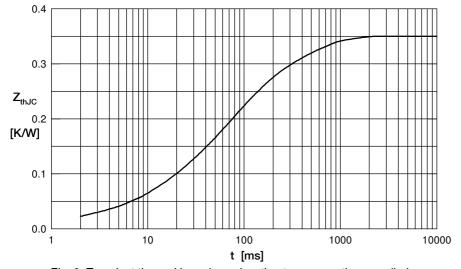


Fig. 6 Transient thermal impedance junction to case vs. time per diode

Constants for Z_{thJC} calculation:

İ	R_{thi} (K/W)	t _i (s)
1	0.012	0.001
2	0.048	0.013
3	0.185	0.070
4	0.105	0.400