mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ME005-Series Power Modules: 39.5 Vdc to 60 Vdc Input; 5 W

The ME005-Series Power Modules use advanced, surfacemount technology and deliver high-quality, compact, dc-dc conversion at an economical price.

Applications

- ⁿ Communication equipment
- ⁿ Computer equipment
- n Digital circuitry
- n Distributed power architectures

Features

- ⁿ Small size: 50.8 mm x 27.9 mm x 11.7 mm (2.00 in. x 1.10 in. x 0.46 in.)
- Operating ambient temperature range: -40 °C to +85 °C
- n High reliability
- n Input-to-output isolation
- n No external filtering required
- n Load regulation: 0.15% max (ME005A, B, C, N)
- ⁿ Line regulation: 0.05% max (ME005A, B, C, N)
- ⁿ Overcurrent protection
- ⁿ Output overvoltage protection
- n PC board mountable
- UL* 1950 Recognized, CSA[†] C22.2 No. 950-95 Certified, VDE 0805 (EN60950, IEC950) and TUV[‡] Licensed
- Within FCC Class B requirements for radiated emissions

Options

ⁿ Long pins: 5.8 mm (0.230 in.)

Description

The ME005-Series Power Modules are dc-dc converters that operate over an input voltage range of 39.5 Vdc to 60 Vdc and provide precisely regulated dc outputs. The outputs are fully isolated from the inputs, allowing versatile polarity configurations and grounding connections. The modules have maximum power ratings of 5 W at typical full-load efficiencies of 80% to 83% depending on the code.

The modules are encapsulated in nonconductive cases that mount on PC boards. In a natural convection environment, the modules are rated to full load at 85 °C with no heat sinking or external filtering.

‡ TÜV is a registered trademark of Technischer Überwachungs-Verein.

^{*} UL is a registered trademark of Underwriters Laboratories, Inc.

[†] CSA is a registered trademark of Canadian Standards Association.

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Min	Max	Unit
Input Voltage (continuous)	Vı	—	60	Vdc
Operating Ambient Temperature (natural convection)	Та	-40	85	°C
Storage Temperature	Tstg	-40	100	°C
I/O Isolation Voltage	—	—	500	Vdc

Electrical Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions.

Table 1. Input Specifications

Parameter	Symbol	Min	Тур	Max	Unit
Operating Input Voltage	Vi	39.5	48	60	Vdc
Maximum Input Current (VI = 0 V to 60 V; Io = Io, max; see Figures 1—5.)	II, max		_	600	mA
Inrush Transient	i ² t	_	0.3	1.0	A ² s
Input Reflected-ripple Current, Peak-to-peak (5 Hz to 20 MHz, 12 μ H source impedance, T _A = 25 °C; see Figure 31 and Design Considerations section.)	lı		30		mAp-p
Input Ripple Rejection (120 Hz)			53		dB

Fusing Considerations

CAUTION: This power module is not internally fused. An input line fuse must always be used.

This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone operation to an integrated part of a sophisticated power architecture. To preserve maximum flexibility, internal fusing is not included; however, to achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a normal-blow fuse with a maximum rating of 5 A in series with the input (see Safety Considerations section). Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same type of fuse with a lower rating can be used. However, for *UL* recognition, the dc rating of the fuse must not exceed 5 A. Refer to the fuse manufacturer's data for further information.

Electrical Specifications (continued)

Table 2. Output Specifications

Parameter	Device	Symbol	Min	Тур	Max	Unit
Output Voltage Set Point	ME005A	VO, set	4.85	5.0	5.20	Vdc
(VI = 48 V; IO = IO, max; TA = 25 °C)	ME005N	VO, set	5.10	5.20	5.30	Vdc
	ME005B	Vo, set	11.52	12.0	12.48	Vdc
	ME005C	VO, set	14.4	15.0	15.6	Vdc
	ME005BK	VO1, set	11.4	12.0	12.6	Vdc
		VO2, set	-11.4	-12.0	-12.6	Vdc
	ME005CL	VO1, set	14.25	15.0	15.75	Vdc
		VO2, set	-14.25	-15.0	-15.75	Vdc
Output Voltage	ME005A	Vo	4.80	—	5.25	Vdc
(Over all operating input voltage,	ME005N	Vo	5.05	—	5.35	Vdc
resistive load, and temperature	ME005B	Vo	11.4	—	12.6	Vdc
conditions until end of life. See	ME005C	Vo	14.25	—	15.75	Vdc
Figure 33. See Figures 9—12 for	ME005BK	Vo1	10.08		13.2	Vdc
cross regulation on dual outputs.)		Vo2	-10.08	—	-13.2	Vdc
	ME005CL	Vo1	13.5	—	16.5	Vdc
		V02	-13.5		-16.5	Vdc
Output Regulation:				0.01	0.05	0/1/-
Line $(VI = 39.5 \text{ Vac to 60 Vac})$	MEUUSA, B, C, N	_		0.01	0.05	%V0
LOAD (IO = IO, min to IO, max)	MEUUSA, B, C, N	_		0.05	0.15	%V0
	ME005A, N			15	10	mv
$(1A = -40 \degree C t0 + 85 \degree C;$	ME005B	_		40	150	mv mV
See Figures 6—8.)	ME005C			45	190	mv
(With 0.1 uE coramic bypass						
$(With 0.1 \ \mu F$ certainic bypass capacitor on output: see Figure 32.):						
BMS	ΜΕΛΟ5Δ Ν				15	m\/rms
	ME005R C				25	mVrms
	ME005BK CI				80	mVrms
Peak-to-peak (5 Hz to 20 MHz)	ME005A N				50	mVn-n
	ME005B C				100	mVp-p
	ME005BK, CL	_			250	mVp-p
Output Current	ME005A	lo	0.02		1.0	A
(At Io < Io, min, the modules may)	ME005N	lo	0.02		0.96	A
exceed output ripple specifications	ME005B	lo	0.005		0.42	A
and dual-output modules may	ME005C	lo	0.005		0.33	А
exceed specified output voltages.)	ME005BK	I O1	0.02	_	0.21	А
		I 02	0.02		0.21	А
	ME005CL	I O1	0.017	_	0.17	А
		l02	0.017	—	0.17	А
Output Current-limit Inception						
(See Figures 13—19.):						
Vo = 4.5 V	ME005A	lo	—	1.6	2.5	A
Vo = 4.68 V	ME005N	lo	—	1.6	2.5	A
Vo = 10.8 V	ME005B	lo	—	0.8	1.4	A
Vo = 13.5 V	ME005C	lo	—	0.7	1.3	A
Vo1 or Vo2 = 10.2 V	ME005BK	lo	—	0.8	1.4	A
Vo1 or Vo2 = 12.75 V	ME005CL	lo	—	0.7	1.3	A

Electrical Specifications (continued)

Table 2. Output Specifications (continued)

Parameter	Device	Symbol	Min	Тур	Max	Unit
Output Current Limit						
(See Figures 13—19.):						
$V_0 = 1.0 V$	ME005A, N	—	_		3.0	A
VO = 1.0 V	ME005B, C		_		2.0	A
VO1 or VO2 = 1.0 V	ME005BK, CL		—		2.0	A
Output Short-circuit Current	ME005A, N	—	—	1.5	—	А
(Vo = 250 mV; see Figures 13—19.)	ME005B, C, BK, CL	—	—	1.0	—	А
Efficiency	ME005A, N	η	77	80		%
$(V_1 = 48 V; I_0 = I_0, max; T_A = 25 °C;$	ME005B, C	η	80	83	—	%
see Figures 20—24, 33, and 34.)	ME005BK, CL	η	79	82	—	%
Dynamic Response $(ý Io)/ýt = 1 A/10 \mu s, V_I = 48 V,$ TA = 25 °C; for ME005BK and CL applies to Vo1 and Vo2 at Io = Io max):						
Load Change from $I_0 = 50\%$ to 75% of $I_{0, max}$ (See Figures 25—27.):						
Peak Deviation	ME005A, N ME005B, C ME005BK, CL			80 70 50		mV mV mV
Settling Time	ME005A, B, C, N		—	3.5	—	ms
(Vo < 10% peak deviation) Load Change from Io = 50% to 25% of Io, max (See Figures 28—30.):	ME005BK, CL	_	_	5.0	_	ms
Peak Deviation	ME005A, N	_	—	80	—	mV
	ME005B	—	—	70	—	mV
	ME005C	—	—	60	—	mV
	ME005BK, CL	—	—	50	—	mV
Settling Time	ME005A, B, C, N	—	—	3.5	—	ms
(Vo < 10% of peak deviation)	ME005BK, CL	—	—	5.0	—	ms

Electrical Specifications (continued)

Table 3. Isolation Specifications

Parameter	Device	Min	Тур	Max	Unit
Isolation Capacitance	All		1200	—	pF
Isolation Resistance	All	10	—	—	M¾

General Specifications

Parameter	Device	Min	Тур	Max	Unit
Calculated MTBF (Io = 80% of Io, max; Tc = 40 °C)	All		7,000,000		hours
Weight	All	_	_	28 (1.0)	g (oz.)

Feature Specifications

Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for further information.

Parameter	Device	Symbol	Min	Тур	Max	Unit
Output Overvoltage Protection (clamp)	ME005A, N	VO, clamp	—	6.0	7.0	V
	ME005B	VO, clamp	—	14	16	V
	ME005C	VO, clamp	—	17	19	V
	ME005BK	VO1, clamp	—	16	18	V
		VO2, clamp	—	-16	-18	V
	ME005CL	VO1, clamp	—	19	21	V
		VO2, clamp	—	-19	-21	V

Characteristic Curves

Figure 1. ME005A, N Typical Input Characteristics with Io = Io, max and TA = 25 °C (Arrows Indicate Hysteresis)

Figure 3. ME005C Typical Input Characteristics with Io = Io, max and TA = 25 °C (Arrows Indicate Hysteresis)

Figure 4. ME005BK Typical Input Characteristics with Io = Io, max and TA = 25 °C (Arrows Indicate Hysteresis)

Figure 5. ME005CL Typical Input Characteristics with Io = Io, max and TA = 25 °C (Arrows Indicate Hysteresis)

Figure 6. ME005A Typical Output Voltage Variations over Operating Ambient Temperature Range (ME005N Variations Are Similar.)

Figure 9. ME005BK Typical Vo1 vs. Io1 Regulation with VI = 48 V and TA = 25 $^{\circ}$ C

Figure 10. ME005BK Typical Vo2 vs. Io2 Regulation with VI = 48 V and TA = 25 °C

Figure 11. ME005CL Typical Vo1 vs. Io1 Regulation with VI = 48 V and TA = 25 °C

Figure 14. ME005B Typical Output Characteristics with VI = 48 V and TA = 25 °C

Figure 15. ME005C Typical Output Characteristics with VI = 48 V and TA = 25 °C

Figure 16. ME005BK Typical Output Characteristics (Vo1 vs. lo1) with VI = 48 V and TA = 25 °C

Figure 17. ME005BK Typical Output Characteristics (Vo2 vs. lo2) with VI = 48 V and TA = 25 °C

Figure 19. ME005CL Typical Output Characteristics (Vo2 vs. Io2) with VI = 48 V and TA = 25 °C

Figure 20. ME005A, N Typical Converter Efficiency as a Function of Output Current with $V_I = 48 V$ and $T_A = 25 \ ^\circ C$

Figure 23. ME005BK Typical Converter Efficiency as a Function of Output Current with VI = 48 V and TA = 25 °C

Figure 24. ME005CL Typical Converter Efficiency as a Function of Output Current with VI = 48 V and TA = 25 °C

Figure 27. ME005C Typical Output Voltage Waveform for a Step Load Change from 50% to 75% of Io, max with VI = 48 V and TA = 25 °C

Figure 28. ME005A Typical Output Voltage Waveform for a Step Load Change from 50% to 25% of Io, max with VI = 48 V and TA = 25 °C (ME005N Waveform Is Similar, but with 5.2 V Steady-State.)

8-2206(C)

Figure 29. ME005B Typical Output Voltage Waveform for a Step Load Change from 50% to 25% of Io, max with VI = 48 V and TA = 25 °C

Figure 30. ME005C Typical Output Voltage Waveform for a Step Load Change from 50% to 25% of Io, max with VI = 48 V and TA = 25 °C

Test Configurations

Note: Input reflected-ripple current is measured with a simulated source impedance of 12 μ H. Capacitor Cs offsets possible battery impedance. Current is measured at the input of the module.

Figure 31. Input Reflected-Ripple Test Setup

Note: Use a 0.1 µF ceramic capacitor. Scope measurement should be made using a BNC socket. Position the load between 50 mm and 75 mm (2 in. and 3 in.) from the module.

Figure 32. Peak-to-Peak Output Noise Measurement Test Setup

8-204(C)

Note: All measurements are taken at the module terminals. When socketing, place Kelvin connections at module terminals to avoid measurement errors due to socket contact resistance.

$$\eta = \frac{[Vo(+) - Vo(-)] Io}{[VI(+) - VI(-)] Ii} \times 100$$
 %

Figure 33. ME005A, B, C, N Output Voltage and Efficiency Measurement Test Setup

Test Configurations (continued)

Note: All measurements are taken at the module terminals. When socketing, place Kelvin connections at module terminals to avoid measurement errors due to socket contact resistance.

$$\eta = \frac{\sum_{j=1}^{|[Voj(+) - Vcom] Ioj|}}{[Vi(+) - Vi(-)] Ii} \times 100$$
%

Figure 34. ME005BK, CL Output Voltage and Efficiency Measurement Test Setup

Design Considerations

Input Reflected Ripple

An internal aluminum electrolytic input capacitor is used for filtering; therefore, input ripple increases as temperature decreases. There is approximately two times more ripple at 0 °C than at 25 °C and eight times more ripple at -40 °C than at 25 °C. The power module functions properly down to -40 °C with no additional filtering. If ripple comparable to that at 25 °C is needed at low temperatures, an external capacitor across the input with an impedance of 0.5 Ω at 100 kHz over the desired temperature range is recommended.

Output Voltage Reversal

CAUTION: Applying a reverse voltage across the module output forward biases an internal diode. Attempting to start the module under this condition can damage the module.

Safety Considerations

For safety-agency approval of the system in which the power module is used, the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standard, i.e., *UL* 1950, *CSA* C22.2 No. 950-95, and VDE 0805 (EN60950, IEC950).

If the input source is non-SELV (ELV or a hazardous voltage greater than 60 Vdc and less than or equal to 75 Vdc), for the module's output to be considered meeting the requirements of safety extra-low voltage (SELV), all of the following must be true:

- ⁿ The input source is to be provided with reinforced insulation from any other hazardous voltages, including the ac mains.
- ⁿ One V_I pin and one V₀ pin are to be grounded or both the input and output pins are to be kept floating.
- ⁿ The input pins of the module are not operator accessible.
- Another SELV reliability test is conducted on the whole system, as required by the safety agencies, on the combination of supply source and the subject module to verify that under a single fault, hazardous voltages do not appear at the module's output.
- **Note:** Do not ground either of the input pins of the module without grounding one of the output pins. This may allow a non-SELV voltage to appear between the output pins and ground.

The power module has extra-low voltage (ELV) outputs when all inputs are ELV.

The input to these units is to be provided with a maximum 5 A normal-blow fuse in the ungrounded lead.

Feature Descriptions

Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current-limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. If the output voltage is pulled very low during a severe fault, the current-limit circuit can exhibit either foldback or tailout characteristics (output current decrease or increase). The unit operates normally once the output current is brought back into its specified range.

Output Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop (see Feature Specifications table). This provides a redundant voltage-control that reduces the risk of output overvoltage.

Outline Diagrams

Dimensions are in millimeters and (inches).

Module tolerances, unless otherwise indicated: x.x ± 0.5 mm (0.02 in.), x.xx ± 0.25 mm (0.010 in.).

Single-Output Module

Top View

8-356(C)

Outline Diagrams (continued)

Dimensions are in millimeters and (inches).

Module tolerances, unless otherwise indicated: $x.x \pm 0.5$ mm (0.02 in.), $x.xx \pm 0.25$ mm (0.010 in.).

Dual-Output Module

Top View

Side View

8-356(C)

Recommended Hole Patterns

Component-side footprint.

Dimensions are in millimeters and (inches).

Single-Output Module

8-356(C)

Dual-Output Module

8-356(C)

Ordering Information

For assistance in ordering, please contact your Lineage Power Account Manager or Application Engineer.

Table 4. Device Codes

Input Voltage	Output Voltage	Output Power	Device Code	Comcode
39.5 V—60 V	5 V	5 W	ME005A	105524185
39.5 V—60 V	5.2 V	5 W	ME005N	106197619
39.5 V—60 V	12 V	5 W	ME005B	105550487
39.5 V—60 V	15 V	5 W	ME005C	105550495
39.5 V—60 V	+12 V, –12 V	5 W	ME005BK	105569891
39.5 V—60 V	+15 V, –15 V	5 W	ME005CL	105728786

Table 5. Device Options

Option	Device Suffix
Long pins: 5.8 mm (0.230 in.)	–SLP

Notes

World Wide Headquarters Lineage Power Corporation 30 00 Skyline Drive, Mesquite, TX 75149, USA +1-800-526-7819 (Outside U.S.A.: +1-972-284-2626) www.lineagepower.com e-mail: techsupport1@lineagepower.com Asia-Pacific Headquarters Tel: +65 641 6 4283

Europe, Middle-East and Africa Headquarters Tel: +49 89 6089 286

India Headquarters Tel: +91 80 28411633

Lineage Power reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

© 2008 Lineage Power Corporation, (Mesquite, Texas) All International Rights Reserved.