

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







## MG06150S-BN4MM





#### **Features**

- High short circuit capability, self limiting short circuit current
- V<sub>CE(sat)</sub> with positive temperature coefficient
- Fast switching and short tail current
- Free wheeling diodes with fast and soft reverse recovery
- Low switching losses

#### **Agency Approvals**

| AGENCY    | AGENCY FILE NUMBER |
|-----------|--------------------|
| <b>71</b> | E71639             |

### **Applications**

- High frequency switching application
- Medical applications
- Motion/servo control
- UPS systems

#### Module Characteristics (T<sub>c</sub> = 25°C, unless otherwise specified)

| Symbol             | Parameters                 | Test Conditions  | Min | Тур  | Max | Unit |
|--------------------|----------------------------|------------------|-----|------|-----|------|
| T <sub>J</sub> max | Max. Junction Temperature  |                  |     |      | 175 | °C   |
| T <sub>J op</sub>  | Operating Temperature      |                  | -40 |      | 150 | °C   |
| T <sub>stg</sub>   | Storage Temperature        |                  | -40 |      | 125 | °C   |
| V <sub>isol</sub>  | Insulation Test Voltage    | AC, t=1min       |     | 3000 |     | V    |
| CTI                | Comparative Tracking Index |                  | 350 |      |     |      |
| Torque             | Module-to-Sink             | Recommended (M6) | 3   |      | 5   | N⋅m  |
| Torque             | Module Electrodes          | Recommended (M5) | 2.5 |      | 5   | N⋅m  |
| Weight             |                            |                  |     | 160  |     | g    |

### Absolute Maximum Ratings (T<sub>c</sub> = 25°C, unless otherwise specified)

| Symbol           | Parameters                        | Test Conditions                               | Values | Unit             |
|------------------|-----------------------------------|-----------------------------------------------|--------|------------------|
| IGBT             |                                   |                                               |        |                  |
| V <sub>CES</sub> | Collector - Emitter Voltage       | T <sub>J</sub> =25°C                          | 600    | V                |
| $V_{\text{GES}}$ | Gate - Emitter Voltage            |                                               | ±20    | V                |
| 1                | DC Collector Current              | T <sub>C</sub> =25°C                          | 225    | А                |
| 'c               |                                   | T <sub>C</sub> =60°C                          | 150    | А                |
| I <sub>CM</sub>  | Repetitive Peak Collector Current | t <sub>p</sub> =1ms                           | 300    | А                |
| P <sub>tot</sub> | Power Dissipation Per IGBT        |                                               | 500    | W                |
| Diode            |                                   |                                               |        |                  |
| V <sub>RRM</sub> | Repetitive Reverse Voltage        | T <sub>J</sub> =25°C                          | 600    | V                |
|                  | Average Forward Current           | T <sub>C</sub> =25°C                          | 225    | А                |
| F(AV)            |                                   | T <sub>c</sub> =60°C                          | 150    | А                |
| I <sub>FRM</sub> | Repetitive Peak Forward Current   | t <sub>p</sub> =1ms                           | 300    | А                |
| l <sup>2</sup> t |                                   | $T_{J} = 125^{\circ}C$ , t=10ms, $V_{R} = 0V$ | 2000   | A <sup>2</sup> s |

1

Life Support Note:

#### Not Intended for Use in Life Support or Life Saving Applications

The products shown herein are not designed for use in life sustaining or life saving applications unless otherwise expressly indicated.

# Electrical and Thermal Specifications (T<sub>c</sub> = 25°C, unless otherwise specified)

| Symbol               | Parameters                       | Test Conditions                                                                 |                             | Min  | Тур  | Max | Unit |
|----------------------|----------------------------------|---------------------------------------------------------------------------------|-----------------------------|------|------|-----|------|
| IGBT                 |                                  | •                                                                               |                             | •    | ,    |     |      |
| V <sub>GE(th)</sub>  | Gate - Emitter Threshold Voltage | $V_{CE} = V_{GE}$ , $I_C = 2.4 \text{mA}$                                       |                             | 4.9  | 5.8  | 6.5 | V    |
|                      | Collector - Emitter              | I <sub>C</sub> =150A, V <sub>GF</sub> =15V, T <sub>J</sub> =25°C                |                             |      | 1.45 |     | V    |
| $V_{\text{CE(sat)}}$ | Saturation Voltage               | I <sub>c</sub> =150A, V <sub>GE</sub> =                                         | :15V, T <sub>J</sub> =125°C |      | 1.6  |     | V    |
|                      | Callacter Laglage Current        | V <sub>CE</sub> =600V, V <sub>GI</sub>                                          | =0V, T <sub>J</sub> =25°C   |      |      | 1   | mA   |
| CES                  | Collector Leakage Current        | V <sub>CE</sub> =600V, V <sub>GE</sub>                                          | =0V, T <sub>J</sub> =125°C  |      |      | 5   | mA   |
| I <sub>GES</sub>     | Gate Leakage Current             | $V_{CE}=0V,V_{GE}=\pm$                                                          | :15V, T <sub>J</sub> =125°C | -400 |      | 400 | nA   |
| R <sub>Gint</sub>    | Integrated Gate Resistor         |                                                                                 |                             |      | 2    |     | Ω    |
| Q <sub>ge</sub>      | Gate Charge                      | V <sub>cc</sub> =300V, I <sub>c</sub> =1                                        | 50A , V <sub>GE</sub> =±15V |      | 1.6  |     | μC   |
| C <sub>ies</sub>     | Input Capacitance                | V <sub>CE</sub> =25V, V <sub>GE</sub> =0V, f =1MHz                              |                             |      | 9.3  |     | nF   |
| C <sub>res</sub>     | Reverse Transfer Capacitance     |                                                                                 |                             |      | 0.29 |     | nF   |
|                      | Turn on Dolov Times              |                                                                                 | T <sub>J</sub> =25°C        |      | 150  |     | ns   |
| t <sub>d(on)</sub>   | Turn - on Delay Time             |                                                                                 | T <sub>J</sub> =125°C       |      | 160  |     | ns   |
| +                    | Rise Time                        | V <sub>cc</sub> =300V                                                           | T <sub>J</sub> =25°C        |      | 30   |     | ns   |
| t <sub>r</sub>       |                                  |                                                                                 | T <sub>J</sub> =125°C       |      | 40   |     | ns   |
| t                    | Turn - off Delay Time            | I <sub>c</sub> =150A                                                            | T <sub>J</sub> =25°C        |      | 340  |     | ns   |
| t <sub>d(off)</sub>  |                                  | $R_{G} = 3.3\Omega$                                                             | T <sub>J</sub> =125°C       |      | 370  |     | ns   |
| t,                   | Fall Time                        | 11 <sub>G</sub> =3.312                                                          | T <sub>J</sub> =25°C        |      | 60   |     | ns   |
|                      | T dil Tillio                     | V <sub>GE</sub> =±15V                                                           | T <sub>J</sub> =125°C       |      | 70   |     | ns   |
| E <sub>on</sub>      | Turn - on Energy                 | Inductive Load                                                                  | T <sub>J</sub> =25°C        |      | 0.85 |     | mJ   |
| _on                  | ram on Energy                    | Inductive Load                                                                  | T <sub>J</sub> =125°C       |      | 1.35 |     | mJ   |
| E <sub>off</sub>     | Turn - off Energy                |                                                                                 | T <sub>J</sub> =25°C        |      | 4.1  |     | mJ   |
| off                  | .a en Energy                     |                                                                                 | T <sub>J</sub> =125°C       |      | 5.3  |     | mJ   |
| I <sub>sc</sub>      | Short Circuit Current            | $t_{psc} \le 6\mu S$ , $V_{GE} = 15V$ ; $T_J = 125^{\circ}C$ , $V_{CC} = 360V$  |                             |      | 750  |     | А    |
| R <sub>thJC</sub>    | Junction-to-Case Thermal Resi    | istance (Per IGBT)                                                              |                             |      |      | 0.3 | K/VV |
| Diode                |                                  |                                                                                 |                             |      |      |     |      |
| V <sub>F</sub>       | Forward Voltage                  | I <sub>F</sub> =150A , V <sub>GE</sub>                                          | =0V, T <sub>J</sub> =25°C   |      | 1.55 |     | V    |
| v <sub>F</sub>       | Torvvaru vortage                 | I <sub>F</sub> =150A , V <sub>GE</sub> =                                        | =0V, T <sub>J</sub> =125°C  |      | 1.5  |     | V    |
| I <sub>RRM</sub>     | Max. Reverse Recovery Current    | $I_{F}=150A$ , $V_{R}=300V$<br>$di_{F}/dt=-5400A/\mu s$<br>$T_{J}=125^{\circ}C$ |                             |      | 180  |     | А    |
| O <sub>rr</sub>      | Reverse Recovery Charge          |                                                                                 |                             |      | 13   |     | μC   |
| E <sub>rec</sub>     | Reverse Recovery Energy          |                                                                                 |                             |      | 3.5  |     | mJ   |
| R <sub>thJCD</sub>   | Junction-to-Case Thermal Resis   | stance (Per Diode)                                                              |                             |      |      | 0.5 | K/W  |



**Figure 1: Typical Output Characteristics** 

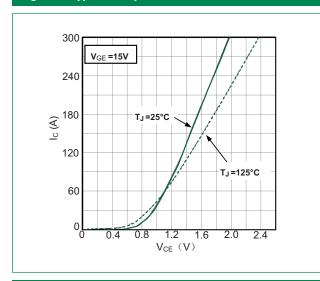



Figure 3: Typical Transfer characteristics

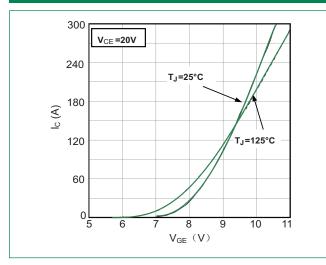



Figure 5: Switching Energy vs. Collector Current

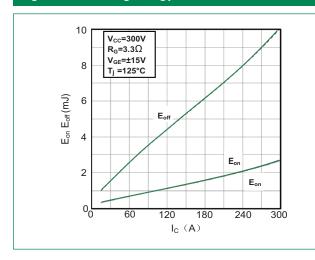



Figure 2: Typical Output characteristics

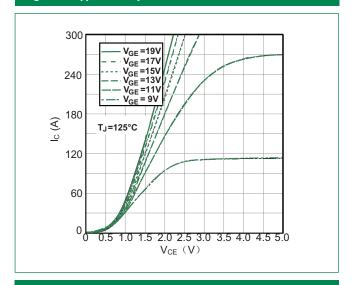



Figure 4: Switching Energy vs. Gate Resistor

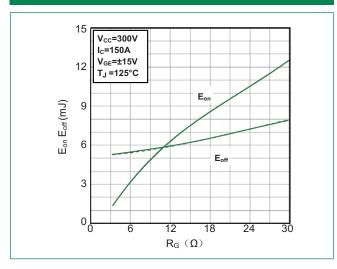



Figure 6: Reverse Biased Safe Operating Area

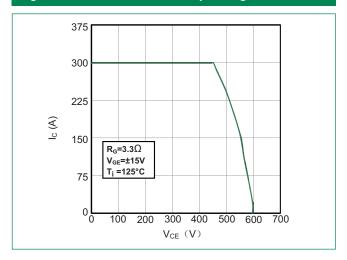



Figure 7: Diode Forward Characteristics

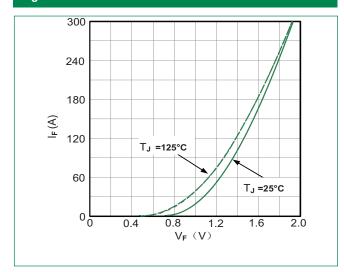



Figure 8: Switching Energy vs. Gate Resistor

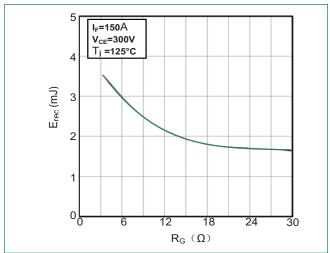
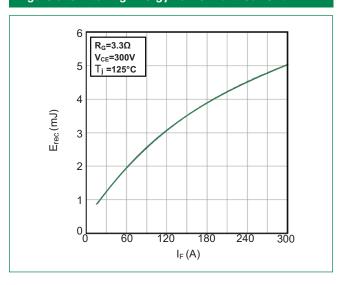
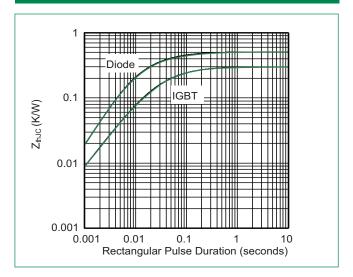
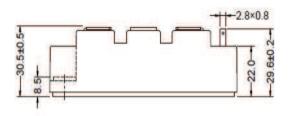
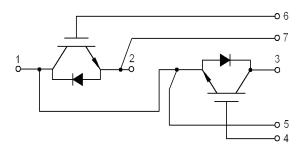
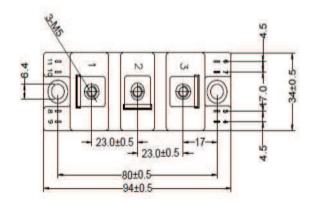



Figure 9: Switching Energy vs. Forward Current

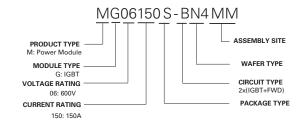







Figure 10: Transient Thermal Impedance



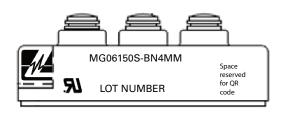
#### **Dimensions-Package S**








### **Packing Options**


| Part Number    | Marking        | Weight | Packing Mode | M.O.Q |
|----------------|----------------|--------|--------------|-------|
| MG06150S-BN4MM | MG06150S-BN4MM | 160g   | Bulk Pack    | 100   |

### **Part Numbering System**



### **Part Marking System**

**Circuit Diagram** 

