mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MG06400D-BN4MM Series 400A Dual IGBT

Agency Approvals

ittelfuse[®]

Expertise Applied | Answers Delivered

AGENCY	AGENCY FILE NUMBER
.91	E71639

Module Characteristics ($T_c = 25^{\circ}C$, unless otherwise specified)

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit
T _{J max)}	Max. Junction Temperature				175	°C
T _{J op}	Operating Temperature		-40		150	°C
T _{stg}	Storage Temperature		-40		125	°C
V _{isol}	Insulation Test Voltage	AC, t=1min		3000		V
СТІ	Comparative Tracking Index	Module case exposed to 0.1% ammonium chloride solution per UL and IEC standards	350			V
Torque	Module-to-Sink	Recommended (M6)	3		5	N∙m
Torque	Module Electrodes	Recommended (M6)	2.5		5	N∙m
Weight				320		g

Absolute Maximum Ratings (T_c = 25°C, unless otherwise specified)

Symbol	Parameters	Test Conditions	Values	Unit
IGBT				
V _{CES}	Collector - Emitter Voltage	T _J =25°C	600	V
V _{ges}	Gate - Emitter Voltage		±20	V
I	DC Collector Current	T _c =25°C	500	A
I _C	DC Collector Current	T _c =70°C	400	A
I _{CM}	Repetitive Peak Collector Current	t _p =1ms	800	A
P _{tot}	Power Dissipation Per IGBT		1250	W
Diode				
V _{RRM}	Repetitive Reverse Voltage	T _J =25°C	600	V
I _{F(AV)}	Average Fertward Current	T _c =25°C	500	A
	Average i of ward Current	T _c =70°C	400	A
I _{FRM}	Repetitive Peak Forward Current	t _p =1ms	800	A
l²t		T _J =125°C, t=10ms, V _R =0V	10000	A ² s

Life Support Note:

Not Intended for Use in Life Support or Life Saving Applications

The products shown herein are not designed for use in life sustaining or life saving applications unless otherwise expressly indicated.

- High short circuit capability, self limiting short circuit current
- V_{CE(sat)} with positive temperature coefficient
- Fast switching and short tail current

Applications

- Motor drives
- Inverter
- Converter

with fast and soft reverse recovery

RoHS Я

Low switching losses

• SMPS and UPS

• Induction Heating

• Welder

• Free wheeling diodes

Electrical and Thermal Specifications (T_c = 25°C, unless otherwise specified)

Symbol	Parameters	Test Conditions		Min	Тур	Max	Unit
IGBT							
V _{GE(th)}	Gate - Emitter Threshold Voltage	V _{CE} =V _{GE} ,	I _c =6.4mA	4.9	5.8	6.5	V
	Collector - Emitter	I _c =400A, V _{GE} =	=15V, T_=25°C		1.45		V
V _{CE(sat)}	Saturation Voltage	I _c =400A, V _{GE} =	15V, T_=125°C		1.6		V
	Collector Leokage Current	V _{CE} =600V, V _G	=0V, T_=25°C			1.0	mA
CES		V _{CE} =600V, V _{GE}	=0V, T _J =125°C			5	mA
I _{GES}	Gate Leakage Current	V _{CE} =0V,V _{GE} =±	15V, T _J =125°C	-400		400	μΑ
R _{Gint}	Intergrated Gate Resistor				1.0		Ω
Q _{ge}	Gate Charge	V _{CE} =300V, I _C =4	00A , V _{GE} =±15V		4.3		μC
C _{ies}	Input Capacitance				26		nF
C _{res}	Reverse Transfer Capacitance	V _{CE} =25V, V _{GE} =	=UV, T = HVIHZ		0.76		nF
	Turn on Dalay Time		T_=25°C	İ	110		ns
T _{d(on)}	Turn - on Delay Time		T_=125°C		120		ns
+	Diag Time	V -300V	T_=25°C	1	50		ns
L _r	Rise fime	V _{CC} =300V	T_ =125°C	Ì	60		ns
+	Turn off Dalay Tings	I _c =400A	T_=25°C	Ì	490		ns
L _{d(off)}	Turn - on Delay Time	P -150	T _J =125°C		520		ns
+	FallTime	$n_{G} = 1.012$	T _J =25°C		60		ns
L _f		V _{GE} =±15V	T _J =125°C		70		ns
F			T _J =25°C		2.1		mJ
L _{on}	luni - on Energy		T _J =125°C		3.2		mJ
F			T _J =25°C		12		mJ
└off	ium - on Energy		T _J =125°C		15		mJ
	Short Circuit Current	t _{psc} ≤6µS ,	, V _{ge} =15V		2000		Δ
'SC		T _J =125°C,V _{CC} =360V			2000		
R_{thJC}	Junction-to-Case Thermal Resistance (Per IGBT)					0.12	K/W
Diode							
1/		I _F =400A , V _{GE}	=0V, T _J =25°C		1.55		V
v _F		I _F =400A , V _{GE} =	=0V, T _J =125°C		1.50		V
I	Max. Reverse Recovery Current	I _F =400A ,	, V _R =300V		330		A
Q _{rr}	Reverse Recovery Charge	d _i ,/dt=-7	/000A/µs		29.0		μC
E _{rec}	Reverse Recovery Energy	T=1	25°C		7.4		mJ
R _{thJCD}	Junction-to-Case Thermal Resistance (Per Diode)					0.22	K/W

Figure 1: Typical Output Characteristics

Littelfuse

Expertise Applied | Answers Delivered

Figure 3: Typical Transfer characteristics

Figure 5: Switching Energy vs. Collector Current

Figure 2: Typical Output Characteristics

Figure 4: Switching Energy vs. Gate Resistor

Figure 6: Reverse Biased Safe Operating Area

MG06400D-BN4MM

Littelfuse°

Expertise Applied Answers Delivered

Figure 9: Switching Energy vs. Forward Current

Figure 8: Switching Energy vs. Gate Resistort

Figure 10: Transient Thermal Impedance

Dimensions-Package D

Circuit Diagram and Pin Assignment

Packing Options					
Part Number	Marking	Weight	Packing Mode	M.O.Q	
MG06400D-BN4MM	MG06400D-BN4MM	320g	Bulk Pack	60	

Part Numbering System

Part Marking System

