

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

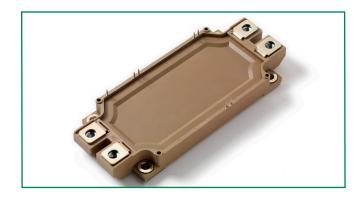
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


IGBT Power Module

1200 V 600 A IGBT Module

MG12600WB-BR2MM

Features

- Trench-gate field stop IGBT technology
- Low saturation voltage and positive temperature coefficient
- Fast switching and short tail current
- Free wheeling diodes with fast and soft reverse recovery
- Temperature sense included
- $T_{J max} = 175 \text{ }^{\circ}\text{C}$

Agency Approvals

AGENCY	AGENCY FILE NUMBER
71 7	E71639

Applications

- Industrial and servo drives
- Solar inverters
- High-power converters
- UPS
- Welding
- RoHS compliant

Module Characteristics (T_c = 25 °C, unless otherwise specified)

Symbol	Parameters	Test Conditions		Unit
T _{J max}	Max. Junction Temperature		175	°C
T _{J op}	Operating Temperature		-40~150	°C
T _{stg}	Storage Temperature		-40~125	°C
V _{isol}	Isolation Breakdown Voltage	AC, 50 Hz(R.M.S), $t = 1$ minute	3000	V
Torque	to heatsink	Recommended (M5)	2.5~5	N⋅m
	lolerminal	Recommended (M6)	3~5	N⋅m
Weight			350	g

Absolute Maximum Ratings (T_c = 25 °C, unless otherwise specified)

Symbol	Parameters	Test Conditions	Values	Unit
IGBT				
V _{CES}	Collector Emitter Voltage	T _J = 25 °C	1200	V
V _{GES}	Gate Emitter Voltage		±20	V
1	DC Collector Current	T _c = 25 °C	750	А
'c	DC Collector Current	T _c = 80 °C	600	А
I _{CM}	Repetitive Peak Collector Current	t _p = 1 ms	1200	А
P _{tot}	Power Dissipation Per IGBT		2500	W
Diode				
V _{RRM}	Repetitive Reverse Voltage	T _J = 25 °C	1200	V
I _{F(AV)}	Average Forward Current	$T_{\rm c} = 25 ^{\circ}{\rm C}$	600	А
I _{FRM}	Repetitive Peak Forward Current	t _p = 1ms	1200	А
l ² t		$T_1 = 125 ^{\circ}\text{C}, t = 10 \text{ms}, V_p = 0 \text{V}$	45	KA ² s

1

IGBT Power Module

1200 V 600 A IGBT Module

Electrical and Thermal Specifications (T_c = 25 °C, unless otherwise specified)

Symbol	l Parameters		Test Conditions		Min	Тур	Max	Unit
IGBT								
V _{GE(th)}	Gate Emitter Thre	shold Voltage	$V_{CE} = V_{GE'} I_{C} = 24 \text{ mA}$		5.0	5.4	6.4	V
0.1(0.7)		- le i e	I _C = 600 A, V _{GF} = 15 V, T _J = 25 °C			1.7	2.15	
\/	Collector Emitter	chip	$I_{\rm C} = 600 \text{A}, V_{\rm GE} = 15 \text{V}, T_{\rm J} = 125 ^{\circ}\text{C}$			1.9		V
$V_{\text{CE(sat)}}$	Saturation Voltage	torminal	$I_{c} = 600 \text{ A}, V_{GE} = 15 \text{ V}, T_{J} = 25 \text{ °C}$			2.0	2.5	V
		terminal	$I_{c} = 600 \text{ A, V}_{GE} =$	15 V, T _J = 125 °C		2.4		V
1	Collector Leaks	ige Current	$V_{CE} = 1200 V, V_{GE}$	= 0 V, T _J = 25 °C			100	μΑ
I _{CES}	Collector Leakage Current		V _{CE} = 1200 V, V _{GE} = 0 V, T _J = 125 °C				1	mA
I _{GES}	Gate Leakage	e Current	$V_{CE} = 0 \text{ V, } V_{GE} = \pm$	±15 V, T _J = 125 °C	-400		400	nA
R _{Gint}	Integrated Gat	e Resistor				0.5		Ω
Q_g	Gate Ch	arge	$V_{CE} = 600 \text{ V}, I_{C} = 6$	800 A , $V_{GE} = \pm 15 \text{ V}$		3.4		μC
C _{ies}	Input Capa	citance	\/ - 25\/\/ -	= 0 V, f = 1 MHz		60.5		nF
C _{res}	Reverse Transfer	Capacitance	v _{CE} – 25 v, v _{GE} -	- 0 V, I = 1 IVII IZ		1.8		nF
	Turn-on Del	av Timo		T _J = 25 °C		250		ns
t _{d(on)}	Turr-on Dei	ay IIIIle		T _J = 125 °C		280		ns
+	t _r Rise Tir	me	$V_{cc} = 600 \text{ V}$ $I_c = 600 \text{ A}$	T _J = 25 °C		220		ns
r				T _J = 125 °C		240		ns
+	Turn-off Del	av Timo		T _J = 25 °C		1000		ns
t _{d(off)}	Taill on Bei		$R_{G} = 5 \Omega$	T _J = 125 °C		1100		ns
t _f	Fall Time		$V_{GF} = \pm 15 \text{ V}$	T _J = 25 °C		170		ns
f				T _J = 125 °C		190		ns
E _{on}	Turn-on Energy		Inductive Load	T _J = 25 °C		20		mJ
on				T _J = 125 °C		35		mJ
E _{off}	Turn-off E	nergy		T _J = 25 °C		105		mJ
ОП				T _J = 125 °C		120		mJ
I _{sc}	Short Circuit	Current	t $t_{psc} \le 10 \ \mu S$, $V_{GE} = 15 \ V; T_J = 125 \ ^{\circ}C$, $V_{CC} = 600 \ V$			2400		А
R _{thJC}	Junction-to-Case Thermal Resistance (Per IGBT)			IGBT)			0.06	K/W
Diode								
V _F	V _E Forward Voltage chip		$I_F = 600 \text{ A}, V_{GE} = 0 \text{ V}, T_J = 25 \text{ °C}$			2.1	2.5	V
v _F	1 or ward voitage	Спр	$I_{\rm F} = 600 \text{A}, V_{\rm GE} = 0 \text{V}, T_{\rm J} = 125 ^{\circ}\text{C}$			2.2		V
t _{RR}	Reverse Reco	overy Time				330		ns
I _{RRM}	Max. Reverse Recovery Current		$I_F = 600 \text{ A}, V_R = 600 \text{ V}$ $di_F/dt = -2700 \text{ A}/\mu\text{s}$			305		А
Q_{RR}	Reverse Recov	ery Charge	$T_{r} = 125 ^{\circ}\text{C}$			96		μC
E _{rec}	Reverse Recovery Energy		J			42		mJ
R _{thJCD}	Jun	ction-to-Case The	ermal Resistance (Per D	Diode)			0.1	K/W

NTC Characteristics (T_c = 25 °C, unless otherwise specified)

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit
R ₂₅	Resistance	T _c = 25 °C		5		ΚΩ
B _{25/50}	$R_2 = R_{25} \exp \left[B_{25/50} \left(\frac{1}{T_2} - \frac{1}{(298, 15 \text{ K})} \right) \right]$			3375		K

1200 V 600 A IGBT Module

Figure 1: Typical Output Characteristics IGBT Inverter 1,200 25 ℃ 1,000 125 ℃ 800 600 400 200 0 1 3 5 0 2 4 $V_{CE}(V)$

Figure 3: Typical Transfer Characteristics IGBT Inverter

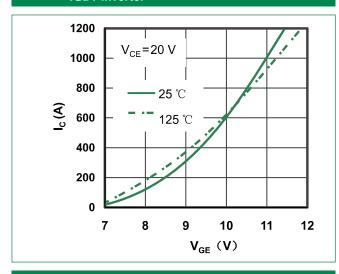


Figure 5: Switching Energy vs. Collector Current IGBT Inverter

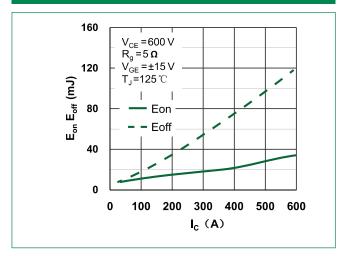


Figure 2: Typical Output Characteristics IGBT Inverter

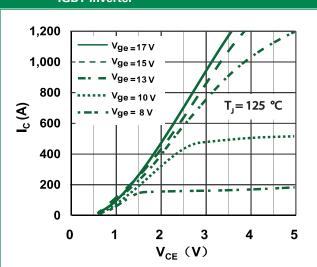


Figure 4: Switching Energy vs. Gate Resistor IGBT Inverter

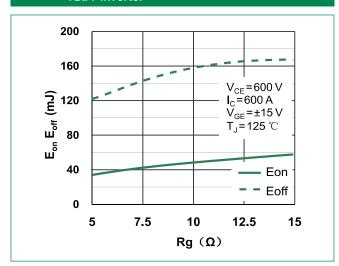
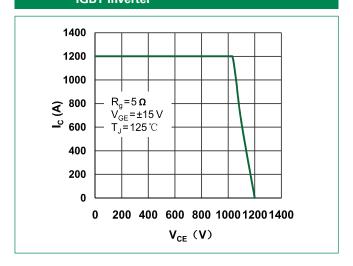



Figure 6: Reverse Biased Safe Operating Area IGBT Inverter

1200 V 600 A IGBT Module

Figure 7: Collector Current vs Case temperature IGBT -inverter

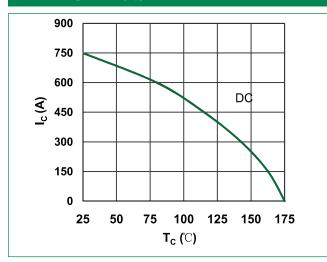


Figure 9: Diode Forward Characteristics
Diode -inverter

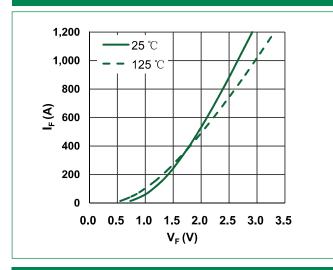


Figure 11: Switching Energy vs Forward Current
Diode-inverter

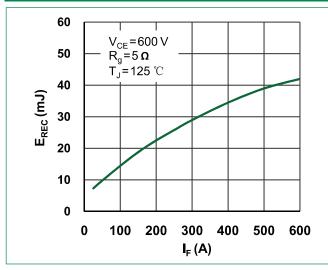


Figure 8: Forward current vs Case temperature

Diode -inverter

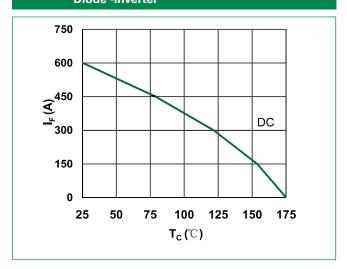
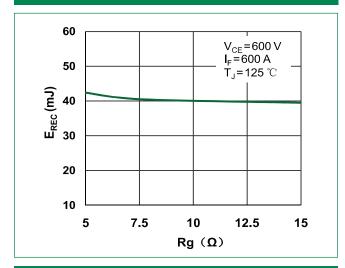
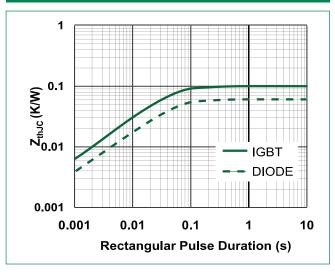
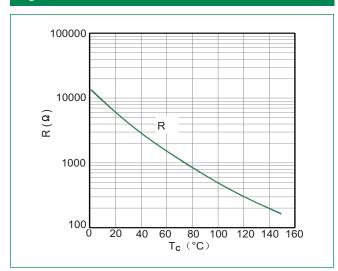
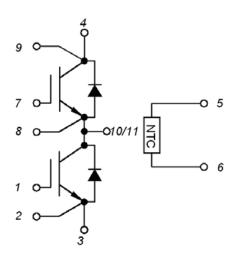


Figure 10: Switching Energy vs Gate Resistor Diode -inverter

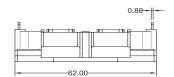



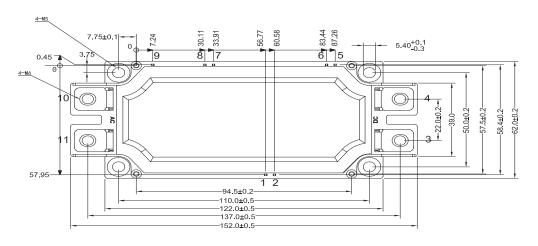

Figure 12: Transient ThermalImpedance of Diode and IGBT -inverter

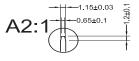


1200 V 600 A IGBT Module

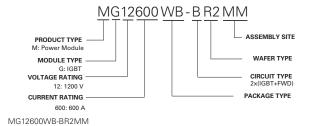

Figure 13: NTC Characteristics



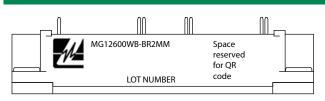

Circuit Diagram



Dimensions-Package WB



The foot pins are in gold / nickel coating


Packing Options

Part Number	Marking	Weight	Packing Mode	D.O.M
MG12600WB-BR2MM	MG12600WB-BR2MM	350 g	Bulk Pack	60

Part Numbering System

Part Marking System

