

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

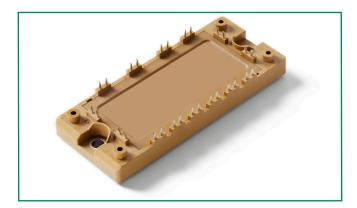
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com


Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MG1275H-XN2MM

Features

- High level of integration
- IGBT³ CHIP(Trench+Field Stop technology)
- Low saturation voltage and positive temperature coefficient
- Fast switching and short tail current
- Free wheeling diodes with fast and soft reverse recovery
- Solderable pins for PCB mounting
- Temperature sense included

Applications

- AC motor control
- Motion/servo control
- Inverter and power supplies

Module Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit
T _{J max}	Max. Junction Temperature				150	°C
T _{J op}	Operating Temperature		-40		125	°C
T _{stg}	Storage Temperature		-40		125	°C
V _{isol}	Insulation Test Voltage	AC, t=1min		3000		V
CTI	Comparative Tracking Index		250			
M_d	Mounting Torque	Recommended (M5)	2.5		5	N⋅m
Weight				180		g

Absolute Maximum Ratings (T_J = 25°C, unless otherwise specified)

Symbol	Parameters	Test Conditions	Values	Unit			
IGBT							
V _{CES}	Collector - Emitter Voltage	T _J =25°C	1200	V			
V _{GES}	Gate - Emitter Voltage		±20	V			
1	DC Collector Current	T _C =25°C	105	А			
¹c		T _C =80°C	75	А			
I _{CM}	Repetitive Peak Collector Current	t _p =1ms	150	А			
P _{tot}	Power Dissipation Per IGBT		348	W			
Diode							
V _{RRM}	Repetitive Reverse Voltage	T _J =25°C	1200	V			
1	Average Forward Current	T _C =25°C	105	А			
I _{F(AV)}		T _C =80°C	75	А			
I _{FRM}	Repetitive Peak Forward Current	t _p =1ms	150	А			
l²t		$T_{_{\rm J}} = 125^{\circ}\text{C}, t = 10\text{ms}, V_{_{\rm R}} = 0\text{V}$	1150	A ² s			

1

Electrical and Thermal Specifications (T_J = 25°C, unless otherwise specified)

Symbol	Parameters	Test Conditions		Min	Тур	Max	Unit
IGBT				,			
$V_{\text{GE(th)}}$	Gate - Emitter Threshold Voltage	$V_{ce} = V_{ge}$, $I_c = 3mA$		5.0	5.8	6.5	V
	Collector - Emitter	I _C =75A, V _{GE} =	15V, T _J =25°C		1.7		V
$V_{\text{CE(sat)}}$	Saturation Voltage	I _C =75A, V _{GE} =	15V, T _J =125°C		1.9		V
	Callantan Lankana Commant	V _{CF} =1200V, V _{GF} =0V, T _J =25°C				1	mA
I _{ICES}	Collector Leakage Current	V _{CE} =1200V, V _{GE}	=0V, T _J =125°C			10	mA
I _{GES}	Gate Leakage Current	$V_{CE}=0V, V_{GE}=\pm$:15V, T _J =125°C	-400		400	nA
R _{Gint}	Integrated Gate Resistor				10		Ω
Q _{ge}	Gate Charge	V _{CE} =600V, I _C =75A , V _{GE} =±15V			0.7		μC
C _{ies}	Input Capacitance	\/ 2E\/\/	O\/ f 1\/\ -		5.3		nF
C _{res}	Reverse Transfer Capacitance	$V_{CE}=25V, V_{GE}=$	=UV, I = IIVIMZ		0.2		nF
4	Turn - on Delay Time		T _J =25°C		260		ns
t _{d(on)}			T _J =125°C		290		ns
+	Rise Time	V _{cc} =600V	T _J =25°C		30		ns
t _r			T _J =125°C		50		ns
+	Turn - off Delay Time	I _C =75A	T _J =25°C		420		ns
t _{d(off)}	idiii oli belay iliile	$R_{\rm G} = 4.7\Omega$	T _J =125°C		520		ns
t _f	Fall Time	$V_{GF}=\pm 15V$	T _J =25°C		70		ns
f	T dil Tillie		T _J =125°C		90		ns
E _{on}	Turn - on Energy	Inductive Load	T _J =25°C		6.6		mJ
on	Tann on Energy		T _J =125°C		9.4		mJ
E _{off}	Turn - off Energy		T _J =25°C		6.8		mJ
off			T _J =125°C		8.0		mJ
l _{sc}	Short Circuit Current	$t_{psc} \le 10 \mu S$, $V_{GE} = 15V$; $T_{J} = 125^{\circ}C$, $V_{CC} = 900V$			300		Α
R_{thJC}	Junction-to-Case Th	ermal Resistance (Per			0.36	K/W	
Diode						, ,	
V _F	Forward Voltage	$I_{F} = 75A, V_{GE} = 0V, T_{J} = 25^{\circ}C$			1.65		V
F	I _F =75		5A, V _{GE} =0V, T _J =125°C		1.65		V
t _{RR}	Reverse Recovery Time	$I_{\rm F}$ =75A, $V_{\rm R}$ =600V			300		ns
I _{RRM}	Max. Reverse Recovery Current	di _F /dt=-1200A/μs			85		Α
E _{rec}	Reverse Recovery Energy	T _J =125°C			6.5		mJ
R _{thJCD}	Junction-to-Case Thermal Resistance (Per Diode)					0.6	K/W

NTC Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Parameters	Test Conditions	Min	Тур	Max	Unit
R ₂₅	Resistance	T _c =25°C		5		ΚΩ
B _{25/50}				3375		K

Figure 1: Typical Output Characteristics for IGBT Inverter

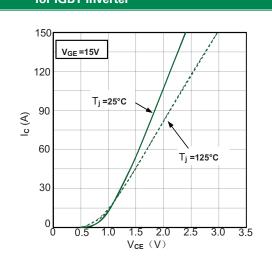


Figure 3: Typical Transfer Characteristics for IGBT Inverter

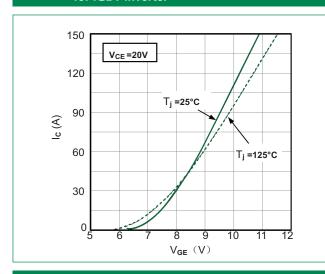


Figure 5: Switching Energy vs. Collector Current for IGBT Inverter

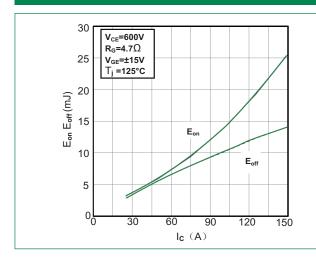


Figure 2: Typical Output Characteristics for IGBT Inverter

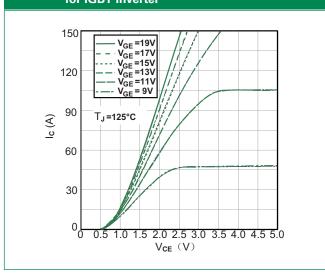


Figure 4: Switching Energy vs. Gate Resistor for IGBT Inverter

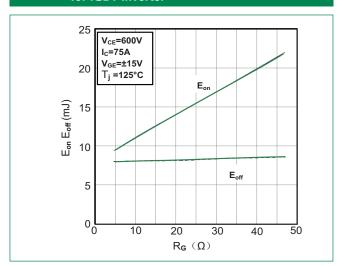


Figure 6: Reverse Biased Safe Operating Area for IGBT Inverter

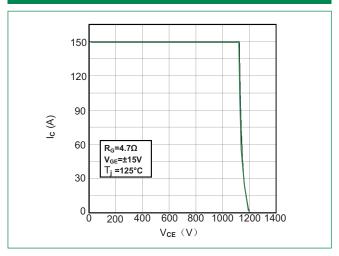


Figure 7: Diode Forward Characteristics for Diode Inverter

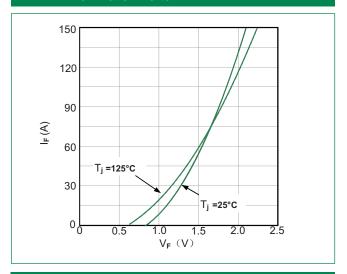


Figure 9: Switching Energy vs. Forward Current Diode-inverter

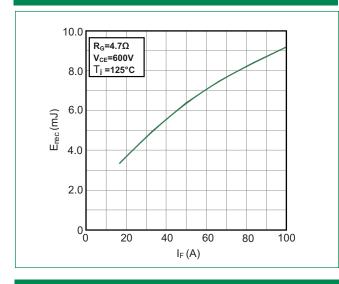


Figure 11: NTC Characteristics

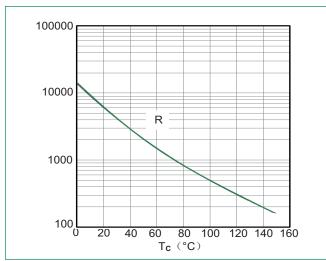
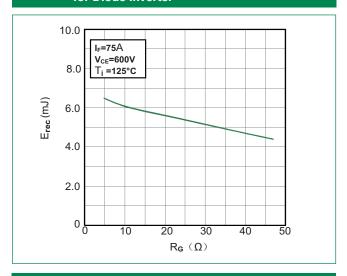
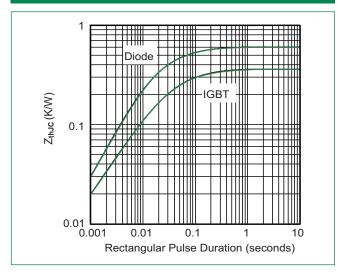
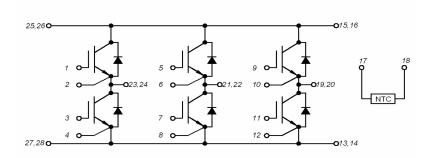
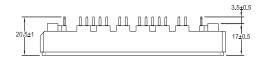
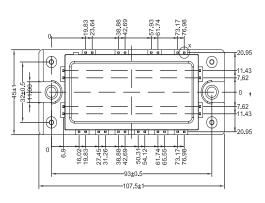
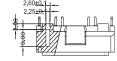


Figure 8: Switching Energy vs. Gate Resistort for Diode Inverter

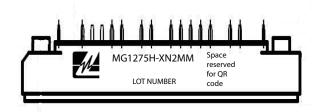

Figure 10: Transient Thermal Impedance of Diode and IGBT-inverter


Circuit Diagram



Dimensions-Package H

The foot pins are in gold / nickel coating


Packing Options

Part Number	Marking	Weight	Packing Mode	M.O.Q
MG1275H-XN2MM	MG1275H-XN2MM	180g	Bulk Pack	40

Part Numbering System

PRODUCT TYPE M: Power Module MODULE TYPE G: IGBT VOLTAGE RATING 12: 1200V CURRENT RATING 75: 75A PACKAGE TYPE

Part Marking System

