imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

MGA-31716 0.1 W High Linearity Driver Amplifier

Data Sheet

Description

Avago Technologies MGA-31716 is a high linearity driver MMIC Amplifier housed in a standard QFN 3X3 16 lead plastic package. It features high gain, low operating current, low noise figure with good input and output return loss. Power consumption can be further reduced by reducing the quiescent bias current using two external bias resistors. The device can be easily matched at different frequencies to obtain optimal linearity performance at those frequencies.

MGA-31716 is especially ideal for 50 Ω wireless infrastructure application operating from DC to 2 GHz frequency range. With the high linearity, excellent gain flatness and low noise figure the MGA-31716 may be utilized as a driver amplifier in the transmit chain and as a second stage LNA in the receiver chain.

This device uses Avago Technologies proprietary 0.25 μm GaAs Enhancement mode PHEMT process.

Pin Connections and Package Marking

Notes:

Package marking provides orientation and identification "31716" = Device Part Number

"YYWW" = Work Week and Year of manufacturing

"XXXX" = Last 4 digit of Lot Number

Features

- Very high linearity at low DC bias power ^[1]
- High Gain with good gain flatness
- ROHS compliant
- Good Noise Figure
- Halogen free
- Advanced enhancement-mode PHEMT Technology
- QFN 3X3 16-Lead standard package
- Lead-free MSL1

Specifications

At 900 MHz, Vd = 5 V, Id = 68 mA (typ) @ 25° C

- OIP3 = 39.5 dBm
- Noise Figure = 1.9 dB
- Gain = 20.6 dB
- P1dB = 22.5 dBm
- IRL = 15.5 dB, ORL = 15.5 dB

Note:

1. The MGA-31716 has a superior LFOM of 16.5 dB. Linearity-Figure-of-Merit (LFOM) is the ratio of OIP3 to total DC bias power.

Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model = 60 V ESD Human Body Model = 300 V Refer to Avago Application Note A004R: Electrostatic Discharge, Damage and Control.

Figure 1. Simplified Application Circuit

Table 1. MGA-31716 Absolute Maximum Rating $^{[1]}T_A = 25^{\circ}C$

Symbol	Parameter	Units	Absolute Maximum
V _{d, max}	Drain Voltage	V	5.5
V _{bias, max}	Bias Voltage	V	5.5
V _{ctrl, max}	Control Voltage	V	5.5
P _d	Power Dissipation ^[2]	mW	605
Pin	CW RF Input Power	dBm	24
Tj	Junction Temperature	°C	150
T _{stg}	Storage Temperature	°C	-65 to 150
T _{amb}	Ambient Temperature	°C	-40 to 85

Thermal Resistance

Thermal Resistance ^[3]				
$(V_d = 5.0 V, T_c = 85^{\circ} C) \theta_{ic} = 67.0^{\circ} C/W$				

Notes:

1. Operation of this device in excess of any of these limits may cause permanent damage

2. Source lead temperature is 25° C. Derate 14.9 mW/°C for $T_L > 130.0^\circ$ C.

3. Thermal resistance measured using 150°C Infra-Red Microscopy Technique.

Table 2. MGA-31716 Electrical Specification^[1]

 $T_C = 25^{\circ}$ C, $V_d = 5.0$ V, unless otherwise noted

Symbol	Parameter and Test Condition	Frequency	Units	Min.	Тур.	Max.
l _{ds}	Quiescent Current	450 MHz 900 MHz 1500 MHz	mA	37	60 68 50	83
NF	Noise Figure	450 MHz 900 MHz 1500 MHz	dB	-	1.8 1.9 2.1	2.7
Gain	Gain	450 MHz 900 MHz 1500 MHz	dB	18.5	21.0 20.6 20.0	21.5
OIP3 ^[2, 4]	Output Third Order Intercept Point	450 MHz 900 MHz 1500 MHz	dBm	37	42.1 39.5 40.5	-
LFOM ^[3]	Linearity Figure of Merit	450 MHz 900 MHz 1500 MHz	dBm		16.2 14.2 16.4	
P1dB	Output Power at 1dB Gain Compression	450 MHz 900 MHz 1500 MHz	dBm	19.5	22.1 22.5 21.1	-
PAE	Power Added Efficiency at P1dB	450 MHz 900 MHz 1500 MHz	%		50.9 51.9 64.0	
IRL	Input Return Loss	450 MHz 900 MHz 1500 MHz	dB		16.6 15.5 16.0	
ORL	Output Return Loss	450 MHz 900 MHz 1500 MHz	dB		15.6 15.5 13.0	
ISOL	Isolation	450 MHz 900 MHz 1500 MHz	dB		25.2 25.7 26.7	

Notes:

2. OIP3 test condition: F1 - F2 = 1 MHz, with input power of -12 dBm per tone measured at worst case side band.

^{1.} Measurements obtained from test circuit and demoboard detailed in Figures 46 and 47 and Table 3.

^{3.} LFOM is defined as LFOM = OIP3 (in dBm) – P_{DC} (in dBm). It is a measure of the linearity of an amplifier per unit of DC power consumed.

^{4.} Demoboard tuned to best OIP3 with minimum over-temperature drift.

MGA-31716 Consistency Distribution Chart^[1, 2]

Figure 2. Id @ 900 MHz; LSL = 37 mA, Nominal = 68 mA, USL = 83 mA

Figure 4. Gain @ 900 MHz; LSL = 18.5 dB, Nominal = 20.6 dB, USL = 21.5 dB

Figure 6. P1dB @ 900 MHz; Nominal = 22.5 dBm, LSL = 19.5 dBm

Notes:

- 1. Data sample size is 4000 samples taken from 4 different wafers and 2 different lots. Future wafers allocated to this product may have nominal values anywhere between the upper and lower limits.
- 2. Measurements are made on production test board which represents a trade-off between optimal Gain, NF, OIP3 and P1dB. Circuit losses have been de-embedded from actual measurements.

Figure 5. OIP3 @ 900 MHz; Nominal = 39.5 dBm, LSL = 37 dBm

MGA-31716 Typical Performance Data for 450 MHz

 $T_C = 25^{\circ}$ C, $V_d = 5.0$ V, $I_d = 60$ mA (Based on BOM for 450 MHz optimal linearity tuning in Table 3)

Figure 7. OIP3 vs Pin and Temperature

Figure 9. Gain vs Frequency and Temperature

Figure 11. ORL vs Frequency and Temperature

Figure 8. OIP3 vs Frequency and Temperature

Figure 10. IRL vs Frequency and Temperature

Figure 12. Isolation vs Frequency and Temperature

MGA-31716 Typical Performance Data for 450 MHz

 $T_C = 25^{\circ}$ C, $V_d = 5.0$ V, $I_d = 60$ mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)

Figure 13. P1dB vs Frequency and Temperature

Figure 15. Current vs Voltage and Temperature

Figure 17. OIP3 and Quiescent Current with different R2^[1]

Note:

Figure 14. Noise Figure vs Frequency and Temperature

Figure 16. OIP3 and Quiescent Current with different R1^[1]

MGA-31716 Typical Performance Data for 450 MHz

 $T_C = 25^{\circ}$ C, $V_d = 5.0$ V, $I_d = 60$ mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)

Figure 18. P1dB and Quiescent Current with different R1^[1]

Figure 19. P1dB and Quiescent Current with different R2^[1]

Note:

MGA-31716 Typical Performance Data for 900 MHz

 $T_C = 25^{\circ}$ C, $V_d = 5.0$ V, $I_d = 68$ mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)

Figure 21. OIP3 vs Frequency and Temperature

Figure 22. Gain vs Frequency and Temperature

Figure 24. ORL vs Frequency and Temperature

Figure 23. IRL vs Frequency and Temperature

Figure 25. Isolation vs Frequency and Temperature

MGA-31716 Typical Performance Data for 900 MHz

 $T_C = 25^{\circ}$ C, $V_d = 5.0$ V, $I_d = 68$ mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)

Figure 26. P1dB vs Frequency and Temperature

Figure 28. Current vs Voltage and Temperature

Figure 30. OIP3 and Quiescent current with different R2^[1]

Note:

Figure 27. Noise Figure vs Frequency and Temperature

Figure 29. OIP3 and Quiescent current with different R1^[1]

MGA-31716 Typical Performance Data for 900 MHz

 $T_C = 25^{\circ}$ C, $V_d = 5.0$ V, $I_d = 68$ mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)

Figure 31. P1dB and Quiescent current with different R1^[1]

Figure 32. P1dB and Quiescent current with different R2^[1]

Note:

MGA-31716 Typical Performance Data for 1500 MHz

 $T_C = 25^{\circ}$ C, $V_d = 5.0$ V, $I_d = 50$ mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)

Figure 33. OIP3 vs Pin and Temperature

Figure 35. Gain vs Frequency and Temperature

Figure 37. ORL vs Frequency and Temperature

Figure 34. OIP3 vs Frequency and Temperature

Figure 36. IRL vs Frequency and Temperature

Figure 38. Isolation vs Frequency and Temperature

MGA-31716 Typical Performance Data for 1500 MHz

 $T_C = 25^{\circ}$ C, $V_d = 5.0$ V, $I_d = 50$ mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)

3.5

3.0 2.5 25C 1.0 -40C 0.5 — 85C 0.0 1200 1300 1400 1500 1600 1700 1800 Frequency (MHz)

Figure 39. P1dB vs Frequency and Temperature

Figure 42. OIP3 and Quiescent current with different R1^[1]

Figure 43. OIP3 and Quiescent current with different R2^[1]

Note:

MGA-31716 Typical Performance Data for 1500 MHz

 $T_C = 25^{\circ}$ C, $V_d = 5.0$ V, $I_d = 50$ mA (Based on BOM in Table 3, tuned for optimal linearity with over temperature)

Figure 44. P1dB and Quiescent current with different R1^[1]

Figure 45. P1dB and Quiescent current with different R2^[1]

Note:

Application Circuit Description and Layout

Table 3. Bill of Materials – Tuned for optimal linearity performance at different frequencies

		Description						
Circuit		Optimum linearity at 450 MHz	Optimum linearity at 900 MHz	Optimum linearity at 1500 MHz				
Symbol	Size	Value	Value	Value	Manufacturer			
C2	0402	5 pF	5 pF	1 pF	Murata			
C3	0603	2.2 μF	2.2 μF	2.2 μF	Murata			
C11	0402	100 pF	100 pF	100 pF	Murata			
C13	0402	12 pF	3.6 pF	1.8 pF	Murata			
L1	0402	33 nH	8.2 nH	3.3 nH	Murata			
L2 ^[2]	0402	NR	2.4 pF	1 pF	Murata			
R1 ^[1]	0402	1.2 kΩ	680 Ω	1.8 kΩ	КОА			
R2 ^[1]	0402	390 Ω	680 Ω	820 Ω	КОА			

Notes:

NR - Not required in actual PCB design

1. R1 and R2 can be varied to bias Vbias and Vctrl which will provide flexibility to have the product operates at desirable Id, LFOM, and OIP3 drift across temperature also P1dB.

2. Capacitor is used at L2.

Note:

1. Measurements are conducted on 0.010 inch think ROGER 4350. The input reference plane is at the end of the RFin pin and the output reference plane is at the end of the RFout pin as shown in Figure 48.

Figure 48. Circuit to measure de-embedded S-parameters and Noise Parameter in Table 4 and 5.

Table 4. MGA-31716 Typical Scattering Parameters

 $T_C = 25^{\circ}$ C, $V_d = 5.0$ V, $I_d = 68$ mA, $Z_o = 50 \Omega$ (Data is de-embedded to the RFin & RFout pins on package. Measurements were made with Bias-Tees at Vd, Vctrl and Vbias in Figure 48)

Frea	S11	S11	S11	S21	S21	S21	S12	S12	S12	S22	S22	S22	
GHz	Mag.	dB	Ang.	Mag.	dB	Ang.	Mag.	dB	Ang.	Mag.	dB	Ang.	K Factor
0.10	0.160	-15.9	177.0	12.600	22.0	158.0	0.057	-25.0	-12.8	0.156	-16.1	177.0	1.046
0.20	0.152	-16.4	163.0	12.300	21.8	143.0	0.057	-24.9	-29.7	0.153	-16.3	149.0	1.056
0.30	0.150	-16.5	152.0	12.100	21.7	127.0	0.056	-25.1	-43.3	0.145	-16.8	125.0	1.068
0.40	0.149	-16.5	142.0	12.000	21.6	111.0	0.056	-25.1	-58.6	0.139	-17.2	105.0	1.072
0.50	0.155	-16.2	133.0	11.900	21.5	94.0	0.055	-25.2	-73.0	0.132	-17.6	83.8	1.080
0.60	0.157	-16.1	120.0	11.700	21.4	77.5	0.054	-25.3	-87.4	0.123	-18.2	62.3	1.091
0.70	0.162	-15.8	110.0	11.600	21.3	60.9	0.053	-25.4	-102.0	0.117	-18.6	40.3	1.103
0.80	0.167	-15.5	96.3	11.500	21.2	44.4	0.053	-25.6	-116.0	0.110	-19.2	17.6	1.114
0.90	0.169	-15.4	83.1	11.300	21.1	27.7	0.052	-25.6	-131.0	0.106	-19.5	-6.7	1.124
1.00	0.173	-15.2	68.8	11.200	21.0	11.0	0.052	-25.7	-145.0	0.102	-19.8	-30.1	1.138
1.10	0.177	-15.0	53.4	11.000	20.9	-5.6	0.051	-25.8	-159.0	0.101	-19.9	-52.4	1.150
1.20	0.177	-15.0	37.1	10.900	20.7	-22.2	0.050	-26.0	-174.0	0.100	-20.0	-76.0	1.170
1.30	0.179	-14.9	19.6	10.700	20.6	-39.0	0.049	-26.2	171.0	0.101	-19.9	-97.3	1.186
1.40	0.181	-14.9	0.5	10.600	20.5	-55.7	0.048	-26.3	156.0	0.103	-19.8	-117.0	1.205
1.50	0.181	-14.9	-19.2	10.400	20.4	-72.5	0.047	-26.5	142.0	0.105	-19.6	-136.0	1.227
1.60	0.182	-14.8	-40.2	10.200	20.2	-89.4	0.046	-26.7	127.0	0.107	-19.4	-154.0	1.255
1.70	0.186	-14.6	-63.3	10.100	20.1	-106.0	0.045	-26.9	112.0	0.109	-19.2	-169.0	1.280
1.80	0.190	-14.4	-87.6	9.920	19.9	-124.0	0.045	-27.0	97.0	0.113	-18.9	174.0	1.306
1.90	0.199	-14.0	-113.0	9.720	19.8	-141.0	0.044	-27.2	82.1	0.113	-18.9	160.0	1.338
2.00	0.215	-13.3	-138.0	9.510	19.6	-158.0	0.042	-27.5	66.8	0.117	-18.6	147.0	1.378
2.10	0.235	-12.6	-163.0	9.290	19.4	-176.0	0.041	-27.7	51.4	0.120	-18.4	135.0	1.416
2.20	0.260	-11.7	172.0	9.030	19.1	166.0	0.040	-28.0	35.4	0.124	-18.2	122.0	1.462
2.30	0.293	-10.7	147.0	8.740	18.8	149.0	0.038	-28.4	19.9	0.128	-17.8	112.0	1.518
2.40	0.329	-9.7	123.0	8.430	18.5	131.0	0.036	-28.8	3.6	0.137	-17.3	99.7	1.581
2.50	0.369	-8.7	99.9	8.090	18.2	113.0	0.035	-29.2	-12.9	0.143	-16.9	88.0	1.645
3.00	0.602	-4.4	-5.8	5.990	15.5	22.4	0.026	-31.9	-92.1	0.212	-13.5	24.4	2.073
3.50	0.779	-2.2	-96.4	3.830	11.7	-63.3	0.017	-35.4	-168.0	0.302	-10.4	-45.9	2.787
4.00	0.863	-1.3	-174.0	2.290	7.2	-141.0	0.011	-38.8	124.0	0.381	-8.4	-114.0	4.181
5.00	0.887	-1.1	52.5	0.838	-1.5	80.8	0.007	-42.6	-3.9	0.476	-6.4	121.0	13.380
6.00	0.887	-1.0	-69.8	0.353	-9.1	-45.3	0.007	-42.8	-129.0	0.500	-6.0	3.2	31.411
7.00	0.900	-0.9	173.0	0.159	-16.0	-168.0	0.008	-42.0	111.0	0.526	-5.6	-115.0	54,716
8.00	0.902	-0.9	61.0	0.075	-22.5	72.4	0.008	-41 5	-2.2	0 566	-5.0	131.0	99 527
9.00	0.888	-1.0	-47.5	0.038	-28.3	-49.7	0.009	-40.5	-117.0	0.585	-4.7	22.3	192,476
10.00	0.873	-1.2	-155.0	0.021	-33.5	-175.0	0.010	-40.0	128.0	0 584	-4 7	-88 3	375 167
11.00	0.870	-1.2	95.6	0.014	-37.3	54.6	0.010	-39.8	15.9	0.590	-4.6	159.0	572 555
12.00	0.878	-1.1	-13.8	0.009	-40 5	-75 5	0.009	-40.8	-99 3	0.550	-4.2	44.2	821 109
13.00	0.881	-1.1	-117.0	0.004	-48.3	143.0	0.005	-45.7	130.0	0.684	-3.3	-71.2	2981 617
14.00	0.877	-1.1	146.0	0.001	-39.5	103.0	0.009	-41 1	92.2	0 744	-2.6	180.0	557 304
15.00	0.860	_1.1	140.0	0.011	-11.6	-26.7	0.005	-45.5	-34.7	0.795	-2.0	68.4	153/ 771
16.00	0.000	-1.5	-67.3	0.000	_12.8	-20.7	0.005	-43.0	-58.6	0.795	-2.0	_71.0	1/28 001
17.00	0.040	1.7	170 0	0.007	- 4 2.0	172.0	0.007	-43.0	161.0	0.711	-5.0	165.0	624 270
12.00	0.049	-1.4	-1/8.0	0.013	-20.0	50.0	0.012	-20.2	101.0	0.500	-5.0	75.0	5024.270
10.00	0.003	-1.5	00.1	0.013	-37.9	39.9	0.012	-38.2	40.2	0.528	-3.0	/3./	203.09/
19.00	0.862	-1.3	-7.0	0.014	-37.0	-48.0	0.014	-3/.3	-60.8	0.516	-5.8	-12.9	486./34
20.00	0.839	-1.5	-105.0	0.013	-37.8	-177.0	0.016	-36.0	165.0	0.463	-6.7	-117.0	574.400

MGA-31716 Stability

 $T_C = 25^{\circ}$ C, $V_d = 5.0$ V, $I_d = 58$ mA, $Z_o = 50 \Omega$ (Data is de-embedded to the RFin & RFout pins. Measurements were made with Bias-T at Vd, Vctrl and Vbias in Figure 48)

Figure 49. K-Factor vs Frequency

Table 5. MGA-31716 Typical Noise Parameters

 $T_C = 25^{\circ}$ C, $V_d = 5.0$ V, $I_d = 58$ mA, $Z_o = 50 \Omega$ (Data is de-embedded to the RFin & RFout pins on package. Measurements were made with Bias-Tees at Vd, Vctrl and Vbias in Figure 48)

Freq (GHz)	F _{min} (dB)	Γ_{opt} Mag	Γ_{opt} Ang	R _n /Z ₀	Ga (dB)
0.5	1.46	0.159	-146.4	0.1272	21.43
0.8	1.55	0.120	-132.4	0.1384	21.22
0.9	1.60	0.105	-129.3	0.1440	21.13
1.0	1.63	0.097	-124.0	0.1546	21.10
1.5	1.74	0.043	-47.2	0.1972	20.43
2.0	1.92	0.168	36.3	0.2498	19.74
2.5	2.24	0.327	78.4	0.2862	18.89
3.0	2.52	0.544	109.3	0.3296	17.89
3.5	2.87	0.672	138.0	0.4130	18.56
4.0	3.38	0.781	159.6	0.5284	15.33
4.5	4.23	0.85	175.2	0.9124	13.18
5.0	5.12	0.881	-163.3	1.4458	11.13
5.5	6.54	0.919	-148.4	2.9438	7.73
6.0	7.84	0.916	-141.4	4.2160	5.92

PCB Layout and Stencil Design

Notes:

All dimensions are in milimeters
4mil stencil thickness recommended

COMBINED PCB & STENCIL LAYOUTS

Package Dimensions

Notes:

1. All dimensions are in milimeters.

2. Dimensions are inclusive of plating.

3. Dimensions are exclusive of mold flash and metal burr.

Part Number Ordering Information

Part Number	No. of Devices	Container
MGA-31716-BLKG	100	Antistatic Bag
MGA-31716-TR1G	3000	13"Tape/Reel

Device Orientation

Tape Dimensions

Notes:

1. Measured from centerline of sprocket hole to centerline of pocket

2. Cumulative tolerance of 10 sprocket holes is \pm 0.20

Communicative conclusive of rospice choices is ±0.25
Other material available
All dimensions in millimeter unless otherwise stated

Reel Dimension – 13" Reel 12 mm Width

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago Technologies and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2014-2016 Avago Technologies. All rights reserved. AV02-3264EN - April 29, 2016

